1
|
Muche ZT, Wondimu DH, Midekssa MB, Abebe EC, Agidew MM, Ayele TM, Zewde EA, Mulu AT, Teshome AA, Baye ND, Teklemariam AB, Bekele DA, Muleta GJ. Physiological parameters and training characteristics of endurance runners at Ethiopian Youth Sports Academy (2400 meters above sea level) and Guna Athletics Sport Club (3100 meters above sea level) training camps: a comparative cross-sectional study. J Sports Med Phys Fitness 2025; 65:19-29. [PMID: 39382943 DOI: 10.23736/s0022-4707.24.16047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Endurance performance is impacted by physiological, anthropometrical, diet, genetic, psychological, and training characteristics. Altitude can affect physiological parameters (like maximum oxygen utilization, arterial oxygen saturation (SaO2), heart rate, and blood pressure) and training characteristics (duration, frequency, and training load). Thus, this study compared physiological parameters and training characteristics between endurance runners at Ethiopian Youth Sports Academy (EYSA) and Guna Athletics Sport Club (GASC) located which are located at elevation of 2400 and 3100 meters, respectively. METHODS A comparative cross-sectional study design was used from September to November 2021. Data was obtained from a total of 120 eligible participants (30 runners and 30 controls at GASC, and 30 runners and 30 controls at EYSA). Sociodemographic and training characteristics were assessed using self-administered standardized questionnaires. SaO2 and heart rate were measured using finger pulse-oximetry (Nellcor, Oxim N-65; Covidien, Dublin, Ireland). Blood pressure was measured by Folee Digital Blood Pressure Monitor DX-B1 (Jiangsu Folee Medical Equipment Co., Ltd., Zhenjiang, China). RESULTS The runners of GASC had significantly lower resting SaO2, SaO2 immediately after maximal exertion, training (frequency and load) than runners of EYSA in both sexes. Runners of Guna Athletics Sport Club (RGASC) had significantly higher maximum oxygen utilization (VO2max) than Runners Ethiopian Youth Sports Academy (REYSA) in both sexes. Severe exercise-induced hypoxemia (EIAH) and moderate EIAH were developed by male runners of GASC and EYSA respectively. Besides, female runners GASC and EYSA developed moderate and mild EIAH, respectively. CONCLUSIONS Conclusively, there were significant differences in physiological parameters and training load between RGASC and REYSA. High altitude (3100 meters) may have a greater impact on the above variables than moderate hypoxia (2400 meters above sea level). Hence, endurance runner coaches should give emphasis to these variables.
Collapse
Affiliation(s)
- Zelalem T Muche
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia -
| | - Diresibachew H Wondimu
- School of Medicine, Department of Medical Physiology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Milkessa B Midekssa
- Department of Sport Science, Sport Science Academy, Haramaya University, Haramaya, Ethiopia
| | | | - Melaku M Agidew
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tekile M Ayele
- Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit A Zewde
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut T Mulu
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa A Teshome
- Department of Medical Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Nega D Baye
- Department of Medical Anatomy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew B Teklemariam
- Department of Medical Physiology, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Gutema J Muleta
- Department of Immunology, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Raberin A, Burtscher J, Citherlet T, Manferdelli G, Krumm B, Bourdillon N, Antero J, Rasica L, Malatesta D, Brocherie F, Burtscher M, Millet GP. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med 2024; 54:271-287. [PMID: 37902936 PMCID: PMC10933174 DOI: 10.1007/s40279-023-01954-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Gassmann M, Mairbäurl H, Livshits L, Seide S, Hackbusch M, Malczyk M, Kraut S, Gassmann NN, Weissmann N, Muckenthaler MU. The increase in hemoglobin concentration with altitude varies among human populations. Ann N Y Acad Sci 2019; 1450:204-220. [PMID: 31257609 DOI: 10.1111/nyas.14136] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Decreased oxygen availability at high altitude requires physiological adjustments allowing for adequate tissue oxygenation. One such mechanism is a slow increase in the hemoglobin concentration ([Hb]) resulting in elevated [Hb] in high-altitude residents. Diagnosis of anemia at different altitudes requires reference values for [Hb]. Our aim was to establish such values based on published data of residents living at different altitudes by applying meta-analysis and multiple regressions. Results show that [Hb] is increased in all high-altitude residents. However, the magnitude of increase varies among the regions analyzed and among ethnic groups within a region. The highest increase was found in residents of the Andes (1 g/dL/1000 m), but this increment was smaller in all other regions of the world (0.6 g/dL/1000 m). While sufficient data exist for adult males and females showing that sex differences in [Hb] persist with altitude, data for infants, children, and pregnant women are incomplete preventing such analyses. Because WHO reference values were originally based on [Hb] of South American people, we conclude that individual reference values have to be defined for ethnic groups to reliably diagnose anemia and erythrocytosis in high-altitude residents. Future studies need to test their applicability for children of different ages and pregnant women.
Collapse
Affiliation(s)
- Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Leonid Livshits
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Svenja Seide
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Heidelberg, Germany
| | - Matthes Hackbusch
- Institute of Medical Biometry and Informatics (IMBI), University Hospital Heidelberg, Heidelberg, Germany
| | - Monika Malczyk
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Norina N Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, Justus-Liebig-University Giessen, University of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martina U Muckenthaler
- Pediatric Hematology, Oncology and Immunology, University Hospital Heidelberg, Molecular Medicine Partnership Unit, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
4
|
Wang W, Zhang X, Zhou X, Zhang Y, La Y, Zhang Y, Li C, Zhao Y, Li F, Liu B, Jiang Z. Deep Genome Resequencing Reveals Artificial and Natural Selection for Visual Deterioration, Plateau Adaptability and High Prolificacy in Chinese Domestic Sheep. Front Genet 2019; 10:300. [PMID: 31001329 PMCID: PMC6454055 DOI: 10.3389/fgene.2019.00300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/19/2019] [Indexed: 01/02/2023] Open
Abstract
Sheep were one of the earliest domesticated animals. Both artificial and natural selection during domestication has resulted in remarkable changes in behavioral, physiological, and morphological phenotypes; however, the genetic mechanisms underpinning these changes remain unclear, particularly for indigenous Chinese sheep. In the present study, we performed pooled whole-genome resequencing of 338 sheep from five breeds representative of indigenous Chinese breeds and compared them to the wild ancestors of domestic sheep (Asian mouflon, Ovis orientalis) for detection of genome-wide selective sweeps. Comparative genomic analysis between domestic sheep and Asian mouflon showed that selected regions were enriched for genes involved in bone morphogenesis, growth regulation, and embryonic and neural development in domestic sheep. Moreover, we identified several vision-associated genes with funtional mutations, such as PDE6B (c.G2994C/p.A982P and c.C2284A/p.L762M mutations), PANK2, and FOXC1/GMSD in all five Chinese native breeds. Breed-specific selected regions were determined including genes such as CYP17 for hypoxia adaptability in Tibetan sheep and DNAJB5 for heat tolerance in Duolang sheep. Our findings provide insights into the genetic mechanisms underlying important phenotypic changes that have occurred during sheep domestication and subsequent selection.
Collapse
Affiliation(s)
- Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Yangzi Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Yongfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yu Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youzhang Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Cristancho E, Riveros A, Sánchez A, Peñuela O, Böning D. Diurnal changes of arterial oxygen saturation and erythropoietin concentration in male and female highlanders. Physiol Rep 2017; 4:4/17/e12901. [PMID: 27597764 PMCID: PMC5027342 DOI: 10.14814/phy2.12901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
In Caucasians and Native Americans living at altitude, hemoglobin mass is increased in spite of erythropoietin concentrations ([Epo]) not markedly differing from sea level values. We hypothesized that a nocturnal decrease of arterial oxygen saturation (SaO2) causes a temporary rise of [Epo] not detected by morning measurements. SaO2 (continuous, finger oximeter) and [Epo] (ELISA, every 4 h) were determined in young highlanders (altitude 2600 m) during 24 h of usual daily activity. In Series I (six male, nine female students), SaO2 fell during the night with the nadir occurring between 01:00 and 03:00; daily means (range 92.4–95.2%) were higher in females (+1.7%, P < 0.01). [Epo] showed opposite changes with zenith occurring at 04:00 without a sex difference. Mean daily values (22.9 ± 10.7SD U/L) were higher than values obtained at 08:00 (17.2 ± 9.5 U/L, P < 0.05). In Series II (seven females), only SaO2 was measured. During follicular and luteal phases, SaO2 variation was similar to Series I, but the rhythm was disturbed during menstruation. While daily [Epo] variations at sea level are not homogeneous, there is a diurnal variation at altitude following changes in SaO2. Larger hypoventilation‐dependent decreases of alveolar PO2 decreases during the night probably cause a stronger reduction of SaO2 in highlanders compared to lowlanders. This variation might be enlarged by a diurnal fluctuation of Hb concentration. In spite of a lower [Hb], the higher SaO2 in women compared to men led to a similar arterial oxygen content, likely explaining the absence of differences in [Epo] between sexes.
Collapse
Affiliation(s)
- Edgar Cristancho
- Departamento de Biologia, Division de Fisiologia Animal, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
6
|
Ryan BJ, Wachsmuth NB, Schmidt WF, Byrnes WC, Julian CG, Lovering AT, Subudhi AW, Roach RC. AltitudeOmics: rapid hemoglobin mass alterations with early acclimatization to and de-acclimatization from 5260 m in healthy humans. PLoS One 2014; 9:e108788. [PMID: 25271637 PMCID: PMC4182755 DOI: 10.1371/journal.pone.0108788] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/26/2014] [Indexed: 01/09/2023] Open
Abstract
It is classically thought that increases in hemoglobin mass (Hbmass) take several weeks to develop upon ascent to high altitude and are lost gradually following descent. However, the early time course of these erythropoietic adaptations has not been thoroughly investigated and data are lacking at elevations greater than 5000 m, where the hypoxic stimulus is dramatically increased. As part of the AltitudeOmics project, we examined Hbmass in healthy men and women at sea level (SL) and 5260 m following 1, 7, and 16 days of high altitude exposure (ALT1/ALT7/ALT16). Subjects were also studied upon return to 5260 m following descent to 1525 m for either 7 or 21 days. Compared to SL, absolute Hbmass was not different at ALT1 but increased by 3.7±5.8% (mean ± SD; n = 20; p<0.01) at ALT7 and 7.6±6.6% (n = 21; p<0.001) at ALT16. Following descent to 1525 m, Hbmass was reduced compared to ALT16 (−6.0±3.7%; n = 20; p = 0.001) and not different compared to SL, with no difference in the loss in Hbmass between groups that descended for 7 (−6.3±3.0%; n = 13) versus 21 days (−5.7±5.0; n = 7). The loss in Hbmass following 7 days at 1525 m was correlated with an increase in serum ferritin (r = −0.64; n = 13; p<0.05), suggesting increased red blood cell destruction. Our novel findings demonstrate that Hbmass increases within 7 days of ascent to 5260 m but that the altitude-induced Hbmass adaptation is lost within 7 days of descent to 1525 m. The rapid time course of these adaptations contrasts with the classical dogma, suggesting the need to further examine mechanisms responsible for Hbmass adaptations in response to severe hypoxia.
Collapse
Affiliation(s)
- Benjamin J. Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
- * E-mail:
| | - Nadine B. Wachsmuth
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - Walter F. Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, Bayreuth, Germany
| | - William C. Byrnes
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Colleen G. Julian
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew T. Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Andrew W. Subudhi
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado, United States of America
| | - Robert C. Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
7
|
Böning D, Littschwager A, Hütler M, Beneke R, Staab D. Hemoglobin oxygen affinity in patients with cystic fibrosis. PLoS One 2014; 9:e97932. [PMID: 24919182 PMCID: PMC4053337 DOI: 10.1371/journal.pone.0097932] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/26/2014] [Indexed: 01/18/2023] Open
Abstract
In patients with cystic fibrosis lung damages cause arterial hypoxia. As a typical compensatory reaction one might expect changes in oxygen affinity of hemoglobin. Therefore position (standard half saturation pressure P50st) and slope (Hill’s n) of the O2 dissociation curve as well as the Bohr coefficients (BC) for CO2 and lactic acid were determined in blood of 14 adult patients (8 males, 6 females) and 14 healthy controls (6 males, 8 females). While Hill’s n amounted to approximately 2.6 in all subjects, P50st was slightly increased by 1mmHg in both patient groups (controls male 26.7±0.2, controls female 27.0±0.1, patients male 27.7±0.5, patients female 28.0±0.3 mmHg; mean and standard error, overall p<0.01). Main cause was a rise of 1–2 µmol/g hemoglobin in erythrocytic 2,3-biphosphoglycerate concentration. One patient only, clearly identified as an outlier and with the mutation G551D, showed a reduction of both P50st (24.5 mmHg) and [2,3-biphosphoglycerate] (9.8 µmol/g hemoglobin). There were no differences in BCCO2, but small sex differences in the BC for lactic acid in the controls which were not detectable in the patients. Causes for the right shift of the O2 dissociation curve might be hypoxic stimulation of erythrocytic glycolysis and an increased red cell turnover both causing increased [2,3-biphosphoglycerate]. However, for situations with additional hypercapnia as observed in exercising patients a left shift seems to be a more favourable adaptation in cystic fibrosis. Additionally when in vivo PO2 values were corrected to the standard conditions they mostly lay left of the in vitro O2 dissociation curve in both patients and controls. This hints to unknown fugitive factors influencing oxygen affinity.
Collapse
Affiliation(s)
- Dieter Böning
- Institut für Sportmedizin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Angela Littschwager
- Institut für Sportmedizin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Hütler
- Institut für Sportmedizin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Beneke
- Institut für Sportmedizin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Doris Staab
- Klinik für Pädiatrische Pneumologie und Immunologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Wachsmuth NB, Völzke C, Prommer N, Schmidt-Trucksäss A, Frese F, Spahl O, Eastwood A, Stray-Gundersen J, Schmidt W. The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol 2012; 113:1199-211. [PMID: 23138148 DOI: 10.1007/s00421-012-2536-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
Abstract
Aim of the study was to determine the influence of classic altitude training on hemoglobin mass (Hb-mass) in elite swimmers under the following aspects: (1) normal oscillation of Hb-mass at sea level; (2) time course of adaptation and de-adaptation; (3) sex influences; (4) influences of illness and injury; (5) interaction of Hb-mass and competition performance. Hb-mass of 45 top swimmers (male 24; female 21) was repeatedly measured (~6 times) over the course of 2 years using the optimized CO-rebreathing method. Twenty-five athletes trained between one and three times for 3-4 weeks at altitude training camps (ATCs) at 2,320 m (3 ATCs) and 1,360 m (1 ATC). Performance was determined by analyzing 726 competitions according to the German point system. The variation of Hb-mass without hypoxic influence was 3.0 % (m) and 2.7 % (f). At altitude, Hb-mass increased by 7.2 ± 3.3 % (p < 0.001; 2,320 m) and by 3.8 ± 3.4 % (p < 0.05; 1,360 m). The response at 2,320 m was not sex-related, and no increase was found in ill and injured athletes (n = 8). Hb-mass was found increased on day 13 and was still elevated 24 days after return (4.0 ± 2.7 %, p < 0.05). Hb-mass had only a small positive effect on swimming performance; an increase in performance was only observed 25-35 days after return from altitude. In conclusion, the altitude (2,320 m) effect on Hb-mass is still present 3 weeks after return, it decisively depends on the health status, but is not influenced by sex. In healthy subjects it exceeds by far the oscillation occurring at sea level. After return from altitude performance increases after a delay of 3 weeks.
Collapse
Affiliation(s)
- N B Wachsmuth
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gonzales GF, Tapia V, Gasco M, Gonzales-Castañeda C. Serum testosterone levels and score of chronic mountain sickness in Peruvian men natives at 4340 m. Andrologia 2011; 43:189-95. [DOI: 10.1111/j.1439-0272.2010.01046.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Gonzales GF, Gasco M, Tapia V, Gonzales-Castañeda C. High serum testosterone levels are associated with excessive erythrocytosis of chronic mountain sickness in men. Am J Physiol Endocrinol Metab 2009; 296:E1319-25. [PMID: 19318512 PMCID: PMC2692401 DOI: 10.1152/ajpendo.90940.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic mountain sickness (CMS) is characterized by excessive erythrocytosis (EE) secondary to hypoventilation. Erythropoietin (Epo) and testosterone regulate erythrocyte production. Low thyroid hormone levels are also associated to hypoventilation. Hence, these hormones can play a role in etiopathogeny of EE. The purpose of this study was to elucidate the effect of sexual and thyroid hormones and Epo in residents from Lima (150 m) and Cerro de Pasco (4,340 m), Peru, and the response to human chorionic gonadotrophin stimulation (hCG). Three groups, one at low altitude and two at high altitude [1 with hemoglobin values >16-21 g/dl and the second with Hb >or=21 g/dl (EE)], were studied. hCG was administered intramuscularly in a single dose (1,000 IU), and blood samples were obtained at 0, 6, 12, 24, 48, and 72 h after injection. High-altitude natives present similar levels of gonadotropins and thyroid hormones but lower dehydroepiandrosterone sulphate (DHEAS) levels (P < 0.01) and greater Epo (P < 0.01), 17alpha-hydroxyprogesterone (P < 0.01), and testosterone levels (P < 0.01) than those at 150 m. Serum testosterone levels (524.13 +/- 55.91 microg/dl vs. 328.14 +/- 53.23 ng/dl, means +/- SE; P < 0.05) and testosterone/DHEAS ratios are higher (7.98 +/- 1.1 vs. 3.65 +/- 1.1; P < 0.01) and DHEAS levels lower in the EE group (83.85 +/- 14.60 microg/dl vs. 148.95 +/- 19.11 ug/dl; P < 0.05), whereas Epo was not further affected. Testosterone levels were highest and DHEAS levels lowest in the EE group at all times after hCG stimulation. In conclusion, high androgen activity could be involved in the etiopathogeny of CMS. This evidence provides an opportunity to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo F Gonzales
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, "Alberto Cazorla Tálleri" Universidad Peruana Cayetano Heredia, Ave. Honorio Delgado 430, Lima 31, Peru.
| | | | | | | |
Collapse
|