1
|
Gatterer H, Villafuerte FC, Ulrich S, Bhandari SS, Keyes LE, Burtscher M. Altitude illnesses. Nat Rev Dis Primers 2024; 10:43. [PMID: 38902312 DOI: 10.1038/s41572-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.
Collapse
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria.
| | - Francisco C Villafuerte
- Laboratorio de Fisiología del Transporte de Oxígeno y Adaptación a la Altura - LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Silvia Ulrich
- Department of Respiratory Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sanjeeb S Bhandari
- Mountain Medicine Society of Nepal, Kathmandu, Nepal
- Emergency Department, UPMC Western Maryland Health, Cumberland, MD, USA
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Dawadi S, Adhikari S. Successful Summit of Two 8000 m Peaks After Recent High Altitude Pulmonary Edema. Wilderness Environ Med 2019; 30:195-198. [DOI: 10.1016/j.wem.2018.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
|
3
|
Swallow-breathing coordination during incremental ascent to altitude. Respir Physiol Neurobiol 2018; 265:121-126. [PMID: 29920337 DOI: 10.1016/j.resp.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
Swallow and breathing are highly coordinated behaviors reliant on shared anatomical space and neural pathways. Incremental ascent to high altitudes results in hypoxia/hypocapnic conditions altering respiratory drive, however it is not known whether these changes also alter swallow. We examined the effect of incremental ascent (1045 m, 3440 m and 4371 m) on swallow motor pattern and swallow-breathing coordination in seven healthy adults. Submental surface electromyograms (sEMG) and spirometry were used to evaluate swallow triggered by saliva and water infusion. Swallow-breathing phase preference was different between swallows initiated by saliva versus water. With ascent, saliva swallows changed to a dominate pattern of occurrence during the transition from inspiration to expiration. Additionally, water swallows demonstrated a significant decrease in submental sEMG duration and a shift in submental activity to earlier in the apnea period, especially at 4371 m. Our results suggest that there are changes in swallow-breathing coordination and swallow production that likely increase airway protection with incremental ascent to high altitude. The adaptive changes in swallow were likely due to the exposure to hypoxia and hypocapnia, along with airway irritation.
Collapse
|
4
|
Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev 2017; 26:26/143/160096. [PMID: 28143879 PMCID: PMC9488514 DOI: 10.1183/16000617.0096-2016] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022] Open
Abstract
At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases. Lack of acclimatisation is the main risk factor for acute altitude illness; descent is the optimal treatmenthttp://ow.ly/45d2305JyZ0
Collapse
Affiliation(s)
- Andrew M Luks
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Peter Bärtsch
- Dept of Internal Medicine, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Donegani E, Paal P, Küpper T, Hefti U, Basnyat B, Carceller A, Bouzat P, van der Spek R, Hillebrandt D. Drug Use and Misuse in the Mountains: A UIAA MedCom Consensus Guide for Medical Professionals. High Alt Med Biol 2016; 17:157-184. [PMID: 27583821 DOI: 10.1089/ham.2016.0080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Donegani, Enrico, Peter Paal, Thomas Küpper, Urs Hefti, Buddha Basnyat, Anna Carceller, Pierre Bouzat, Rianne van der Spek, and David Hillebrandt. Drug use and misuse in the mountains: a UIAA MedCom consensus guide for medical professionals. High Alt Med Biol. 17:157-184, 2016.-Aims: The aim of this review is to inform mountaineers about drugs commonly used in mountains. For many years, drugs have been used to enhance performance in mountaineering. It is the UIAA (International Climbing and Mountaineering Federation-Union International des Associations d'Alpinisme) Medcom's duty to protect mountaineers from possible harm caused by uninformed drug use. The UIAA Medcom assessed relevant articles in scientific literature and peer-reviewed studies, trials, observational studies, and case series to provide information for physicians on drugs commonly used in the mountain environment. Recommendations were graded according to criteria set by the American College of Chest Physicians. RESULTS Prophylactic, therapeutic, and recreational uses of drugs relevant to mountaineering are presented with an assessment of their risks and benefits. CONCLUSIONS If using drugs not regulated by the World Anti-Doping Agency (WADA), individuals have to determine their own personal standards for enjoyment, challenge, acceptable risk, and ethics. No system of drug testing could ever, or should ever, be policed for recreational climbers. Sponsored climbers or those who climb for status need to carefully consider both the medical and ethical implications if using drugs to aid performance. In some countries (e.g., Switzerland and Germany), administrative systems for mountaineering or medication control dictate a specific stance, but for most recreational mountaineers, any rules would be unenforceable and have to be a personal decision, but should take into account the current best evidence for risk, benefit, and sporting ethics.
Collapse
Affiliation(s)
- Enrico Donegani
- 1 Department of Cardiovascular Surgery, Sabah Al-Ahmed Cardiac Center , Al-Amiri Hospital, Kuwait, State of Kuwait
| | - Peter Paal
- 2 Department of Anaesthesiology and Critical Care Medicine, Innsbruck University Hospital , Innsbruck, Austria .,3 Department of Perioperative Medicine, Barts Heart Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, Queen Mary University of London, London, United Kingdom .,4 Perioperative Medicine, St. Bartholomew's Hospital , London, United Kingdom
| | - Thomas Küpper
- 5 Institute of Occupational and Social Medicine, RWTH Aachen University , Aachen, Germany
| | - Urs Hefti
- 6 Department of Orthopedic and Trauma Surgery, Swiss Sportclinic , Bern, Switzerland
| | - Buddha Basnyat
- 7 Oxford University Clinical Research Unit-Nepal , Nepal International Clinic, and Himalayan Rescue, Kathmandu, Nepal
| | - Anna Carceller
- 8 Sports Medicine School, Instituto de Medicina de Montaña y del Deporte (IMMED), Federació d'Entitats Excursionistes (FEEC), University of Barcelona , Barcelona, Spain
| | - Pierre Bouzat
- 9 Department of Anesthesiology and Critical Care, University Hospital, INSERM U1236, Neuroscience Institute, Alps University, Grenoble, France
| | - Rianne van der Spek
- 10 Department of Endocrinology and Metabolism, Academic Medical Center Amsterdam, University of Amsterdam , Amsterdam, The Netherlands
| | | |
Collapse
|
6
|
Kao WF, Huang JH, Kuo TBJ, Chang PL, Chang WC, Chan KH, Liu WH, Wang SH, Su TY, Chiang HC, Chen JJ. Real-time electrocardiogram transmission from Mount Everest during continued ascent. PLoS One 2013; 8:e66579. [PMID: 23818945 PMCID: PMC3688558 DOI: 10.1371/journal.pone.0066579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
The feasibility of a real-time electrocardiogram (ECG) transmission via satellite phone from Mount Everest to determine a climber’s suitability for continued ascent was examined. Four Taiwanese climbers were enrolled in the 2009 Mount Everest summit program. Physiological measurements were taken at base camp (5300 m), camp 2 (6400 m), camp 3 (7100 m), and camp 4 (7950 m) 1 hour after arrival and following a 10 minute rest period. A total of 3 out of 4 climbers were able to summit Mount Everest successfully. Overall, ECG and global positioning system (GPS) coordinates of climbers were transmitted in real-time via satellite phone successfully from base camp, camp 2, camp 3, and camp 4. At each camp, Resting Heart Rate (RHR) was transmitted and recorded: base camp (54–113 bpm), camp 2 (94–130 bpm), camp 3 (98–115 bpm), and camp 4 (93–111 bpm). Real-time ECG and GPS coordinate transmission via satellite phone is feasible for climbers on Mount Everest. Real-time RHR data can be used to evaluate a climber’s physiological capacity to continue an ascent and to summit.
Collapse
Affiliation(s)
- Wei-Fong Kao
- Department of Emergency and Critical Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Davis P, Pattinson K, Mason N, Richards P, Hillebrandt D. High Altitude Illness. J ROY ARMY MED CORPS 2011; 157:12-7. [DOI: 10.1136/jramc-157-01-03] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Borrell B. Mountains to Climb. Nat Med 2010; 16:1176-9. [DOI: 10.1038/nm1110-1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Abstract
With increasing altitude, there is a fall in barometric pressure and a progressive fall in the partial pressure of oxygen. Acclimatization describes the physiologic changes that help maintain tissue oxygen delivery and human performance in the setting of hypobaric hypoxemia. These changes include a marked increase in alveolar ventilation, increased hemoglobin concentration and affinity, and increased tissue oxygen extraction. In some individuals, these physiologic changes may be inadequate, such that the sojourn to altitude and the attendant hypoxia are complicated by altitude-associated medical illness. The rate of ascent, the absolute change in altitude, and individual physiology are the primary determinants whether illness will develop or not. The most common clinical manifestations of altitude illness are acute mountain sickness, high altitude pulmonary edema, and high altitude cerebral edema.
Collapse
|