1
|
Multiplexed Genome Editing for Efficient Phenotypic Screening in Zebrafish. Vet Sci 2022; 9:vetsci9020092. [PMID: 35202345 PMCID: PMC8879510 DOI: 10.3390/vetsci9020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Zebrafish are widely used to investigate candidate genes for human diseases. While the emergence of CRISPR-Cas9 technology has revolutionized gene editing, the use of individual guide RNAs limits the efficiency and application of this technology in functional genetics research. Multiplexed genome editing significantly enhances the efficiency and scope of gene editing. Herein, we describe an efficient multiplexed genome editing strategy to generate zebrafish mutants. Following behavioural tests and histological examination, we identified one new candidate gene (tmem183a) for hearing loss. This study provides a robust genetic platform to quickly obtain zebrafish mutants and to identify candidate genes by phenotypic readouts.
Collapse
|
2
|
Coates BS, Hohenstein JD, Giordano R, Donthu RK, Michel AP, Hodgson EW, O'Neal ME. Genome scan detection of selective sweeps among biotypes of the soybean aphid, Aphis glycines, with differing virulence to resistance to A. glycines (Rag) traits in soybean, Glycine max. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 124:103364. [PMID: 32360957 DOI: 10.1016/j.ibmb.2020.103364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/22/2019] [Accepted: 03/18/2020] [Indexed: 05/12/2023]
Abstract
Multiple biotypes of soybean aphid, Aphis glycines, occur in North America adapted for survival (virulence) on soybean, Glycine max, with one or more different resistance to A. glycines (Rag) traits. The degree of genome-wide variance between biotypes and the basis of virulence remains unknown, but the latter is hypothesized to involve secreted effector proteins. Between 167,249 and 217,750 single nucleotide polymorphisms (SNPs) were predicted from whole genome re-sequencing of A. glycines avirulent biotype 1 (B1) and virulent B2, B3 and B4 colony-derived iso-female lines when compared to the draft B1 genome assembly, Ag_bt1_v6.0. Differences in nucleotide diversity indices (π) estimated within 1000 bp sliding windows demonstrated that 226 of 353 (64.0%) regions most differentiated between B1 and ≥ 2 virulent biotypes, representing < 0.1% of the 308 Mb assembled genome size, are located on 15 unordered scaffolds. Furthermore, these 226 intervals were coincident and show a significant association with 326 of 508 SNPs with significant locus-by-locus FST estimates between biotype populations (r = 0.6271; F1,70 = 45.36, P < 0.001) and genes showing evidence of directions selection (πN/πS > 2.0; r = 0.6233; F1,70 = 50.20, P < 0.001). A putative secreted effector glycoprotein is encoded in proximity to genome intervals of low estimated π (putative selective sweep) within avirulent B1 compared to all three virulent biotypes. Additionally, SNPs are clustered in or in proximity to genes putatively involved in intracellular protein cargo transport and the regulation of secretion. Results of this study indicate that factors on a small number of scaffolds of the A. glycines genome may contribute to variance in virulence towards Rag traits in G. max.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA.
| | | | - Rosanna Giordano
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA; Know Your Bee Inc., San Juan, PR, 00927, USA
| | - Ravi Kiran Donthu
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, 00927, USA; Know Your Bee Inc., San Juan, PR, 00927, USA
| | - Andrew P Michel
- The Ohio State University, Department of Entomology, and Center for Applied Plant Sciences Wooster, OH, 44691, USA
| | - Erin W Hodgson
- Iowa State University, Department of Entomology, Ames, IA, 50011, USA
| | - Matthew E O'Neal
- Iowa State University, Department of Entomology, Ames, IA, 50011, USA
| |
Collapse
|
3
|
Cao YY, Zhang WH, Qu YJ, Bai JL, Jin YW, Wang H, Song F. Diagnosis of Spinal Muscular Atrophy: A Simple Method for Quantifying the Relative Amount of Survival Motor Neuron Gene 1/2 Using Sanger DNA Sequencing. Chin Med J (Engl) 2019; 131:2921-2929. [PMID: 30539904 PMCID: PMC6302647 DOI: 10.4103/0366-6999.247198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is caused by homozygous deletion or compound heterozygous mutation of survival motor neuron gene 1 (SMN1), which is the key to diagnose SMA. The study was to establish and evaluate a new diagnostic method for SMA. Methods: A total of 1494 children suspected with SMA were enrolled in this study. Traditional strategy, including multiplexed ligation-dependent probe amplification (MLPA) and TA cloning, was used in 1364 suspected SMA children from 2003 to 2014, and the 130 suspected SMA children were tested by a new strategy from 2015 to 2016, who were also verified by MLPA combined with TA cloning. The SMN1 and SMN2 were simultaneously amplified by polymerase chain reaction using the same primers. Mutation Surveyor software was used to detect and quantify the SMN1 variants by calculating allelic proportions in Sanger sequencing. Finally, turnaround time and cost of these two strategies were compared. Results: Among 1364 suspected SMA children, 576 children had SMN1 homozygous deletion and 27 children had SMN1 compound heterozygous mutation. Among the 130 cases, 59 had SMN1 homozygous deletion and 8 had heterozygous deletion: the SMN1-specific peak proportion on exon 7 was 34.6 ± 1.0% and 25.5 ± 0.5%, representing SMN1:SMN2 to be 1:2 and 1:3, respectively. Moreover, five variations, including p.Ser8Lysfs *23 (in two cases), p.Leu228*, p.Pro218Hisfs *26, p.Ser143Phefs*5, and p.Tyr276His, were detected in 6/8 cases with heterozygous deletion, the mutant allele proportion was 31.9%, 23.9%, 37.6%, 32.8%, 24.5%, and 23.6%, which was similar to that of the SMN1-specific site on exon 7, suggesting that those subtle mutations were located in SMN1. All these results were consistent with MLPA and TA cloning. The turnaround times of two strategies were 7.5 h and 266.5 h, respectively. Cost of a new strategy was only 28.5% of the traditional strategy. Conclusion: Sanger sequencing combined with Mutation Surveyor analysis has potential application in SMA diagnosis.
Collapse
Affiliation(s)
- Yan-Yan Cao
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Wen-Hui Zhang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yu-Jin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jin-Li Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yu-Wei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing 100020, China
| |
Collapse
|
4
|
Rapid and reasonable molecular identification of bacteria and fungi in microbiological diagnostics using rapid real-time PCR and Sanger sequencing. J Microbiol Methods 2019; 159:148-156. [PMID: 30858006 DOI: 10.1016/j.mimet.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
Abstract
Analyses of short subunit gene sequences have been established for taxonomic classification and identification of bacteria and fungi. To produce partial bacterial ribosomal 16S rRNA and rpoB and fungal ribosomal ITS/LSU gene sequences for DNA sequencing, real-time PCR assays supplemented with the nucleic acid stain SYBR Green were created. Generation of PCR products was monitored based on amplification and melting curves. The PCR products were subsequently subjected to Sanger sequencing on demand for identification of bacteria and fungi in routine microbiological diagnostics within a period of two days. From a total of 78 bacterial isolates 40 (51%) or 67 (86%) could be identified at species level using only partial 16S rRNA or additionally rpoB gene sequences based on BLASTN (NCBI) database queries, respectively. Using partial 16S rRNA and rpoB gene sequencing unambiguous assignment was not possible for the closely related species of the Bacillus (B.) cereus group, Bordetella (B.) pertussis/ B. parapertussis/ B. bronchiseptica, Brucella spp., Enterobacter cloacae complex, Escherichia/ Shigella spp., Staphylococcus (S.) hyicus/ S. agnetis and Yersinia (Y.) pseudotuberculosis/ Y. pestis. However, partial rpoB gene sequencing succeeded in identifying 27 bacterial isolates at species level in addition to 16S rRNA gene sequencing. Regarding ITS/LSU gene sequencing, best results could be achieved by ITS gene sequencing followed by LSU gene sequencing, resulting in 32 (63%) and 21 (43%) of a total of 51 fungal isolates that could be identified at species level, respectively. Insufficient identification at species level was observed for the genera Apiotrichum, Aspergillus, Cladosporium, Cryptococcus, Microsporum, Nannizziopsis, Penicillium, Trichosporon, and Tolypocladium included in this study. The concept of this procedure is suitable for rapid and reasonable molecular identification of bacteria and fungi within two days and is therefore applicable in routine microbiological diagnostic laboratories.
Collapse
|
5
|
Nelson AC, Motum PI, Emeto TI. Evaluation of an immunochromatographic test for alpha thalassaemia screening in a multi-ethnic population. Int J Lab Hematol 2019; 41:397-403. [PMID: 30830998 DOI: 10.1111/ijlh.12994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The standard screening method for alpha thalassaemia is the examination of HbH preparation. It is labour intensive and poorly standardized. The development of a rapid strip immunochromatographic test (ICT) for haemoglobin Barts offers a fast, user friendly and cost-effective alternative screening tool. METHOD A total of 180 subjects with results of the thalassaemia screen and genetic testing were included. Results of the ICT and HbH preparation were correlated with genetic results to determine the performance characteristics of the tests and the effect of mean sample age on results. RESULTS Of 180 subjects, 111 carried alpha thalassaemia mutations and 69 participants had normal genetic results. The ICT had a sensitivity of 63.06% for all alpha gene mutations and 100% for both heterozygous alpha0 and HbH disease, with a specificity of 91.30%. Examination of HbH preparation had a sensitivity of 34.23% overall, detecting 89% of heterozygous alpha0 and 100% of HbH disease with a specificity of 98.55%. Sample age did not affect overall results. CONCLUSIONS The ICT is a sensitive screening method for significant alpha mutations and detects the majority of homozygous alpha+ and nondeletional mutations. It demonstrates greater correlation with genetic testing than HbH preparation and could replace HbH preparation in the screening algorithm for alpha thalassaemia.
Collapse
Affiliation(s)
- Anna Clare Nelson
- Haematology Department, Liverpool Hospital, Sydney, New South Wales, Australia.,College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | | | - Theophilus I Emeto
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
6
|
Fu W, Tao T, Qi M, Wang L, Hu J, Li X, Xing N, Du R, Han B. MicroRNA-132/212 Upregulation Inhibits TGF-β-Mediated Epithelial-Mesenchymal Transition of Prostate Cancer Cells by Targeting SOX4. Prostate 2016; 76:1560-1570. [PMID: 27527117 DOI: 10.1002/pros.23241] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/21/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are noncoding RNAs that are important for embryonic stem cell development and epithelial to mesenchymal transition (EMT). Accumulating evidence indicates that miRNAs play critical roles in prostate cancer (PCa) metastasis and have potential use as therapeutic targets. Although dysregulated miR-132/212 have been suggested to be directly involved in the proliferation and invasion of multiple malignancies, the exact role of miR-132/212 in PCa has not yet been fully understood. METHODS Real-time quantitative PCR (RT-qPCR) and bioinformatics analysis were used to validate the expression levels of miR-132/212 in PCa cell lines as well as in prostatic tissues. The biological function of miR-132/212 was evaluated by MTS, transwell, and wound healing assays, respectively. RT-qPCR and Western blot were used to study the transcript and protein expression levels. Bioinformatics tools and luciferase reporter assay were utilized to identify the molecular target of miR-132/212. Immunohistochemistry (IHC) was used to detect the expression of SOX4. RESULTS miR-132 and miR-212 from the same gene cluster are downregulated in human PCa tissues when compared with benign prostatic hyperplasia tissues (both P < 0.05). Functionally, upregulation of miR-132/212 inhibits the migration and invasive capacity of Vcap and Lncap cells by wound-healing and transwell assays, respectively. Notably, overexpression of miR-132/212 could inhibit TGF-β (transforming growth factor-β)-induced EMT in Vcap and Lncap cells at both the mRNA and protein expression levels. SOX4 gene, an important EMT regulator of PCa, was identified as the target of miR-132/212 by bioinformatics tools and luciferase reporter assay. Clinically, miR-132/212 expression levels were adversely correlated with Gleason score (P < 0.001) and SOX4 expression by IHC and RT-qPCR in PCa tissues. CONCLUSION Our data suggested that miR-132/212 may act as tumor suppressors in PCa progression through disrupting EMT process by directly targeting SOX4. Prostate 76:1560-1570, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Weiwei Fu
- Department of Pathology, Shandong University Medical School, Jinan, China
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Tao
- Department of Urology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Mei Qi
- Department of Pathology, Shandong University Medical School, Jinan, China
| | - Lin Wang
- Research Center for Medicinal Biotechnology, Shandong Academy of Medicinal Sciences, Jinan, China
| | - Jing Hu
- Department of Pathology, Shandong University Medical School, Jinan, China
| | - Xinjun Li
- Department of Pathology, Binzhou People's Hospital, Binzhou, China
| | - Naidong Xing
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ran Du
- Department of Human Biology, University of Toronto, Toronto, Canada
| | - Bo Han
- Department of Pathology, Shandong University Medical School, Jinan, China.
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Cullup T, Dionisi-Vici C, Kho AL, Yau S, Mohammed S, Gautel M, Jungbluth H. Clinical utility gene card for: Vici Syndrome. Eur J Hum Genet 2014; 22:ejhg2013142. [PMID: 23838600 PMCID: PMC3925270 DOI: 10.1038/ejhg.2013.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Thomas Cullup
- DNA Laboratory, GSTS Pathology, Guy's Hospital, London, UK
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Ay L Kho
- Randall Division for Cell and Molecular Biophysics, King's College, London, UK
- Cardiovascular Division, King's College London BHF Centre of Research Excellence, London, UK
| | - Shu Yau
- DNA Laboratory, GSTS Pathology, Guy's Hospital, London, UK
| | | | - Mathias Gautel
- Randall Division for Cell and Molecular Biophysics, King's College, London, UK
- Cardiovascular Division, King's College London BHF Centre of Research Excellence, London, UK
| | - Heinz Jungbluth
- Randall Division for Cell and Molecular Biophysics, King's College, London, UK
- Department of Paediatric Neurology, Evelina Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Clinical Neuroscience Division, IoP, King's College, London, UK
| |
Collapse
|
8
|
Storey H, Savige J, Sivakumar V, Abbs S, Flinter FA. COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol 2013; 24:1945-54. [PMID: 24052634 DOI: 10.1681/asn.2012100985] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Alport syndrome is an inherited disease characterized by hematuria, progressive renal failure, hearing loss, and ocular abnormalities. Autosomal recessive Alport syndrome is suspected in consanguineous families and when female patients develop renal failure. Fifteen percent of patients with Alport syndrome have autosomal recessive inheritance caused by two pathogenic mutations in either COL4A3 or COL4A4. Here, we describe the mutations and clinical features in 40 individuals including 9 children and 21 female individuals (53%) with autosomal recessive inheritance indicated by the detection of two mutations. The median age was 31 years (range, 6-54 years). The median age at end stage renal failure was 22.5 years (range, 10-38 years), but renal function was normal in nine adults (29%). Hearing loss and ocular abnormalities were common (23 of 35 patients [66%] and 10 of 18 patients [56%], respectively). Twenty mutation pairs (50%) affected COL4A3 and 20 pairs affected COL4A4. Of the 68 variants identified, 39 were novel, 12 were homozygous changes, and 9 were present in multiple individuals, including c.2906C>G (p.(Ser969*)) in COL4A4, which was found in 23% of the patients. Thirty-six variants (53%) resulted directly or indirectly in a stop codon, and all 17 individuals with early onset renal failure had at least one such mutation, whereas these mutations were less common in patients with normal renal function or late-onset renal failure. In conclusion, patient phenotypes may vary depending on the underlying mutations, and genetic testing should be considered for the routine diagnosis of autosomal recessive Alport syndrome.
Collapse
Affiliation(s)
- Helen Storey
- DNA Laboratory, GSTS Pathology, Guy's & St Thomas' Hospital Foundation Trust, London, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Prevalence of germline mutations in patients with pheochromocytoma or abdominal paraganglioma and sporadic presentation: a population-based study in Western Sweden. World J Surg 2012; 36:1389-94. [PMID: 22270996 PMCID: PMC3348434 DOI: 10.1007/s00268-012-1430-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Germline mutations in the susceptibility genes RET, SDHB, SDHD, and VHL have been reported in 7.5-24% of patients with pheochromocytoma (Pheo) or paraganglioma (PGL) and sporadic presentation. The purpose of the present study was to establish population-based data on the frequency of germline mutations in patients with apparently sporadic Pheo or abdominal PGL in Western Sweden. METHODS From the Swedish National Cancer Registry, all patients with Pheo or PGL in Western Sweden (population 1.72 million) registered between 1958 and 2009 were identified (n = 256). Patients were characterized using register data, hospital records, and clinical interviews. All living patients with Pheo or abdominal PGL and sporadic presentation (n = 81) were invited to genetic screening; 71 patients accepted. Germline mutations were investigated by using direct sequencing for point mutations in RET, SDHB, SDHD, and VHL, and multiplex ligation-dependent probe amplification for gross deletions in SDHB, SDHC, SDHD, and VHL. Plasma or urinary metanephrines and/or urinary catecholamines were used for biochemical follow-up. RESULTS The prevalence of germline mutations was 5.6%. Mutations were only seen in RET (n = 1) and SDHB (n = 3). Notably, in the patients with SDHB mutations, no malignant phenotype was observed during a mean follow-up of 23.3 years. CONCLUSIONS The frequency of germline mutations in patients with apparently sporadic Pheo and abdominal PGL in Western Sweden was lower than in previous studies. Variations in reported frequencies of germline mutations in patients with clinically sporadic Pheo/PGL may reflect geographical differences or patient selection.
Collapse
|
10
|
Thanabalasingham G, Pal A, Selwood MP, Dudley C, Fisher K, Bingley PJ, Ellard S, Farmer AJ, McCarthy MI, Owen KR. Systematic assessment of etiology in adults with a clinical diagnosis of young-onset type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care 2012; 35:1206-12. [PMID: 22432108 PMCID: PMC3357216 DOI: 10.2337/dc11-1243] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/03/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Misdiagnosis of maturity-onset diabetes of the young (MODY) remains widespread, despite the benefits of optimized management. This cross-sectional study examined diagnostic misclassification of MODY in subjects with clinically labeled young adult-onset type 1 and type 2 diabetes by extending genetic testing beyond current guidelines. RESEARCH DESIGN AND METHODS Individuals were selected for diagnostic sequencing if they displayed features atypical for their diagnostic label. From 247 case subjects with clinically labeled type 1 diabetes, we sequenced hepatocyte nuclear factor 1 α (HNF1A) and hepatocyte nuclear factor 4 α (HNF4A) in 20 with residual β-cell function ≥ 3 years from diagnosis (random or glucagon-stimulated C-peptide ≥ 0.2 nmol/L). From 322 with clinically labeled type 2 diabetes, we sequenced HNF1A and HNF4A in 80 with diabetes diagnosed ≤ 30 years and/or diabetes diagnosed ≤ 45 years without metabolic syndrome. We also sequenced the glucokinase (GCK) in 40 subjects with mild fasting hyperglycemia. RESULTS In the type 1 diabetic group, two HNF1A mutations were found (0.8% prevalence). In type 2 diabetic subjects, 10 HNF1A, two HNF4A, and one GCK mutation were identified (4.0%). Only 47% of MODY case subjects identified met current guidelines for diagnostic sequencing. Follow-up revealed a further 12 mutation carriers among relatives. Twenty-seven percent of newly identified MODY subjects changed treatment, all with improved glycemic control (HbA(1c) 8.8 vs. 7.3% at 3 months; P = 0.02). CONCLUSIONS The systematic use of widened diagnostic testing criteria doubled the numbers of MODY case subjects identified compared with current clinical practice. The yield was greatest in young adult-onset type 2 diabetes. We recommend that all patients diagnosed before age 30 and with presence of C-peptide at 3 years' duration are considered for molecular diagnostic analysis.
Collapse
Affiliation(s)
- Gaya Thanabalasingham
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, U.K
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Aparna Pal
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, U.K
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Mary P. Selwood
- Department of Primary Care Health Sciences, University of Oxford, Oxford, U.K
| | - Christina Dudley
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, U.K
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Karen Fisher
- Nuffield Department of Clinical Laboratory Sciences, Oxford, U.K
| | - Polly J. Bingley
- Department of Clinical Science, University of Bristol, Bristol, U.K
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
| | - Andrew J. Farmer
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K
- Department of Primary Care Health Sciences, University of Oxford, Oxford, U.K
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, U.K
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Katharine R. Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, U.K
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| |
Collapse
|
11
|
Kyithar M, Bacon S, Pannu K, Rizvi S, Colclough K, Ellard S, Byrne M. Identification of HNF1A-MODY and HNF4A-MODY in Irish families: Phenotypic characteristics and therapeutic implications. DIABETES & METABOLISM 2011; 37:512-9. [DOI: 10.1016/j.diabet.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/30/2011] [Accepted: 04/09/2011] [Indexed: 12/28/2022]
|
12
|
Abstract
DNA sequencing is widely used for DNA diagnostics and functional studies of genes of interest. With significantly increased sequencing outputs, manual reading of sequence results can impede an efficient and accurate analysis. Mutation Surveyor is a useful in silico tool developed by SoftGenetics that assists the detection of sequence variations within Sanger sequencing traces. This tool can process up to 400 lanes of data at a time with high accuracy and sensitivity. It can effectively detect SNPs and indels in their homozygous or heterozygous states as well as mosaicism. In this chapter, we describe the general application of Mutation Surveyor for DNA sequencing analysis and its unique features.
Collapse
|
13
|
Morgan JE, Carr IM, Sheridan E, Chu CE, Hayward B, Camm N, Lindsay HA, Mattocks CJ, Markham AF, Bonthron DT, Taylor GR. Genetic diagnosis of familial breast cancer using clonal sequencing. Hum Mutat 2010; 31:484-91. [PMID: 20127978 DOI: 10.1002/humu.21216] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using conventional Sanger sequencing as a reference standard, we compared the sensitivity, specificity, and capacity of the Illumina GA II platform for the detection of TP53, BRCA1, and BRCA2 mutations in established tumor cell lines and DNA from patients with germline mutations. A total of 656 coding variants were identified in four cell lines and 65 patient DNAs. All of the known pathogenic mutations (including point mutations and insertions/deletions of up to 16 nucleotides) were identified, using a combination of the Illumina data analysis pipeline with custom and commercial sequence alignment software. In our configuration, clonal sequencing outperforms current diagnostic methods, providing a reduction in analysis times and in reagent costs compared with conventional sequencing. These improvements open the possibility of BRCA1/2 testing for a wider spectrum of at-risk women, and will allow the genetic classification of tumors prior to the use of novel PARP inhibitors to treat BRCA-deficient breast cancers.
Collapse
Affiliation(s)
- Joanne E Morgan
- University of Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, Beckett Street, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, Gloyn AL. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2010; 30:1512-26. [PMID: 19790256 DOI: 10.1002/humu.21110] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucokinase is a key regulatory enzyme in the pancreatic beta-cell. It plays a crucial role in the regulation of insulin secretion and has been termed the glucose sensor in pancreatic beta-cells. Given its central role in the regulation of insulin release it is understandable that mutations in the gene encoding glucokinase (GCK) can cause both hyper- and hypoglycemia. Heterozygous inactivating mutations in GCK cause maturity-onset diabetes of the young (MODY) subtype glucokinase (GCK), characterized by mild fasting hyperglycemia, which is present at birth but often only detected later in life during screening for other purposes. Homozygous inactivating GCK mutations result in a more severe phenotype presenting at birth as permanent neonatal diabetes mellitus (PNDM). A growing number of heterozygous activating GCK mutations that cause hypoglycemia have also been reported. A total of 620 mutations in the GCK gene have been described in a total of 1,441 families. There are no common mutations, and the mutations are distributed throughout the gene. The majority of activating mutations cluster in a discrete region of the protein termed the allosteric activator site. The identification of a GCK mutation in patients with both hyper- and hypoglycemia has implications for the clinical course and clinical management of their disorder.
Collapse
Affiliation(s)
- Kara K Osbak
- Diabetes Research Laboratories, Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Jafar-Mohammadi B, Groves CJ, Owen KR, Frayling TM, Hattersley AT, McCarthy MI, Gloyn AL. Low frequency variants in the exons only encoding isoform A of HNF1A do not contribute to susceptibility to type 2 diabetes. PLoS One 2009; 4:e6615. [PMID: 19672314 PMCID: PMC2720540 DOI: 10.1371/journal.pone.0006615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 07/08/2009] [Indexed: 12/04/2022] Open
Abstract
Background There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D) susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8–10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms) are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY) than mutations in exons 1–7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8–10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D. Methodology and Principal Findings We performed targeted capillary resequencing of HNF1A exons 8–10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis (≤45 years) and/or family history of T2D (≥1 affected sibling). PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9−24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected. Conclusions and Significance We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.
Collapse
Affiliation(s)
- Bahram Jafar-Mohammadi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Christopher J. Groves
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Katharine R. Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
| | - Timothy M. Frayling
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, United Kingdom
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|