1
|
Kalantari L, Hajjafari A, Goleij P, Rezaee A, Amirlou P, Farsad S, Foroozand H, Arefnezhad R, Rezaei-Tazangi F, Jahani S, Yazdani T, Nazari A. Umbilical cord mesenchymal stem cells: A powerful fighter against colon cancer? Tissue Cell 2024; 90:102523. [PMID: 39154502 DOI: 10.1016/j.tice.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Colon cancer (CC) stands as one of the most common malignancies related to the gastrointestinal system, whose increasing incidence and death rates have been reported all over the world. Standard treatments for fighting cancers like CC comprise surgical approaches, chemotherapy, and radiotherapy, which are suggested by clinicians according to patients' conditions and disease stages. However, patients who utilize these modalities may suffer from serious side effects and adverse outcomes, for example, toxicity and tumor recurrence, as well as a low 5-year survival rate. The present shreds of evidence showed that mesenchymal stem cells (MSCs) can have a suitable capacity for treating different health problems, especially neoplasms. These multipotent stem cells can be isolated from several sources, such as the umbilical cord, bone marrow, adipose tissue, and placenta. Among these mesenchymal sources, umbilical cord-MSCs have gathered much attention in scientific societies due to their advantages (e.g., low immunogenicity, lack of ethical problems, and easy collection). These days, the efficacy of umbilical cord-MSCs and umbilical cord-MSCs-based strategies, such as conditioned medium, extracellular vesicles, and exosomes, on CC have been explored, and promising findings have been stated. Therefore, in this review, we aimed to summarize and debate evidence regarding the effects of UC-MSCs and their related products on CC with a focus on molecular and cellular mechanisms involved in its treatment and pathogenesis of this malignant tumor.
Collapse
Affiliation(s)
- Leila Kalantari
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parsa Amirlou
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Farsad
- Faculty of Basic Science, Islamic Azad University, Qom, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Arefnezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Coenzyme R Research Institute, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saleheh Jahani
- Pathology department, University of California, SanDiego, United States
| | - Taha Yazdani
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Di Nardo M, Astigiano S, Baldari S, Pallotta MM, Porta G, Pigozzi S, Antonini A, Emionite L, Frattini A, Valli R, Toietta G, Soddu S, Musio A. The synergism of SMC1A cohesin gene silencing and bevacizumab against colorectal cancer. J Exp Clin Cancer Res 2024; 43:49. [PMID: 38365745 PMCID: PMC10870497 DOI: 10.1186/s13046-024-02976-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND SMC1A is a subunit of the cohesin complex that participates in many DNA- and chromosome-related biological processes. Previous studies have established that SMC1A is involved in cancer development and in particular, is overexpressed in chromosomally unstable human colorectal cancer (CRC). This study aimed to investigate whether SMC1A could serve as a therapeutic target for CRC. METHODS At first, we studied the effects of either SMC1A overexpression or knockdown in vitro. Next, the outcome of SMC1A knocking down (alone or in combination with bevacizumab, a monoclonal antibody against vascular endothelial growth factor) was analyzed in vivo. RESULTS We found that SMC1A knockdown affects cell proliferation and reduces the ability to grow in anchorage-independent manner. Next, we demonstrated that the silencing of SMC1A and the combo treatment were effective in increasing overall survival in a xenograft mouse model. Functional analyses indicated that both treatments lead to atypical mitotic figures and gene expression dysregulation. Differentially expressed genes were implicated in several pathways including gene transcription regulation, cellular proliferation, and other transformation-associated processes. CONCLUSIONS These results indicate that SMC1A silencing, in combination with bevacizumab, can represent a promising therapeutic strategy for human CRC.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, Pisa, 1 56124, Italy
| | | | - Silvia Baldari
- Dipartimento Ricerca e Tecnologie Avanzate, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Maria Michela Pallotta
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, Pisa, 1 56124, Italy
| | - Giovanni Porta
- Dipartimento di Medicina e Chirurgia, Sezione di Biologia Generale e Genetica Medica, Università degli Studi dell'Insubria, Varese, Italy
| | - Simona Pigozzi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Annalisa Antonini
- Dipartimento Ricerca e Tecnologie Avanzate, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | | | - Annalisa Frattini
- Dipartimento di Medicina e Chirurgia, Sezione di Biologia Generale e Genetica Medica, Università degli Studi dell'Insubria, Varese, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Roberto Valli
- Dipartimento di Medicina e Chirurgia, Sezione di Biologia Generale e Genetica Medica, Università degli Studi dell'Insubria, Varese, Italy
| | - Gabriele Toietta
- Dipartimento Ricerca e Tecnologie Avanzate, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Silvia Soddu
- Dipartimento Ricerca e Tecnologie Avanzate, IRCCS Istituto Nazionale Tumori Regina Elena, Rome, Italy
| | - Antonio Musio
- Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), Via Moruzzi, Pisa, 1 56124, Italy.
| |
Collapse
|
3
|
Chang YF, Wang HH, Shu CW, Tsai WL, Lee CH, Chen CL, Liu PF. TMEM211 Promotes Tumor Progression and Metastasis in Colon Cancer. Curr Issues Mol Biol 2023; 45:4529-4543. [PMID: 37367036 DOI: 10.3390/cimb45060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Colon cancer is the third most important cancer type, leading to a remarkable number of deaths, indicating the necessity of new biomarkers and therapeutic targets for colon cancer patients. Several transmembrane proteins (TMEMs) are associated with tumor progression and cancer malignancy. However, the clinical significance and biological roles of TMEM211 in cancer, especially in colon cancer, are still unknown. In this study, we found that TMEM211 was highly expressed in tumor tissues and the increased TMEM211 was associated with poor prognosis in colon cancer patients from The Cancer Genome Atlas (TCGA) database. We also showed that abilities regarding migration and invasion were reduced in TMEM211-silenced colon cancer cells (HCT116 and DLD-1). Moreover, TMEM211-silenced colon cancer cells showed decreased levels of Twist1, N-cadherin, Snail and Slug but increased levels of E-cadherin. Levels of phosphorylated ERK, AKT and RelA (NF-κB p65) were also decreased in TMEM211-silenced colon cancer cells. Our findings indicate that TMEM211 regulates epithelial-mesenchymal transition for metastasis through coactivating the ERK, AKT and NF-κB signaling pathways, which might provide a potential prognostic biomarker or therapeutic target for colon cancer patients in the future.
Collapse
Affiliation(s)
- Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hsing-Hsang Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wei-Lun Tsai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
4
|
Ehlers JS, Bracke K, von Bohlen Und Halbach V, Siegerist F, Endlich N, von Bohlen Und Halbach O. Morphological and behavioral analysis of Slc35f1-deficient mice revealed no neurodevelopmental phenotype. Brain Struct Funct 2023; 228:895-906. [PMID: 36951990 PMCID: PMC10147817 DOI: 10.1007/s00429-023-02629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice. The Slc35f1-deficient mice are viable and survive into adulthood, which allowed examining adult Slc35f1-deficient mice on the anatomical as well as behavioral level. In humans, mutation in the SLC35F1 gene can induce a Rett syndrome-like phenotype accompanied by intellectual disability (Fede et al. Am J Med Genet A 185:2238-2240, 2021). The Slc35f1-deficient mice, however, display only a very mild phenotype and no obvious deficits in learning and memory as, e.g., monitored with the novel object recognition test or the Morris water maze test. Moreover, neuroanatomical parameters of neuronal plasticity (as dendritic spines and adult hippocampal neurogenesis) are also unaltered. Thus, Slc35f1-deficient mice display no major alterations that resemble a neurodevelopmental phenotype.
Collapse
Affiliation(s)
- Julia Sophie Ehlers
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Katharina Bracke
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Viola von Bohlen Und Halbach
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Florian Siegerist
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Oliver von Bohlen Und Halbach
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany.
| |
Collapse
|
5
|
Wang Z, Bao A, Liu S, Dai F, Gong Y, Cheng Y. A Pyroptosis-Related Gene Signature Predicts Prognosis and Immune Microenvironment for Breast Cancer Based on Computational Biology Techniques. Front Genet 2022; 13:801056. [PMID: 35464869 PMCID: PMC9021921 DOI: 10.3389/fgene.2022.801056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is a malignant tumor with high morbidity and mortality, which seriously threatens women's health worldwide. Pyroptosis is closely correlated with immune landscape and the tumorigenesis and development of various cancers. However, studies about pyroptosis and immune microenvironment in BC are limited. Therefore, our study aimed to investigate the potential prognostic value of pyroptosis-related genes (PRGs) and their relationship to immune microenvironment in BC. First, we identified 38 differentially expressed PRGs between BC and normal tissues. Further on, the least absolute shrinkage and selection operator (LASSO) Cox regression and computational biology techniques were applied to construct a four-gene signature based on PRGs and patients in The Cancer Genome Atlas (TCGA) cohort were classified into high- and low-risk groups. Patients in the high-risk group showed significantly lower survival possibilities compared with the low-risk group, which was also verified in an external cohort. Furthermore, the risk model was characterized as an independent factor for predicting the overall survival (OS) of BC patients. What is more important, functional enrichment analyses demonstrated the robust correlation between risk score and immune infiltration, thereby we summarized genetic mutation variation of PRGs, evaluated the relationship between PRGs, different risk group and immune infiltration, tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoint blockers (ICB), which indicated that the low-risk group was enriched in higher TMB, more abundant immune cells, and subsequently had a brighter prognosis. Except for that, the lower expression of PRGs such as GZMB, IL18, IRF1, and GZMA represented better survival, which verified the association between pyroptosis and immune landscape. In conclusion, we performed a comprehensive bioinformatics analysis and established a four-PRG signature consisting of GZMB, IL18, IRF1, and GZMA, which could robustly predict the prognosis of BC patients.
Collapse
Affiliation(s)
- Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Dong D, Zhang R, Shao J, Zhang A, Wang Y, Zhou Y, Li Y. Promoter methylation-mediated repression of UNC5 receptors and the associated clinical significance in human colorectal cancer. Clin Epigenetics 2021; 13:225. [PMID: 34922605 PMCID: PMC8684698 DOI: 10.1186/s13148-021-01211-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Deregulated methylation of tumor suppressor genes is a hallmark event in colorectal cancer (CRC) carcinogenesis. UNC5 receptors, down-regulated in various human malignancies due to epigenetic alterations, have been proposed as putative tumor suppressor genes. In this study, we focused on the methylation-mediated inhibition of UNC5 receptors and the associated clinical significance in CRC. Methods Methylation and expression analysis was performed in TCGA datasets. And the results were confirmed in vitro in CRC cell lines treated with 5-aza-deoxycytidine. Then, the expression and epigenetic alterations of UNC5 receptors were evaluated in clinical specimens. Moreover, the diagnostic and prognostic values of the methylation alterations were also analyzed. Results Methylation-mediated repression was observed in UNC5C and UNC5D, but not in UNC5A and UNC5B, which was confirmed in CRC cell lines. Except for UNC5B, significantly elevated methylation was observed in UNC5A, UNC5C, and UNC5D in CRC. The discrimination efficiency of the three receptors was comparable with that of SEPT9. Kaplan–Meier curve survival analysis showed that hypermethylation of UNC5A, UNC5C and UNC5D was associated with poor progression-free and overall survival. Moreover, methylation levels of UNC5C and UNC5D were independent predictors of CRC progression-free (P = 0.001, P = 0.003, respectively) and overall survival (P = 0.008, P = 0.004, respectively). Conclusions Hypermethylation of UNC5C and UNC5D mediates the repression and has promising diagnostic and prognostic values in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01211-5.
Collapse
Affiliation(s)
- Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Runshi Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.,Department of Clinical Laboratory, Xi'an No. 1 Hospital, Xi'an, 710002, Shaanxi, People's Republic of China
| | - Jie Shao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Aimin Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| | - Yunli Zhou
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| | - Yueguo Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
7
|
Almeida-Lousada H, Mestre A, Ramalhete S, Price AJ, de Mello RA, Marreiros AD, Neves RPD, Castelo-Branco P. Screening for Colorectal Cancer Leading into a New Decade: The "Roaring '20s" for Epigenetic Biomarkers? Curr Oncol 2021; 28:4874-4893. [PMID: 34898591 PMCID: PMC8628779 DOI: 10.3390/curroncol28060411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) has an important bearing (top five) on cancer incidence and mortality in the world. The etiology of sporadic CRC is related to the accumulation of genetic and epigenetic alterations that result in the appearance of cancer hallmarks such as abnormal proliferation, evasion of immune destruction, resistance to apoptosis, replicative immortality, and others, contributing to cancer promotion, invasion, and metastasis. It is estimated that, each year, at least four million people are diagnosed with CRC in the world. Depending on CRC staging at diagnosis, many of these patients die, as CRC is in the top four causes of cancer death in the world. New and improved screening tests for CRC are needed to detect the disease at an early stage and adopt patient management strategies to decrease the death toll. The three pillars of CRC screening are endoscopy, radiological imaging, and molecular assays. Endoscopic procedures comprise traditional colonoscopy, and more recently, capsule-based endoscopy. The main imaging modality remains Computed Tomography (CT) of the colon. Molecular approaches continue to grow in the diversity of biomarkers and the sophistication of the technologies deployed to detect them. What started with simple fecal occult blood tests has expanded to an armamentarium, including mutation detection and identification of aberrant epigenetic signatures known to be oncogenic. Biomarker-based screening methods have critical advantages and are likely to eclipse the classical modalities of imaging and endoscopy in the future. For example, imaging methods are costly and require highly specialized medical personnel. In the case of endoscopy, their invasiveness limits compliance from large swaths of the population, especially those with average CRC risk. Beyond mere discomfort and fear, there are legitimate iatrogenic concerns associated with endoscopy. The risks of perforation and infection make endoscopy best suited for a confirmatory role in cases where there are positive results from other diagnostic tests. Biomarker-based screening methods are largely non-invasive and are growing in scope. Epigenetic biomarkers, in particular, can be detected in feces and blood, are less invasive to the average-risk patient, detect early-stage CRC, and have a demonstrably superior patient follow-up. Given the heterogeneity of CRC as it evolves, optimal screening may require a battery of blood and stool tests, where each can leverage different pathways perturbed during carcinogenesis. What follows is a comprehensive, systematic review of the literature pertaining to the screening and diagnostic protocols used in CRC. Relevant articles were retrieved from the PubMed database using keywords including: "Screening", "Diagnosis", and "Biomarkers for CRC". American and European clinical trials in progress were included as well.
Collapse
Affiliation(s)
- Hélder Almeida-Lousada
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal; (H.A.-L.); (A.M.); (S.R.); (R.A.d.M.); (A.D.M.)
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
| | - André Mestre
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal; (H.A.-L.); (A.M.); (S.R.); (R.A.d.M.); (A.D.M.)
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
| | - Sara Ramalhete
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal; (H.A.-L.); (A.M.); (S.R.); (R.A.d.M.); (A.D.M.)
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
| | - Aryeh J. Price
- School of Law, University of California, Berkeley, CA 94704, USA;
| | - Ramon Andrade de Mello
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal; (H.A.-L.); (A.M.); (S.R.); (R.A.d.M.); (A.D.M.)
- Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil
- Precision Oncology & Health Economics Group (ONCOPRECH), Post-Graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo 01525-000, Brazil
| | - Ana D. Marreiros
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal; (H.A.-L.); (A.M.); (S.R.); (R.A.d.M.); (A.D.M.)
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
| | - Ricardo Pires das Neves
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- IIIUC—Institute of Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal; (H.A.-L.); (A.M.); (S.R.); (R.A.d.M.); (A.D.M.)
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
8
|
Fan Y, He L, Wang Y, Fu S, Han Y, Fan J, Wen Q. CLIP4 Shows Putative Tumor Suppressor Characteristics in Breast Cancer: An Integrated Analysis. Front Mol Biosci 2021; 7:616190. [PMID: 33575272 PMCID: PMC7870488 DOI: 10.3389/fmolb.2020.616190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background: CAP-Gly domain containing linker protein family member 4 (CLIP4) plays an important role in cancers. However, its expression, prognostic value, and biological effect in breast cancer remain unclear. Methods: Data on patients diagnosed with breast cancer were retrieved from the TCGA-BRCA and other public omics databases. The expression profile of CLIP4 was analyzed using Oncomine, bc-GenExMiner, and TCGA. The prognostic value of CLIP4 was determined by Kaplan-Meier Plotter and Human Protein Atlas. Identification of genes co-expressed with CLIP4 and potential mechanism analyses were performed using UALCAN, STRING, Metascape, and GSEA. The epigenetic characteristics of CLIP4 were determined by DiseaseMeth and MEXPRESS. Results: CLIP4 was downregulated and its expression was negatively correlated with estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor type 2 (HER2) status, Nottingham prognostic index (NPI), and Scarff-Bloom-Richardson (SBR) grade in breast cancer, whereas it was positively linked to basal-like and triple negative breast cancer status. Ectopic expression of CLIP4 was related with poor prognosis. In the analysis of genes co-expressed with CLIP4, GSEA showed that the Hedgehog (Hh), JAK-STAT, ERBB, Wnt signaling pathway, cell adhesion molecules, and pathways in cancer were dissimilarly enriched in the CLIP4 expression high phenotype. Analysis of the genetics and epigenetics of CLIP4 indicated that its expression was negatively correlated with DNA methylation. Conclusion: Methylated CLIP4 may be a novel prognostic and therapeutic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yu Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Lijia He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yu Wang
- Health Management Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Juan Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China
| |
Collapse
|