1
|
Zeng Q, Lam K, Salcedo A, Tikekar RV, Micallef SA, Blaustein RA. Effects of Organic Soil Amendments on Antimicrobial-Resistant Bacteria in Urban Agriculture Environments. J Food Prot 2024; 87:100344. [PMID: 39147100 DOI: 10.1016/j.jfp.2024.100344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Biological soil amendments of animal origin (BSAAOs) are widely used in urban agriculture to improve soil quality. Although BSAAO use is regulated due to risks for introducing foodborne pathogens, effects on antimicrobial-resistant (AMR) bacteria are not well established. Here, we aimed to explore the impacts of BSAAOs on levels of resident AMR bacteria in leafy vegetable production environments (i.e., kale, lettuce, chard, cabbage) across urban farms and community gardens in the greater Washington D.C. area (n = 7 sites). Leaf tissue (LT), root zone soil (RZS; amended soil in crop beds), and bulk soil (BS; site perimeter) were collected and analyzed for concentrations of total heterotrophic bacteria (THB), ampicillin (Amp) or tetracycline (Tet) resistant THB, and coliforms. As expected, amended plots harbored significantly higher concentrations of THB than bulk soil (P < 0.001). The increases in total bacteria associated with reduced fractions of Tet-resistant bacteria (P = 0.008), as well as case-specific trends for reduced fractions of Amp-resistant bacteria and coliforms. Site-to-site variation in concentrations of AMR bacteria in soil and vegetable samples reflected differences in land history and crop management, while within-site variation was associated with specific amendment sources, as well as vegetable type and cultivar. Representative isolates of the AMR bacteria and coliforms were further screened for multidrug resistance (MDR) phenotypes, and a high frequency was observed for the former. In amended soils, as the soil pH (range 6.56-7.80) positively correlated with the fraction of Tet-resistant bacteria (rho = 0.529; P < 0.001), crop management strategies targeting pH may have applications to control related risks. Overall, our findings demonstrate that soil amendments promote soil bacteria concentrations and have important implications for limiting the spread of AMR bacteria, at least in the urban landscape.
Collapse
Affiliation(s)
- Qingyue Zeng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Kevin Lam
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Autumn Salcedo
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States; Centre for Food Safety and Security Systems, University of Maryland, College Park, Maryland, United States
| | - Ryan A Blaustein
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States.
| |
Collapse
|
2
|
Mwenifumbo M, Cookson AL, Zhao S, Fayaz A, Browne AS, Benschop J, Burgess SA. The characterisation of antimicrobial resistant Escherichia coli from dairy calves. J Med Microbiol 2023; 72. [PMID: 37578342 DOI: 10.1099/jmm.0.001742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction. Dairy calves, particularly pre-weaned calves have been identified as a common source of multidrug resistant (MDR) Escherichia coli.Gap statement. E. coli strains isolated from dairy calves and the location of their resistance genes (plasmid or chromosomal) have not been well characterised.Aim. To characterise the phenotypic and genotypic features as well as the population structure of antimicrobial-resistant E. coli isolated from calves located on dairy farms that feed waste-milk to their replacement calves.Methodology. Recto-anal swab enrichments from 40 dairy calves (≤ 14 days old) located on four dairy farms were examined for tetracycline, streptomycin, ciprofloxacin, and third-generation cephalosporin resistant E. coli. Whole genome sequencing was performed using both short- and long-read technologies on selected antimicrobial resistant E. coli.Results. Fifty-eight percent (23/40) of calves harboured antimicrobial resistant E. coli: 43 % (17/40) harboured tetracycline resistant, and 23 % (9/40) harboured chromosomal mediated AmpC producing E. coli. Whole genome sequencing of 27 isolates revealed five sequence types, with ST88 being the dominant ST (17/27, 63 % of the sequenced isolates) followed by ST1308 (3/27, 11 %), along with the extraintestinal pathogenic E. coli lineages ST69 (3/27, 11 %), ST10 (2/27, 7 %), and ST58 (2/27, 7 %). Additionally, 16 isolates were MDR, harbouring additional resistance genes that were not tested phenotypically. Oxford Nanopore long-read sequencing technologies enabled the location of multiple resistant gene cassettes in IncF plasmids to be determined.Conclusion. Our study identified a high incidence of tetracycline and streptomycin-resistant E. coli in dairy calves, and highlighted the presence of multidrug-resistant strains, emphasising the need for further investigation into potential associations with farm management practices.
Collapse
Affiliation(s)
- Merning Mwenifumbo
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
- Present address: Faculty of Veterinary Medicine, Lilongwe University of Agriculture & Natural Resources, Lilongwe, Malawi
| | - Adrian L Cookson
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
- Food Systems Integrity, Hopkirk Research Institute, cnr University & Library Rds, AgResearch Ltd, Palmerston North 4442, New Zealand
| | - Shengguo Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ahmed Fayaz
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - A Springer Browne
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - Jackie Benschop
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - Sara A Burgess
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
3
|
Vinayamohan PG, Locke SR, Portillo-Gonzalez R, Renaud DL, Habing GG. Antimicrobial Use and Resistance in Surplus Dairy Calf Production Systems. Microorganisms 2022; 10:1652. [PMID: 36014070 PMCID: PMC9413162 DOI: 10.3390/microorganisms10081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Surplus calves, which consist predominately of male calves born on dairy farms, are an underrecognized source of antimicrobial-resistant (AMR) pathogens. Current production systems for surplus calves have important risk factors for the dissemination of pathogens, including the high degree of commingling during auction and transportation and sometimes inadequate care early in life. These circumstances contribute to an increased risk of respiratory and other infectious diseases, resulting in higher antimicrobial use (AMU) and the development of AMR. Several studies have shown that surplus calves harbor AMR genes and pathogens that are resistant to critically important antimicrobials. This is a potential concern as the resistant pathogens and genes can be shared between animal, human and environmental microbiomes. Although knowledge of AMU and AMR has grown substantially in dairy and beef cattle systems, comparable studies in surplus calves have been mostly neglected in North America. Therefore, the overall goal of this narrative review is to summarize the existing literature regarding AMU and AMR in surplus dairy calf production, highlight the management practices contributing to the increased AMU and the resulting AMR, and discuss potential strategies and barriers for improved antimicrobial stewardship in surplus calf production systems.
Collapse
Affiliation(s)
- Poonam G. Vinayamohan
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Samantha R. Locke
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Rafael Portillo-Gonzalez
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - David L. Renaud
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gregory G. Habing
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Locke SR, Pempek JA, Meyer R, Portillo-Gonzalez R, Sockett D, Aulik N, Habing G. Prevalence and Sources of Salmonella Lymph Node Infection in Special-Fed Veal Calves. J Food Prot 2022; 85:906-917. [PMID: 35146524 DOI: 10.4315/jfp-21-410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/10/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Peripheral lymph nodes (LNs) have been implicated as potential contaminants of ground beef, yet the source and timing of Salmonella LN infection in cattle is still unclear, limiting targeted intervention. The aim of this study was to leverage the vertical integration of special-fed veal production to identify preharvest environmental exposures, specifically in livestock trailers and harvest facility holding pens where calves spend 30 min to 4 h, that result in Salmonella LN infection. Ten cohorts of 80 to 82 veal calves were followed through the harvest process, and environmental samples were collected in barns, trailers, and holding pens. Mesenteric LNs from 35 calves were collected at harvest, and 25 prefemoral LNs per cohort were pooled. Within the same cohort, for 12 samples for which the serovar of the environmental and calf LN Salmonella isolates matched, the isolates were submitted for whole genome sequencing to determine whether environmental exposure resulted in LN infection. Cohort-level Salmonella mesenteric LN prevalence ranged from 0% (0 of 35 samples) to 80% (28 of 35 samples), and pooled prefemoral LNs were positive for Salmonella in 3 of the 10 cohorts. Salmonella prevalence in samples from barns, livestock trailers, and harvest facility holding pens was 22% (13 of 60 samples), 74% (59 of 80 samples), and 93% (74 of 80 samples), respectively. Some environmental and LN isolates were multidrug resistant. Four instances of Salmonella transmission from trailers and/or holding pens to calf LNs were supported by sequence data. Salmonella serovars Agona, Give, and Muenster were identified in transmission events. One instance of transmission from the livestock trailer, two instances from holding pens, and one instance from either trailer or holding pens were observed. Further research is needed to evaluate the extent of environmental Salmonella transmission in cattle and to determine whether targeted interventions in trailers or holding pens could reduce novel Salmonella LN infection in veal calves before harvest. HIGHLIGHTS
Collapse
Affiliation(s)
- Samantha R Locke
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, Ohio 43210
| | - Jessica A Pempek
- Department of Animal Science, College of Food, Agricultural, and Environmental Science, Ohio State University, Columbus, Ohio 43210
| | - Rachel Meyer
- Wisconsin Veterinary Diagnostic Laboratory, Madison, Wisconsin 53706, USA
| | - Rafael Portillo-Gonzalez
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, Ohio 43210
| | - Donald Sockett
- Wisconsin Veterinary Diagnostic Laboratory, Madison, Wisconsin 53706, USA
| | - Nicole Aulik
- Wisconsin Veterinary Diagnostic Laboratory, Madison, Wisconsin 53706, USA
| | - Gregory Habing
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
5
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
6
|
Sandelin A, Hälli O, Härtel H, Herva T, Kaartinen L, Tuunainen E, Rautala H, Soveri T, Simojoki H. Effect of Farm Management Practices on Morbidity and Antibiotic Usage on Calf Rearing Farms. Antibiotics (Basel) 2022; 11:antibiotics11020270. [PMID: 35203872 PMCID: PMC8868452 DOI: 10.3390/antibiotics11020270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance has been recognized as one of the top health threats to human society. Abundant use of antibiotics in both humans and animals has led to ever-increasing antibiotic resistance in bacteria. In food production, decreasing morbidity in beef herds would be an effective way to reduce the use of antibiotics. The objective of this retrospective observational study was to determine overall morbidity on calf rearing farms and to identify associated risk factors. Data were collected by questionnaire, meat companies’ databases and the national cattle register for 28,228 calves transported to 87 calf rearing farms. All medications given to these calves were retrospectively followed for 180 days from calf arrival to the farm. In total, 34,532 parenteral antibiotic medications were administered to the 28,228 study calves (122.3%), and 17,180 calves (60.9%) were medicated with antibiotics at least once during the follow-up. Higher numbers of calves transported to the same farm and larger age variation in calves in the same arrival batch were both associated with increased morbidity. In contrast, higher arrival age of individual calves was associated with decreased morbidity. Our study identifies several factors to consider in decreasing morbidity and antibiotic usage on calf rearing farms.
Collapse
Affiliation(s)
- Atte Sandelin
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, FI-04920 Saarentaus, Finland; (O.H.); (H.R.); (T.S.); (H.S.)
- Correspondence:
| | - Outi Hälli
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, FI-04920 Saarentaus, Finland; (O.H.); (H.R.); (T.S.); (H.S.)
| | - Heidi Härtel
- HKScan Finland Ltd., Lemminkäisenkatu 48, FI-20520 Turku, Finland;
| | - Tuomas Herva
- Atria Ltd., Atriantie 1, FI-60550 Nurmo, Finland;
| | - Liisa Kaartinen
- Finnish Food Authority, Mustialankatu 3, FI-00790 Helsinki, Finland;
| | - Erja Tuunainen
- Animal Health ETT, Huhtalantie 2, FI-60100 Seinäjoki, Finland;
| | - Helena Rautala
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, FI-04920 Saarentaus, Finland; (O.H.); (H.R.); (T.S.); (H.S.)
| | - Timo Soveri
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, FI-04920 Saarentaus, Finland; (O.H.); (H.R.); (T.S.); (H.S.)
| | - Heli Simojoki
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Paroninkuja 20, FI-04920 Saarentaus, Finland; (O.H.); (H.R.); (T.S.); (H.S.)
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Koetilantie 5, FI-00790 Helsinki, Finland
| |
Collapse
|
7
|
Tate H, Li C, Nyirabahizi E, Tyson GH, Zhao S, Rice-Trujillo C, Jones SB, Ayers S, M’ikanatha NM, Hanna S, Ruesch L, Cavanaugh ME, Laksanalamai P, Mingle L, Matzinger SR, McDermott PF. A National Antimicrobial Resistance Monitoring System Survey of Antimicrobial-Resistant Foodborne Bacteria Isolated from Retail Veal in the United States. J Food Prot 2021; 84:1749-1759. [PMID: 34015113 PMCID: PMC11586651 DOI: 10.4315/jfp-21-005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Little is known about the prevalence of antimicrobial-resistant (AMR) bacteria in veal meat in the United States. We estimated the prevalence of bacterial contamination and AMR in various veal meats collected during the 2018 U.S. National Antimicrobial Resistance Monitoring System (NARMS) survey of retail outlets in nine states and compared the prevalence with the frequency of AMR bacteria from other cattle sources sampled for NARMS. In addition, we identified genes associated with resistance to medically important antimicrobials and gleaned other genetic details about the resistant organisms. The prevalence of Campylobacter, Salmonella, Escherichia coli, and Enterococcus in veal meats collected from grocery stores in nine states was 0% (0 of 358), 0.6% (2 of 358), 21.1% (49 of 232), and 53.5% (121 of 226), respectively, with ground veal posing the highest risk for contamination. Both Salmonella isolates were resistant to at least one antimicrobial agent as were 65.3% (32 of 49) of E. coli and 73.6% (89 of 121) of Enterococcus isolates. Individual drug and multiple drug resistance levels were significantly higher (P < 0.05) in E. coli and Enterococcus from retail veal than in dairy cattle ceca and retail ground beef samples from 2018 NARMS data. Whole genome sequencing was conducted on select E. coli and Salmonella from veal. Cephalosporin resistance (blaCMY and blaCTX-M), macrolide resistance (mph), and plasmid-mediated quinolone resistance (qnr) genes and gyrA mutations were found. We also identified heavy metal resistance genes ter, ars, mer, fieF, and gol and disinfectant resistance genes qac and emrE. An stx1a-containing E. coli was also found. Sequence types were highly varied among the nine E. coli isolates that were sequenced. Several plasmid types were identified in E. coli and Salmonella, with the majority (9 of 11) of isolates containing IncF. This study illustrates that veal meat is a carrier of AMR bacteria. HIGHLIGHTS
Collapse
Affiliation(s)
- Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Epiphanie Nyirabahizi
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Gregory H. Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Crystal Rice-Trujillo
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Sonya Bodeis Jones
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Sherry Ayers
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| | - Nkuchia M. M’ikanatha
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, 7 and Forster Streets, Harrisburg, PA 17120
| | - Samir Hanna
- Tennessee Department of Health, 710 James Robertson Parkway, Nashville, TN 37243
| | - Laura Ruesch
- Animal Disease Research and Diagnostic Lab, South Dakota State University, Brookings, SD 57007
| | | | - Pongpan Laksanalamai
- Laboratories Administration, Maryland Department of Health, 1770 Ashland Ave., Baltimore, MD 21205
| | - Lisa Mingle
- Wadsworth Center Division of Infectious Diseases, New York State Department of Health, Albany, NY 12208
| | - Shannon R. Matzinger
- Colorado Department of Public Health and Environment, 8100 Lowry Boulevard, Denver, CO 80230
| | - Patrick F. McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Road, Laurel, MD 20708
| |
Collapse
|
8
|
Kim SW, Van Kessel JAS, Haley BJ. Genome sequences of antibiotic-resistant Escherichia coli isolated from veal calves in the USA. J Glob Antimicrob Resist 2021; 26:69-73. [PMID: 34052521 DOI: 10.1016/j.jgar.2021.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES The aim of this study was to describe the genome sequences of 38 antibiotic-resistant Escherichia coli isolated from veal calves. METHODS The isolates were recovered in 2015 from nine veal farms in the eastern USA and were screened for antibiotic susceptibility using an automated microdilution procedure. The draft genomes were sequenced on an Illumina NextSeq 500 platform and were assembled using SPAdes. RESULTS In total, 294 resistance genes, categorised into 42 unique genes, conferring resistance to seven different antibiotic classes were detected. Extended-spectrum β-lactamase (ESBL) genes (blaCTX-M and blaCMY) and the azithromycin resistance gene mph(A) were detected in multiple genomes. Furthermore, mutations in gyrA, parC and parE conferring resistance to fluoroquinolones were detected, as were mutations in the ampC promoter responsible for hyperproduction of β-lactamases. We identified 25 unique sequence types (STs), including STs that are associated with extraintestinal infections. CONCLUSION The results of this study indicate a high level of diversity among multidrug-resistant E. coli isolates from veal operations. The identification of multiple isolates encoding resistance to β-lactams, macrolides and fluoroquinolones as well as virulence factors responsible for human infections warrants more study on the ecology of antibiotic resistance in veal operations.
Collapse
Affiliation(s)
- Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| |
Collapse
|
9
|
Schnur SE, Amachawadi RG, Baca G, Sexton-Bowser S, Rhodes DH, Smolensky D, Herald TJ, Perumal R, Thomson DU, Nagaraja TG. Antimicrobial Activity of Sorghum Phenolic Extract on Bovine Foodborne and Mastitis-Causing Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10050594. [PMID: 34067596 PMCID: PMC8156376 DOI: 10.3390/antibiotics10050594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance in bacterial pathogens associated with bovine mastitis and human foodborne illnesses from contaminated food and water have an impact on animal and human health. Phenolic compounds have antimicrobial properties and some specialty sorghum grains are high in phenolic compounds, and the grain extract may have the potential as a natural antimicrobial alternative. The study’s objective was to determine antimicrobial effects of sorghum phenolic extract on bacterial pathogens that cause bovine mastitis and human foodborne illnesses. Bacterial pathogens tested included Escherichia coli, Salmonella Typhimurium, Campylobacter jejuni, Campylobacter coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella oxytoca, Staphylococcus aureus, and Enterococcus faecalis. Antibacterial activities of sorghum phenolic extracts were determined by agar-well diffusion assay. Sorghum phenolic extract was added to the wells in concentrations of 0, 100, 200, 500, 1000, or 4000 µg/mL. The control wells did not receive phenolic extract. Plates were incubated for 18–24 h, and the diameter of each zone of inhibition was measured. The results indicated that sorghum phenolic extract had inhibitory effects on Staphylococcus aureus, Enterococcus faecalis, Campylobacter jejuni, and Campylobacter coli.
Collapse
Affiliation(s)
- Sydney E. Schnur
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.E.S.); (G.B.); (T.G.N.)
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, Kansas State University, Manhattan, KS 66506, USA
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
- Correspondence: ; Tel.: +1-785-532-4356
| | - Giovanna Baca
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.E.S.); (G.B.); (T.G.N.)
| | | | - Davina H. Rhodes
- Department of Horticulture & Landscape Architecture, Colorado State University, Fort Collins, CO 80521, USA;
| | - Dmitriy Smolensky
- Center for Grain and Animal Health Research, USDA, Manhattan, KS 66502, USA; (D.S.); (T.J.H.)
| | - Thomas J. Herald
- Center for Grain and Animal Health Research, USDA, Manhattan, KS 66502, USA; (D.S.); (T.J.H.)
| | - Ramasamy Perumal
- Agriculture Research Center, Kansas State University, Hays, KS 67601, USA;
| | - Daniel U. Thomson
- Department of Animal Sciences, Iowa State University, Ames, IA 50011, USA;
| | - Tiruvoor G. Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA; (S.E.S.); (G.B.); (T.G.N.)
| |
Collapse
|
10
|
Buss LN, Yohe TT, Cangiano LR, Renaud DL, Keunen AJ, Guan LL, Steele MA. The effect of neomycin inclusion in milk replacer on the health, growth, and performance of male Holstein calves during preweaning. J Dairy Sci 2021; 104:8188-8201. [PMID: 33934860 DOI: 10.3168/jds.2020-19827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
The prophylactic use of oral antimicrobials, such as neomycin, in milk replacer (MR) or whole milk is a common practice in calf-rearing that is thought to aid in preventing disease. Heavy reliance on antimicrobials is of concern not only because of the development of antimicrobial resistance, but also because of the potentially negative effects on health. The objective of this study was to investigate the effects of neomycin on calf health and growth performance. One hundred and sixty calves (approximately 3-10 d of age), distributed across 2 experimental periods, were stratified by body weight (BW) and serum total protein, and assigned to 1 of 3 treatments: control (CON; nonmedicated MR, n = 60), short-term antibiotic (ST; neomycin mixed in MR from d 1-14, n = 50), or long-term antibiotic (LT; neomycin in MR from d 1-28, n = 50). Arrival BW (47.69 ± 0.87 kg) and serum total protein (5.67 ± 0.09 g/dL) were not different between treatment groups. Neomycin in ST and LT was dosed in MR at a rate of 20 mg/kg of BW and was adjusted weekly according to BW. Calf BW was measured weekly for 49 d, and health indicators (fecal score, attitude score, respiratory score, and rectal temperature), MR intake, starter intake, and the use of additional electrolytes and antimicrobials were recorded daily. Calves in the CON group experienced a higher proportion of days with diarrhea (20.32 ± 0.02%) compared with ST (14.70 ± 0.02%) or LT (13.80 ± 0.02%) calves, as well as longer bouts of diarrhea (7.45 ± 0.38 d, 5.69 ± 0.46 d, and 5.62 ± 0.45 d for CON, ST, and LT calves, respectively). Calves in the CON group also experienced higher fecal scores (score of 0.64 ± 0.04) than ST (score of 0.53 ± 0.04) or LT (score of 0.49 ± 0.04) calves, especially at d 7. However, no differences were observed in other health-related measures. The time to reach first diarrhea and first respiratory illness was not different between treatments, nor was the time to recover from respiratory illness. The time to intervention with additional electrolytes or antimicrobials was not different between treatment groups. Furthermore, growth performance, feed intake, and feed conversion ratio were not different. No differences were found when comparing ST and LT, except in the defined daily dose of total antimicrobials received. Calves in the LT group received a higher overall dose than ST calves, and both ST and LT calves received a higher dose than CON calves, which received no prophylactic antimicrobials. Given that there were no differences in performance variables and no additional health benefits aside from reduced fecal scores in calves fed neomycin, current practices involving the use of antimicrobials on dairy and veal operations need to be considered more prudently.
Collapse
Affiliation(s)
- L N Buss
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, Ontario, Canada N1G 1Y2
| | - T T Yohe
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, Ontario, Canada N1G 1Y2
| | - L R Cangiano
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, Ontario, Canada N1G 1Y2
| | - D L Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 1Y2
| | - A J Keunen
- Mapleview Agri. Ltd., Mapleton, ON, Canada N0G 2P0
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, Ontario, Canada N1G 1Y2.
| |
Collapse
|
11
|
Salaheen S, Kim SW, Hovingh E, Van Kessel JAS, Haley BJ. Metagenomic Analysis of the Microbial Communities and Resistomes of Veal Calf Feces. Front Microbiol 2021; 11:609950. [PMID: 33633694 PMCID: PMC7899987 DOI: 10.3389/fmicb.2020.609950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major public health concern, and dairy calves, including veal calves, are known reservoirs of resistant bacteria. To investigate AMR in the fecal microbial communities of veal calves, we conducted metagenomic sequencing of feces collected from individual animals on four commercial veal operations in Pennsylvania. Fecal samples from three randomly selected calves on each farm were collected soon after the calves were brought onto the farms (n = 12), and again, just before the calves from the same cohorts were ready for slaughter (n = 12). Results indicated that the most frequently identified phyla were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Fecal microbial communities in samples collected from the calves at the early and late stages of production were significantly different at the genus level (analysis of similarities [ANOSIM] on Bray-Curtis distances, R = 0.37, p < 0.05), but not at the phylum level. Variances among microbial communities in the feces of the younger calves were significantly higher than those from the feces of calves at the late stage of production (betadisper F = 8.25, p < 0.05). Additionally, our analyses identified a diverse set of mobile antimicrobial resistance genes (ARGs) in the veal calf feces. The fecal resistomes mostly consisted of ARGs that confer resistance to aminoglycosides, tetracyclines, and macrolide-lincosamide-streptogramin B (MLS), and these ARGs represented more than 70% of the fecal resistomes. Factors that are responsible for selection and persistence of resistant bacteria in the veal calf gut need to be identified to implement novel control points and interrupt detrimental AMR occurrence and shedding.
Collapse
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
12
|
Karimi Dehkordi M, Halaji M, Nouri S. Prevalence of class 1 integron in Escherichia coli isolated from animal sources in Iran: a systematic review and meta-analysis. Trop Med Health 2020; 48:16. [PMID: 32280298 PMCID: PMC7137206 DOI: 10.1186/s41182-020-00202-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/11/2020] [Indexed: 01/28/2023] Open
Abstract
Background Among the genetic elements, integrons may contribute to the widespread incidence and spreading of antibiotic resistance among Escherichia coli isolates. Accordingly, this review aims to investigate the prevalence of class 1 integron in E. coli isolated from animal sources in Iran. Methods This systematic literature search was performed from January 1, 2000 to the end of May 1, 2019. Then, publications that met our inclusion criteria were selected for data extraction and analysis. Also, the quality of included studies was independently assessed by two researchers based on the Joanna Briggs Institute. Meta-analysis was performed by the Comprehensive Meta-Analysis (CMA) software using the random effects model, Cochran’s Q, and I2 tests. Publication bias was estimated by funnel plot and Egger’s linear regression test. Results Based on inclusion criteria, five studies were included to meta-analysis. From those studies, the pooled prevalence of integrons was 33% (95% CI, 23.8–43.7%) ranging from 23.8 to 52.4%. There was a significant heterogeneity among the 5 studies (χ2 = 11.73; p < 0.019; I2 = 65.91%). Additionally, Begg’s and Egger’s tests were performed to quantitatively evaluate the publication biases. According to the results of Begg’s test (z = 1.22, p = 0.22) and Egger’s test (t = 3.03, p = 0.056), a significant publication bias was not observed. Conclusions Our finding revealed the relatively high prevalence of class 1 integrons among E. coli isolates. Moreover, there was a significant heterogeneity among studies and subgroup analysis also showed that there was no difference about prevalence of class 1 integrons among different sample source.
Collapse
Affiliation(s)
- Maryam Karimi Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehrdad Halaji
- 2Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samereh Nouri
- 3Department of Microbiology, Clinical Laboratory of Al Zahra Medical Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Enhancing electrode sensitivity for detection of antibiotic contamination in water using functionalized magnetic nanoparticles. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|