1
|
Flück M, Protte C, Giraud MN, Gsponer T, Dössegger A. Genotypic Influences on Actuators of Aerobic Performance in Tactical Athletes. Genes (Basel) 2024; 15:1535. [PMID: 39766802 PMCID: PMC11675622 DOI: 10.3390/genes15121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND This study examines genetic variations in the systemic oxygen transport cascade during exhaustive exercise in physically trained tactical athletes. Research goal: To update the information on the distribution of influence of eleven polymorphisms in ten genes, namely ACE (rs1799752), AGT (rs699), MCT1 (rs1049434), HIF1A (rs11549465), COMT (rs4680), CKM (rs8111989), TNC (rs2104772), PTK2 (rs7460 and rs7843014), ACTN3 (rs1815739), and MSTN (rs1805086)-on the connected steps of oxygen transport during aerobic muscle work. METHODS 251 young, healthy tactical athletes (including 12 females) with a systematic physical training history underwent exercise tests, including standardized endurance running with a 12.6 kg vest. Key endurance performance metrics were assessed using ergospirometry, blood sampling, and near-infrared spectroscopy of knee and ankle extensor muscles. The influence of gene polymorphisms on the above performance metrics was analyzed using Bayesian analysis of variance. RESULTS Subjects exhibited good aerobic fitness (maximal oxygen uptake (VO2max): 4.3 ± 0.6 L min-1, peak aerobic power: 3.6 W ± 0.7 W kg-1). Energy supply-related gene polymorphisms rs1799752, rs4680, rs1049434, rs7843014, rs11549465, and rs8111989 did not follow the Hardy-Weinberg equilibrium. Polymorphisms in genes that regulate metabolic and contractile features were strongly associated with variability in oxygen transport and metabolism, such as body mass-related VO2 (rs7843014, rs2104772), cardiac output (rs7460), total muscle hemoglobin content (rs7460, rs4680), oxygen saturation in exercised muscle (rs1049434), and respiration exchange ratio (rs7843014, rs11549465) at first or secondary ventilatory thresholds or VO2max. Moderate influences were found for mass-related power output. CONCLUSIONS The posterior distribution of effects from genetic modulators of aerobic metabolism and muscle contractility mostly confirmed prior opinions in the direction of association. The observed genetic effects of rs4680 and rs1049434 indicate a crucial role of dopamine- and lactate-modulated muscle perfusion and oxygen metabolism during running, suggesting self-selection in Swiss tactical athletes.
Collapse
Affiliation(s)
- Martin Flück
- Swiss Federal Institute of Sport Magglingen SFISM, 2532 Magglingen, Switzerland; (C.P.); (A.D.)
- Physiogene, 1700 Fribourg, Switzerland
| | - Christian Protte
- Swiss Federal Institute of Sport Magglingen SFISM, 2532 Magglingen, Switzerland; (C.P.); (A.D.)
- Center for Renal, Hypertensive and Metabolic Disorders, 30625 Hannover, Germany
| | - Marie-Noëlle Giraud
- Cardiology, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland;
| | | | - Alain Dössegger
- Swiss Federal Institute of Sport Magglingen SFISM, 2532 Magglingen, Switzerland; (C.P.); (A.D.)
- Department of Sport, Physical Activity and Health, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
2
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
3
|
Rua R, Bondi D, Santangelo C, Pignatelli P, Pietrangelo T, Fulle S, Fanelli V, Verratti V. Electromyographic signature of isometric squat in the highest refuge in Europe. Eur J Transl Myol 2023; 33:11637. [PMID: 37700736 PMCID: PMC10583152 DOI: 10.4081/ejtm.2023.11637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
Reports of electromyography during hypoxic exercise are contrasting, due to protocol and muscle diversity. This work aimed to investigate alterations in muscle activation and myoelectrical fatigue during exercise at high-altitude in those muscles primarily involved in trekking. Twelve young adults balanced by gender and age were tested at low (1,667 m) and high (4,554 m, "Capanna Margherita", Italy) altitude, during an isometric squat lasting 60 seconds. High-density surface electromyography was performed from the quadriceps of right limb. The root mean square (RMS), median frequency with its slope, and muscle fiber conduction velocity (MFCV) were computed. Neither males nor females showed changes in median frequency (Med: 36.13 vs 35.63 Hz) and its slope (Med: -9 vs -12 degree) in response to high-altitude trekking, despite a great inter-individual heterogeneity, nor differences were found for MFCV. RMS was not significantly equivalent, with greater values at low altitude (0.385 ± 0.104 mV) than high altitude (0.346 ± 0.090 mV). Unexpected results can be due either to a postural compensation of the whole body compensating for a relatively greater effort or to the inability to support muscle activation after repeated physical efforts. Interesting results may emerge by measuring simultaneously electromyography, muscle oxygenation and kinematics comparing trekking at normoxia vs hypoxia.
Collapse
Affiliation(s)
- Riccardo Rua
- Department of Surgical Science, Anaesthesia and Critical Care, University of Turin, Torino.
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti.
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti.
| | - Vito Fanelli
- Department of Surgical Science, Anaesthesia and Critical Care, University of Turin, Torino.
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti.
| |
Collapse
|
4
|
van Meijel RLJ, Vliex LMM, Hartwig S, Lehr S, Al-Hasani H, Blaak EE, Goossens GH. The impact of mild hypoxia exposure on myokine secretion in human obesity. Int J Obes (Lond) 2023; 47:520-527. [PMID: 36997723 DOI: 10.1038/s41366-023-01294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND/OBJECTIVE Compelling evidence indicates that myokines act in an autocrine, paracrine and endocrine manner to alter metabolic homeostasis. The mechanisms underlying exercise-induced changes in myokine secretion remain to be elucidated. Since exercise acutely decreases oxygen partial pressure (pO2) in skeletal muscle (SM), the present study was designed to test the hypothesis that (1) hypoxia exposure impacts myokine secretion in primary human myotubes and (2) exposure to mild hypoxia in vivo alters fasting and postprandial plasma myokine concentrations in humans. METHODS Differentiated primary human myotubes were exposed to different physiological pO2 levels for 24 h, and cell culture medium was harvested to determine myokine secretion. Furthermore, we performed a randomized single-blind crossover trial to investigate the impact of mild intermittent hypoxia exposure (MIH: 7-day exposure to 15% O2, 3x2h/day vs. normoxia: 21% O2) on in vivo SM pO2 and plasma myokine concentrations in 12 individuals with overweight and obesity (body-mass index ≥ 28 kg/m2). RESULTS Hypoxia exposure (1% O2) increased secreted protein acidic and rich in cysteine (SPARC, p = 0.043) and follistatin like 1 (FSTL1, p = 0.021), and reduced leukemia inhibitory factor (LIF) secretion (p = 0.009) compared to 3% O2 in primary human myotubes. In addition, 1% O2 exposure increased interleukin-6 (IL-6, p = 0.004) and SPARC secretion (p = 0.021), whilst reducing fatty acid binding protein 3 (FABP3) secretion (p = 0.021) compared to 21% O2. MIH exposure in vivo markedly decreased SM pO2 (≈40%, p = 0.002) but did not alter plasma myokine concentrations. CONCLUSIONS Hypoxia exposure altered the secretion of several myokines in primary human myotubes, revealing hypoxia as a novel modulator of myokine secretion. However, both acute and 7-day MIH exposure did not induce alterations in plasma myokine concentrations in individuals with overweight and obesity. CLINICAL TRIALS IDENTIFIER This study is registered at the Netherlands Trial Register (NL7120/NTR7325).
Collapse
Affiliation(s)
- Rens L J van Meijel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lars M M Vliex
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Partner Duesseldorf, München-Neuherberg, Duesseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Partner Duesseldorf, München-Neuherberg, Duesseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, Partner Duesseldorf, München-Neuherberg, Duesseldorf, Germany
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Viscor G, Corominas J, Carceller A. Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3186. [PMID: 36833880 PMCID: PMC9965509 DOI: 10.3390/ijerph20043186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This report aims to summarise the scientific knowledge around hydration, nutrition, and metabolism at high altitudes and to transfer it into the practical context of extreme altitude alpinism, which, as far as we know, has never been considered before in the literature. Maintaining energy balance during alpine expeditions is difficult for several reasons and requires a deep understanding of human physiology and the biological basis for altitude acclimation. However, in these harsh conditions it is difficult to reconcile our current scientific knowledge in sports nutrition or even for mountaineering to high-altitude alpinism: extreme hypoxia, cold, and the logistical difficulties intrinsic to these kinds of expeditions are not considered in the current literature. Requirements for the different stages of an expedition vary dramatically with increasing altitude, so recommendations must differentiate whether the alpinist is at base camp, at high-altitude camps, or attempting the summit. This paper highlights nutritional recommendations regarding prioritising carbohydrates as a source of energy and trying to maintain a protein balance with a practical contextualisation in the extreme altitude environment in the different stages of an alpine expedition. More research is needed regarding specific macro and micronutrient requirements as well as the adequacy of nutritional supplementations at high altitudes.
Collapse
Affiliation(s)
- Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cel·Lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jordi Corominas
- International Federation of Mountain Guide Associations (UIAGM/IFMGA), CH-1920 Bern, Switzerland
| | - Anna Carceller
- Secció de Fisiologia, Departament de Biologia Cel·Lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Dellavechia de Carvalho C, Marcolino Putti G, Figueiredo Foresti Y, Alves Ribeiro F, Causin Andreossi J, Ferraz de Campos G, Papoti M. Recovery in normobaric hypoxia as an additional stimulus for high-intensity intermittent training. Sci Sports 2023. [DOI: 10.1016/j.scispo.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Rossetti GM, d'Avossa G, Rogan M, Macdonald JH, Oliver SJ, Mullins PG. Reversal of neurovascular coupling in the default mode network: Evidence from hypoxia. J Cereb Blood Flow Metab 2021; 41:805-818. [PMID: 32538282 PMCID: PMC7983511 DOI: 10.1177/0271678x20930827] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Local changes in cerebral blood flow are thought to match changes in neuronal activity, a phenomenon termed neurovascular coupling. Hypoxia increases global resting cerebral blood flow, but regional cerebral blood flow (rCBF) changes are non-uniform. Hypoxia decreases baseline rCBF to the default mode network (DMN), which could reflect either decreased neuronal activity or altered neurovascular coupling. To distinguish between these hypotheses, we characterized the effects of hypoxia on baseline rCBF, task performance, and the hemodynamic (BOLD) response to task activity. During hypoxia, baseline CBF increased across most of the brain, but decreased in DMN regions. Performance on memory recall and motion detection tasks was not diminished, suggesting task-relevant neuronal activity was unaffected. Hypoxia reversed both positive and negative task-evoked BOLD responses in the DMN, suggesting hypoxia reverses neurovascular coupling in the DMN of healthy adults. The reversal of the BOLD response was specific to the DMN. Hypoxia produced modest increases in activations in the visual attention network (VAN) during the motion detection task, and had no effect on activations in the visual cortex during visual stimulation. This regional specificity may be particularly pertinent to clinical populations characterized by hypoxemia and may enhance understanding of regional specificity in neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Gabriella Mk Rossetti
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Giovanni d'Avossa
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Matthew Rogan
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Paul G Mullins
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| |
Collapse
|
8
|
Stienen GJM. Early adjustments in mitochondrial structure and function in skeletal muscle to high altitude: design and rationale of the first study from the Kilimanjaro Biobank. Biophys Rev 2020; 12:793-798. [PMID: 32572680 DOI: 10.1007/s12551-020-00710-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
The physiological acclimatisation and adaptation processes in skeletal muscle at high altitude are of high medical and social relevance not only to understand limitations in physical performance at high altitude but also to understand the consequences of hypoxemia and tissue hypoxia in critically ill patients. Of particular importance in these processes are the alterations in content and function of mitochondria and myoglobin. The majority of studies on oxygen delivery to the tissues and utilisation by the cellular metabolism at high altitude were performed after prolonged stay at high altitude and in altitude-adapted highlanders. However, these studies do not provide insight in the sequence of events during the physiological acclimatisation and adaptation processes. Therefore, it is important to identify the early alterations in structure and function of the major determinants of the oxygen transport via myoglobin and oxygen utilisation by the mitochondria in skeletal muscle at high altitude. To achieve this goal, it is of interest to collect, analyse and compare quadriceps muscle biopsies and venous blood samples of climbers, guides and porters before and after climbing Mount Kilimanjaro and in participants of the Kilimanjaro Marathon before and after the run. The samples will be carefully documented and stored in the Kilimanjaro Biobank and will be made available to other research groups.
Collapse
Affiliation(s)
- G J M Stienen
- Department of Physiology, Kilimanjaro Christian Medical University College, PO Box 2240, Moshi, Tanzania. .,Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Gnimassou O, Fernández-Verdejo R, Brook M, Naslain D, Balan E, Sayda M, Cegielski J, Nielens H, Decottignies A, Demoulin JB, Smith K, Atherton PJ, Francaux M, Deldicque L. Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle. FASEB J 2018; 32:5272-5284. [PMID: 29672220 DOI: 10.1096/fj.201800049rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We hypothesized that a single session of resistance exercise performed in moderate hypoxic (FiO2: 14%) environmental conditions would potentiate the anabolic response during the recovery period spent in normoxia. Twenty subjects performed a 1-leg knee extension session in normoxic or hypoxic conditions. Muscle biopsies were taken 15 min and 4 h after exercise in the vastus lateralis of the exercised and the nonexercised legs. Blood and saliva samples were taken at regular intervals before, during, and after the exercise session. The muscle fractional-protein synthetic rate was determined by deuterium incorporation into proteins, and the protein-degradation rate was determined by methylhistidine release from skeletal muscle. We found that: 1) hypoxia blunted the activation of protein synthesis after resistance exercise; 2) hypoxia down-regulated the transcriptional program of autophagy; 3) hypoxia regulated the expression of genes involved in glucose metabolism at rest and the genes involved in myoblast differentiation and fusion and in muscle contraction machinery after exercise; and 4) the hypoxia-inducible factor-1α pathway was not activated at the time points studied. Contrary to our hypothesis, environmental hypoxia did not potentiate the short-term anabolic response after resistance exercise, but it initiated transcriptional regulations that could potentially translate into satellite cell incorporation and higher force production in the long term.-Gnimassou, O., Fernández-Verdejo, R., Brook, M., Naslain, D., Balan, E., Sayda, M., Cegielski, J., Nielens, H., Decottignies, A., Demoulin, J.-B., Smith, K., Atherton, P. J., Fancaux, M., Deldicque, L. Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle.
Collapse
Affiliation(s)
- Olouyomi Gnimassou
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Rodrigo Fernández-Verdejo
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Carrera de Nutrición y Dietética, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matthew Brook
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Damien Naslain
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Estelle Balan
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mariwan Sayda
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Jessica Cegielski
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Henri Nielens
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | - Kenneth Smith
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Philip J Atherton
- Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- Clinical, Metabolic, and Molecular Physiology, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Marc Francaux
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Ferri A, Panariti A, Miserocchi G, Rocchetti M, Buoli Comani G, Rivolta I, Bishop DJ. Tissue specificity of mitochondrial adaptations in rats after 4 weeks of normobaric hypoxia. Eur J Appl Physiol 2018; 118:1641-1652. [PMID: 29855791 DOI: 10.1007/s00421-018-3897-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/17/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Exposure to hypoxia has been suggested to activate multiple adaptive pathways so that muscles are better able to maintain cellular energy homeostasis. However, there is limited research regarding the tissue specificity of this response. The aim of this study was to investigate the influence of tissue specificity on mitochondrial adaptations of rat skeletal and heart muscles after 4 weeks of normobaric hypoxia (FiO2: 0.10). METHODS Twenty male Wistar rats were randomly assigned to either normobaric hypoxia or normoxia. Mitochondrial respiration was determined in permeabilised muscle fibres from left and right ventricles, soleus and extensorum digitorum longus (EDL). Citrate synthase activity and the relative abundance of proteins associated with mitochondrial biogenesis were also analysed. RESULTS After hypoxia exposure, only the soleus and left ventricle (both predominantly oxidative) presented a greater maximal mass-specific respiration (+48 and +25%, p < 0.05) and mitochondrial-specific respiration (+75 and +28%, p < 0.05). Citrate synthase activity was higher in the EDL (0.63 ± 0.08 vs 0.41 ± 0.10 µmol min- 1 µg- 1) and lower in the soleus (0.65 ± 0.17 vs 0.87 ± 0.20 µmol min- 1 µg- 1) in hypoxia with respect to normoxia. There was a lower relative protein abundance of PGC-1α (-25%, p < 0.05) in the right ventricle and a higher relative protein abundance of PGC-1β (+43%, p < 0.05) in the left ventricle of rats exposed to hypoxia, with few differences for protein abundance in the other muscles. CONCLUSION Our results show a muscle-specific response to 4 weeks of normobaric hypoxia. Depending on fibre type, and the presence of ventricular hypertrophy, muscles respond differently to the same degree of environmental hypoxia.
Collapse
Affiliation(s)
- Alessandra Ferri
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alice Panariti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Marcella Rocchetti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Gaia Buoli Comani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
11
|
De Smet S, D'Hulst G, Poffé C, Van Thienen R, Berardi E, Hespel P. High-intensity interval training in hypoxia does not affect muscle HIF responses to acute hypoxia in humans. Eur J Appl Physiol 2018; 118:847-862. [PMID: 29423544 DOI: 10.1007/s00421-018-3820-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE The myocellular response to hypoxia is primarily regulated by hypoxia-inducible factors (HIFs). HIFs thus conceivably are implicated in muscular adaptation to altitude training. Therefore, we investigated the effect of hypoxic versus normoxic training during a period of prolonged hypoxia ('living high') on muscle HIF activation during acute ischaemia. METHODS Ten young male volunteers lived in normobaric hypoxia for 5 weeks (5 days per week, ~ 15.5 h per day, FiO2: 16.4-14.0%). One leg was trained in hypoxia (TRHYP, 12.3% FiO2) whilst the other leg was trained in normoxia (TRNOR, 20.9% FiO2). Training sessions (3 per week) consisted of intermittent unilateral knee extensions at 20-25% of the 1-repetition maximum. Before and after the intervention, a 10-min arterial occlusion and reperfusion of the leg was performed. Muscle oxygenation status was continuously measured by near-infrared spectroscopy. Biopsies were taken from m. vastus lateralis before and at the end of the occlusion. RESULTS Irrespective of training, occlusion elevated the fraction of HIF-1α expressing myonuclei from ~ 54 to ~ 64% (P < 0.05). However, neither muscle HIF-1α or HIF-2α protein abundance, nor the expression of HIF-1α or downstream targets selected increased in any experimental condition. Training in both TRNOR and TRHYP raised muscular oxygen extraction rate upon occlusion by ~ 30%, whilst muscle hyperperfusion immediately following the occlusion increased by ~ 25% in either group (P < 0.05). CONCLUSION Ten minutes of arterial occlusion increased HIF-1α-expressing myonuclei. However, neither normoxic nor hypoxic training during 'living high' altered muscle HIF translocation, stabilisation, or transcription in response to acute hypoxia induced by arterial occlusion.
Collapse
Affiliation(s)
- Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Gommaar D'Hulst
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium.,Laboratory of Exercise and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Chiel Poffé
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Ruud Van Thienen
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Emanuele Berardi
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001, Leuven, Belgium. .,Bakala Academy-Athletic Performance Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Valdivieso P, Toigo M, Hoppeler H, Flück M. T/T homozygosity of the tenascin-C gene polymorphism rs2104772 negatively influences exercise-induced angiogenesis. PLoS One 2017; 12:e0174864. [PMID: 28384286 PMCID: PMC5383042 DOI: 10.1371/journal.pone.0174864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mechanical stress, including blood pressure related factors, up-regulate expression of the pro-angiogenic extracellular matrix protein tenascin-C in skeletal muscle. We hypothesized that increased capillarization of skeletal muscle with the repeated augmentation in perfusion during endurance training is associated with blood vessel-related expression of tenascin-C and would be affected by the single-nucleotide polymorphism (SNP) rs2104772, which characterizes the non-synonymous exchange of thymidine (T)-to-adenosine (A) in the amino acid codon 1677 of tenascin-C. METHODS Sixty-one healthy, untrained, male white participants of Swiss descent performed thirty 30-min bouts of endurance exercise on consecutive weekdays using a cycling ergometer. Genotype and training interactions were called significant at Bonferroni-corrected p-value of 5% (repeated measures ANOVA). RESULTS Endurance training increased capillary-to-fiber-ratio (+11%), capillary density (+7%), and mitochondrial volume density (+30%) in m. vastus lateralis. Tenascin-C protein expression in this muscle was confined to arterioles and venules (80% of cases) and increased after training in A-allele carriers. Prior to training, volume densities of subsarcolemmal and myofibrillar mitochondria in m. vastus lateralis muscle were 49% and 18%, respectively, higher in A/A homozygotes relative to T-nucleotide carriers (A/T and T/T). Training specifically increased capillary-to-fiber ratio in A-nucleotide carriers but not in T/T homozygotes. Genotype specific regulation of angiogenesis was reflected by the expression response of 8 angiogenesis-associated transcripts after exercise, and confirmed by training-induced alterations of the shear stress related factors, vimentin and VEGF A. CONCLUSION Our findings provide evidence for a negative influence of T/T homozygosity in rs2104772 on capillary remodeling with endurance exercise.
Collapse
Affiliation(s)
- Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Marco Toigo
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Hans Hoppeler
- Institute of Anatomy, University of Berne, Berne, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Institute of Anatomy, University of Berne, Berne, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Van Thienen R, Masschelein E, D'Hulst G, Thomis M, Hespel P. Twin Resemblance in Muscle HIF-1α Responses to Hypoxia and Exercise. Front Physiol 2017; 7:676. [PMID: 28149279 PMCID: PMC5241297 DOI: 10.3389/fphys.2016.00676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a master regulator of myocellular adaptation to exercise and hypoxia. However, the role of genetic factors in regulation of HIF-1 responses to exercise and hypoxia is unknown. We hypothesized that hypoxia at rest and during exercise stimulates the HIF-1 pathway and its downstream targets in energy metabolism regulation in a genotype-dependent manner. Eleven monozygotic twin (MZ) pairs performed an experimental trial in both normoxia and hypoxia (FiO2 10.7%). Biopsies were taken from m. vastus lateralis before and after a 20-min submaximal cycling bout @~30% of sea-level VO2max. Key-markers of the HIF-1 pathway and glycolytic and oxidative metabolism were analyzed using real-time PCR and Western Blot. Hypoxia increased HIF-1α protein expression by ~120% at rest vs. +150% during exercise (p < 0.05). Furthermore, hypoxia but not exercise increased muscle mRNA content of HIF-1α (+50%), PHD2 (+45%), pVHL (+45%; p < 0.05), PDK4 (+1200%), as well as PFK-M (+20%) and PPAR-γ1 (+60%; p < 0.05). Neither hypoxia nor exercise altered PHD1, LDH-A, PDH-A1, COX-4, and CS mRNA expressions. The hypoxic, but not normoxic exercise-induced increment of muscle HIF-1α mRNA content was about 10-fold more similar within MZ twins than between the twins (p < 0.05). Furthermore, in resting muscle the hypoxia-induced increments of muscle HIF-1α protein content, and HIF-1α and PDK4 mRNA content were about 3-4-fold more homogeneous within than between the twins pairs (p < 0.05). The present observations in monozygotic twins for the first time clearly indicate that the HIF-1α protein as well as mRNA responses to submaximal exercise in acute hypoxia are at least partly regulated by genetic factors.
Collapse
Affiliation(s)
- Ruud Van Thienen
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Evi Masschelein
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Gommaar D'Hulst
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Martine Thomis
- Physical Activity, Sports and Health Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Kinesiology, KU Leuven Leuven, Belgium
| |
Collapse
|
14
|
Przygodda F, Manfredi LH, Machado J, Gonçalves DAP, Zanon NM, Bonagamba LGH, Machado BH, Kettelhut ÍC, Navegantes LCC. Acute intermittent hypoxia in rats activates muscle proteolytic pathways through a gluccorticoid-dependent mechanism. J Appl Physiol (1985) 2016; 122:1114-1124. [PMID: 27932681 DOI: 10.1152/japplphysiol.00977.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 11/18/2016] [Accepted: 12/03/2016] [Indexed: 02/08/2023] Open
Abstract
Although it is well known that chronic hypoxia induces muscle wasting, the effects of intermittent hypoxia on skeletal muscle protein metabolism remain unclear. We hypothesized that acute intermittent hypoxia (AIH), a challenge that activates the hypothalamic-pituitary-adrenal axis, would alter muscle protein homeostasis through a glucocorticoid-dependent mechanism. Three-week-old rats were submitted to adrenalectomy (ADX) and exposed to 8 h of AIH (6% O2 for 40 s at 9-min intervals). Animals were euthanized, and the soleus and extensor digitorum longus (EDL) muscles were harvested and incubated in vitro for measurements of protein turnover. AIH increased plasma levels of corticosterone and induced insulin resistance as estimated by the insulin tolerance test and lower rates of muscle glucose oxidation and the HOMA index. In both soleus and EDL muscles, rates of overall proteolysis increased after AIH. This rise was accompanied by an increased proteolytic activities of the ubiquitin(Ub)-proteasome system (UPS) and lysosomal and Ca2+-dependent pathways. Furthermore, AIH increased Ub-protein conjugates and gene expression of atrogin-1 and MuRF-1, two key Ub-protein ligases involved in muscle atrophy. In parallel, AIH increased the mRNA expression of the autophagy-related genes LC3b and GABARAPl1. In vitro rates of protein synthesis in skeletal muscles did not differ between AIH and control rats. ADX completely blocked the insulin resistance in hypoxic rats and the AIH-induced activation of proteolytic pathways and atrogene expression in both soleus and EDL muscles. These results demonstrate that AIH induces insulin resistance in association with activation of the UPS, the autophagic-lysosomal process, and Ca2+-dependent proteolysis through a glucocorticoid-dependent mechanism.NEW & NOTEWORTHY Since hypoxia is a condition in which the body is deprived of adequate oxygen supply and muscle wasting is induced, the present work provides evidence linking hypoxia to proteolysis through a glucocorticoid-dependent mechanism. We show that the activation of proteolytic pathways, atrophy-related genes, and insulin resistance in rats exposed to acute intermittent hypoxia was abolished by surgical removal of adrenal gland. This finding will be helpful for understanding of the muscle wasting in hypoxemic conditions.
Collapse
Affiliation(s)
- Franciele Przygodda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leandro Henrique Manfredi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dawit A P Gonçalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Neusa M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Benedito H Machado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ísis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;
| |
Collapse
|
15
|
D'Hulst G, Deldicque L. Human skeletal muscle wasting in hypoxia: a matter of hypoxic dose? J Appl Physiol (1985) 2016; 122:406-408. [PMID: 27742801 DOI: 10.1152/japplphysiol.00264.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Leuven, Belgium.,Health Sciences and Technology Department, Laboratory of Exercise and Health, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland; and
| | - Louise Deldicque
- Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Leuven, Belgium; .,Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
16
|
Murphy S, Dowling P, Ohlendieck K. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis. Proteomes 2016; 4:proteomes4030027. [PMID: 28248237 PMCID: PMC5217355 DOI: 10.3390/proteomes4030027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
17
|
Flaherty G, O'Connor R, Johnston N. Altitude training for elite endurance athletes: A review for the travel medicine practitioner. Travel Med Infect Dis 2016; 14:200-11. [PMID: 27040934 DOI: 10.1016/j.tmaid.2016.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
High altitude training is regarded as an integral component of modern athletic preparation, especially for endurance sports such as middle and long distance running. It has rapidly achieved popularity among elite endurance athletes and their coaches. Increased hypoxic stress at altitude facilitates key physiological adaptations within the athlete, which in turn may lead to improvements in sea-level athletic performance. Despite much research in this area to date, the exact mechanisms which underlie such improvements remain to be fully elucidated. This review describes the current understanding of physiological adaptation to high altitude training and its implications for athletic performance. It also discusses the rationale and main effects of different training models currently employed to maximise performance. Athletes who travel to altitude for training purposes are at risk of suffering the detrimental effects of altitude. Altitude illness, weight loss, immune suppression and sleep disturbance may serve to limit athletic performance. This review provides an overview of potential problems which an athlete may experience at altitude, and offers specific training recommendations so that these detrimental effects are minimised.
Collapse
Affiliation(s)
- Gerard Flaherty
- School of Medicine, National University of Ireland, Galway, Ireland; School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Rory O'Connor
- School of Biomedical Science, National University of Ireland, Galway, Ireland.
| | - Niall Johnston
- School of Medicine, National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
D'Hulst G, Ferri A, Naslain D, Bertrand L, Horman S, Francaux M, Bishop DJ, Deldicque L. Fifteen days of 3,200 m simulated hypoxia marginally regulates markers for protein synthesis and degradation in human skeletal muscle. HYPOXIA 2016; 4:1-14. [PMID: 27800505 PMCID: PMC5085286 DOI: 10.2147/hp.s101133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic hypoxia leads to muscle atrophy. The molecular mechanisms responsible for this phenomenon are not well defined in vivo. We sought to determine how chronic hypoxia regulates molecular markers of protein synthesis and degradation in human skeletal muscle and whether these regulations were related to the regulation of the hypoxia-inducible factor (HIF) pathway. Eight young male subjects lived in a normobaric hypoxic hotel (FiO2 14.1%, 3,200 m) for 15 days in well-controlled conditions for nutrition and physical activity. Skeletal muscle biopsies were obtained in the musculus vastus lateralis before (PRE) and immediately after (POST) hypoxic exposure. Intramuscular hypoxia-inducible factor-1 alpha (HIF-1α) protein expression decreased (-49%, P=0.03), whereas hypoxia-inducible factor-2 alpha (HIF-2α) remained unaffected from PRE to POST hypoxic exposure. Also, downstream HIF-1α target genes VEGF-A (-66%, P=0.006) and BNIP3 (-24%, P=0.002) were downregulated, and a tendency was measured for neural precursor cell expressed, developmentally Nedd4 (-47%, P=0.07), suggesting lowered HIF-1α transcriptional activity after 15 days of exposure to environmental hypoxia. No difference was found on microtubule-associated protein 1 light chain 3 type II/I (LC3b-II/I) ratio, and P62 protein expression tended to increase (+45%, P=0.07) compared to PRE exposure levels, suggesting that autophagy was not modulated after chronic hypoxia. The mammalian target of rapamycin complex 1 pathway was not altered as Akt, mammalian target of rapamycin, S6 kinase 1, and 4E-binding protein 1 phosphorylation did not change between PRE and POST. Finally, myofiber cross-sectional area was unchanged between PRE and POST. In summary, our data indicate that moderate chronic hypoxia differentially regulates HIF-1α and HIF-2α, marginally affects markers of protein degradation, and does not modify markers of protein synthesis or myofiber cross-sectional area in human skeletal muscle.
Collapse
Affiliation(s)
- Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Leuven, Belgium
| | - Alessandra Ferri
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Damien Naslain
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve
| | - Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Université catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Université catholique de Louvain, Brussels, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve
| | - David J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia
| | - Louise Deldicque
- Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Leuven, Belgium; Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve
| |
Collapse
|
19
|
van Ginkel S, Ruoss S, Valdivieso P, Degens H, Waldron S, de Haan A, Flück M. ACE inhibition modifies exercise-induced pro-angiogenic and mitochondrial gene transcript expression. Scand J Med Sci Sports 2015; 26:1180-7. [PMID: 26407530 DOI: 10.1111/sms.12572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 01/02/2023]
Abstract
Skeletal muscle responds to endurance exercise with an improvement of biochemical pathways that support substrate supply and oxygen-dependent metabolism. This is reflected by enhanced expression of associated factors after exercise and is specifically modulated by tissue perfusion and oxygenation. We hypothesized that transcript expression of pro-angiogenic factors (VEGF, tenascin-C, Angpt1, Angpt1R) and oxygen metabolism (COX4I1, COX4I2, HIF-1α) in human muscle after an endurance stimulus depends on vasoconstriction, and would be modulated through angiotensin-converting enzyme inhibition by intake of lisinopril. Fourteen non-specifically trained, male Caucasians subjects, carried out a single bout of standardized one-legged bicycle exercise. Seven of the participants consumed lisinopril in the 3 days before exercise. Biopsies were collected pre- and 3 h post-exercise from the m. vastus lateralis. COX4I1 (P = 0.03), COX4I2 (P = 0.04) mRNA and HIF-1α (P = 0.05) mRNA and protein levels (P = 0.01) showed an exercise-induced increase in the group not consuming the ACE inhibitor. Conversely, there was a specific exercise-induced increase in VEGF transcript (P = 0.04) and protein levels (P = 0.03) and a trend for increased tenascin-c transcript levels (P = 0.09) for subjects consuming lisinopril. The observations indicate that exercise-induced expression of transcripts involved in angiogenesis and mitochondrial energy metabolism are to some extent regulated via a hypoxia-related ACE-dependent mechanism.
Collapse
Affiliation(s)
- S van Ginkel
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.,MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - S Ruoss
- University Hospital Balgrist, Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland
| | - P Valdivieso
- University Hospital Balgrist, Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland
| | - H Degens
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - S Waldron
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - A de Haan
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.,MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - M Flück
- University Hospital Balgrist, Laboratory for Muscle Plasticity, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Desplanches D, Amami M, Dupré-Aucouturier S, Valdivieso P, Schmutz S, Mueller M, Hoppeler H, Kreis R, Flück M. Hypoxia refines plasticity of mitochondrial respiration to repeated muscle work. Eur J Appl Physiol 2013; 114:405-17. [PMID: 24327174 PMCID: PMC3895187 DOI: 10.1007/s00421-013-2783-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Purpose We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle. Methods Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65 % of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy. Biopsies from vastus lateralis muscle, collected pre and post a single exercise bout, and training, were assessed for levels of transcripts and proteins being associated with mitochondrial metabolism. Results Hypoxia specifically lowered the training-induced expression of markers of respiratory complex II and IV (i.e. SDHA and isoform 1 of COX-4; COX4I1) and preserved fibre cross-sectional area. Concomitantly, trends (p < 0.10) were found for a hypoxia-specific reduction in the basal oxygen consumption rate, and improvements in oxygen repletion, and aerobic performance in hypoxia. Repeated exercise in hypoxia promoted the biogenesis of subsarcolemmal mitochondria and this was co-related to expression of isoform 2 of COX-4 with higher oxygen affinity after single exercise, de-oxygenation time and myoglobin content (r ≥ 0.75). Conversely, expression in COX4I1 with training correlated negatively with changes of subsarcolemmal mitochondria (r < −0.82). Conclusion Hypoxia-modulated adjustments of aerobic performance with repeated muscle work are reflected by expressional adaptations within the respiratory chain and modified muscle oxygen metabolism.
Collapse
Affiliation(s)
- Dominique Desplanches
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shen G, Wu X, Tang C, Yan Y, Liu J, Guo W, Jing D, Lei T, Tian Y, Xie K, Luo E, Zhang J. An oxygen enrichment device for lowlanders ascending to high altitude. Biomed Eng Online 2013; 12:100. [PMID: 24103365 PMCID: PMC4124732 DOI: 10.1186/1475-925x-12-100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When ascending to the high altitude, people living in low altitude areas will suffer from acute mountain sickness. The aim of this study is to test the hypothesis that whether an oxygen concentration membrane can be made and used to construct a new portable oxygen enrichment device for individuals in acute exposure to the high altitude. METHODS The membrane was fabricated using vinylsiloxane rubber, polyphenylene oxide hydrogen silicone polymers, chloroplatinic acid and isopropyl alcohol. The membrane was assembled in a frame and the performance was tested in terms of concentration of oxygen, flow rate of oxygen enriched air, pressure ratio across the membrane and ambient temperature. Furthermore, the oxygen concentration device was constructed using the membrane, a DC fan, vacuum pump and gas buffer. A nonrandomized preliminary field test was conducted, in which eight healthy male subjects were flown to Tibet (Lhasa, 3,700 m). First, subjects wore the oxygen enrichment device and performed an incremental exercise on cycle ergometer. The test included heart rate (HR), saturation of peripheral oxygen (SpO2) and physical work capacity (PWC). Then, after a rest period of 4 hours, the experimental protocol was repeated without oxygen enrichment device. RESULTS The testing showed that the membrane could increase the oxygen concentration by up to 30%. Simulation test indicated that although the performance of the oxygen enrichment device decreased with altitudes, the oxygen concentration could still maintain 28% with flow rate of enriched air 110 cm3/s at 5000 m. The field test showed that higher SpO2, lower HR, and better PWC (measured by the PWC-170) were observed from all the subjects using oxygen enrichment device compared with non-using (P < 0.01). CONCLUSIONS We concluded that the new portable oxygen enrichment device would be effective in improving exercise performance when ascending to the high altitude.
Collapse
Affiliation(s)
- Guanghao Shen
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ohlendieck K. Proteomic identification of biomarkers of skeletal muscle disorders. Biomark Med 2013; 7:169-86. [PMID: 23387498 DOI: 10.2217/bmm.12.96] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disease-specific biomarkers play a central diagnostic and therapeutic role in muscle pathology. Serum levels of a variety of muscle-derived enzymes are routinely used for the detection of muscle damage in diagnostic procedures, as well as for the monitoring of physical training status in sports medicine. Over the last few years, the systematic application of mass spectrometry-based proteomics for studying skeletal muscle degeneration has greatly expanded the range of muscle biomarkers, including new fiber-associated proteins involved in muscle transformation, muscular atrophy, muscular dystrophy, motor neuron disease, inclusion body myositis, myotonia, hypoxia, diabetes, obesity and sarcopenia of old age. These mass spectrometric studies have clearly established skeletal muscle proteomics as a reliable method for the identification of novel indicators of neuromuscular diseases.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
23
|
Wahl P, Schaerk J, Achtzehn S, Kleinöder H, Bloch W, Mester J. Physiological responses and perceived exertion during cycling with superimposed electromyostimulation. J Strength Cond Res 2013; 26:2383-8. [PMID: 22067251 DOI: 10.1519/jsc.0b013e31823f2749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The goal of the study was to evaluate and to quantify the effects of local electromyostimulation (EMS) during cycling on the cardiorespiratory system, muscle metabolism, and perceived exertion compared with cycling with no EMS. Ten healthy men (age: 24.6 ± 3.2 years, V[Combining Dot Above]O2max: 54.1 ± 6.0 ml·min·kg) performed 3 incremental cycle ergometer step tests, 1 without and 2 with EMS (30 and 85 Hz) until volitional exhaustion. Lactate values and respiratory exchange ratio were significantly higher at intensities ≥75% peak power output (PPO) when EMS was applied. Bicarbonate concentration, base excess (BE), and Pco2 were significantly lower when EMS was applied compared with the control at intensities ≥75% PPO. Saliva cortisol levels increased because of the exercise but were unaffected by EMS. Furthermore, EMS showed greater effects on CK levels 24 hours postexercise than normal cycling did. Rating of perceived exertion was significantly higher at 100% PPO with EMS. No statistical differences were found for heart rate, pH, and Po2 between the tested cycling modes. The main findings of this study are greater metabolic changes (lactate, respiratory exchange ratio, BE, (Equation is included in full-text article.), Pco2) during cycling with EMS compared with normal cycling independent of frequency, mainly visible at higher work rates. Because metabolic alterations are important for the induction of cellular signaling cascades and adaptations, these results lead to the hypothesis that applied EMS stimulations during cycling exercise might be an enhancing stimulus for skeletal muscle metabolism and related adaptations. Thus, superimposed EMS application during cycling could be beneficial to aerobic performance enhancements in athletes and in patients who cannot perform high workloads. However, the higher demand on skeletal muscles involved must be considered.
Collapse
Affiliation(s)
- Patrick Wahl
- Institute of Training Science and Sport Informatics, German Sport University, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Shen G, Xie K, Yan Y, Jing D, Tang C, Wu X, Liu J, Sun T, Zhang J, Luo E. The role of oxygen-increased respirator in humans ascending to high altitude. Biomed Eng Online 2012; 11:49. [PMID: 22898206 PMCID: PMC3467172 DOI: 10.1186/1475-925x-11-49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 07/13/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acute mountain sickness (AMS) is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. METHODS Oxygen-increased respirator (OIR) has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m; Group 3,4,5: 4000 m, 4700 m, 5380 m) with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2), malondialdehyde (MDA), superoxide dismutase (SOD), blood lactate (BLA) and PWC (physical work capacity) -170. RESULTS The results showed that higher SpO2, lower heart rate (except during exercise) and better recovery of heart rate were observed from all the subjects 'with OIR' compared with 'without OIR' (P<0.05). Moreover, compared with 'without OIR', subjects 'with OIR' in Group 1 had lower concentrations of MDA and BLA, and a higher concentration of SOD (P<0.05), while subjects 'with OIR' in Group 2 showed better physical capacity (measured by the PWC-170) (P<0.05). The additional experiment conducted in a hypobaric chamber (simulating 4,000 m) showed that the partial pressure of oxygen in blood and arterial oxygen saturation were higher 'with OIR' than 'without OIR' (P<0.05). CONCLUSIONS We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.
Collapse
Affiliation(s)
- Guanghao Shen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sperlich B, Zinner C, Krueger M, Wegrzyk J, Achtzehn S, Holmberg HC. Effects of hyperoxia during recovery from 5×30-s bouts of maximal-intensity exercise. J Sports Sci 2012; 30:851-8. [PMID: 22468755 DOI: 10.1080/02640414.2012.671531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We test the hypothesis that breathing oxygen-enriched air (F(I)O(2) = 100%) maintains exercise performance and reduces fatigue during intervals of maximal-intensity cycling. Ten well-trained male cyclists (age 25 ± 3 years; peak oxygen uptake 64.8 ± 6.2 ml · kg(-1) · min(-1); mean ± s) were exposed to either hyperoxic or normoxic air during the 6-min intervals between five 30-s sessions of cycling at maximal intensity. The concentrations of lactate and hydrogen ions [H(+)], pH, base excess, oxygen partial pressure, and oxygen saturation in the blood were assessed before and after these sprints. The peak (P = 0.62) and mean power outputs (P = 0.83) with hyperoxic and normoxic air did not differ. The partial pressure of oxygen was 4.2-fold higher after inhaling hyperoxic air, whereas lactate concentration, pH, [H(+)], and base excess (P ≥ 0.17) were not influenced. Perceived exertion towards the end of the 6-min periods after the fourth and fifth sprints (P < 0.05) was lower with hyperoxia than normoxia (P < 0.05). These findings demonstrate that the peak and mean power outputs of athletes performing intervals of maximal-intensity cycling are not improved by inhalation of oxygen-enriched air during recovery.
Collapse
Affiliation(s)
- Billy Sperlich
- Department of Sport Science, Bergische Universität Wuppertal, Fuhlrottstrasse 10, Wuppertal, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Fujino H, Kondo H, Murakami S, Nagatomo F, Fujita N, Takeda I, Ishihara A, Roy RR. Differences in capillary architecture, hemodynamics, and angiogenic factors in rat slow and fast plantarflexor muscles. Muscle Nerve 2012; 45:242-9. [PMID: 22246881 DOI: 10.1002/mus.22267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The capillary architecture in skeletal muscles is unique in that it has anastomoses that interconnect individual capillaries. METHODS We used new techniques to measure velocity of red blood cells (V(RBC) ) in both capillaries and anastomoses in situ. The volume of capillaries/anastomoses was determined, and the levels of several angiogenic regulators were compared between the soleus and the superficial gastrocnemius (LG(sup) ). RESULTS The V(RBC) in both capillaries and anastomoses was slower in soleus than in LG(sup) . The numbers of capillaries and anastomoses were higher, diameter of capillaries smaller, and tortuosity greater in soleus than in LG(sup) . Consequently, the capillary/anastomoses volume was larger in soleus than in LG(sup) . Furthermore, several angiogenic regulators (HIF-1α, VEGF, Flt-1, KDR, angiopoietin-1 and -2, and Tie-2) were higher in soleus than in LG(sup) . CONCLUSION The differences in microvascular architecture, V(RBC) , and levels of angiogenic regulators between soleus and LG(sup) reflect the greater oxygen demands of the highly active soleus muscle.
Collapse
Affiliation(s)
- Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-Ku, Kobe 654-0142, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Petriz BA, Gomes CP, Rocha LAO, Rezende TMB, Franco OL. Proteomics applied to exercise physiology: A cutting-edge technology. J Cell Physiol 2011; 227:885-98. [DOI: 10.1002/jcp.22809] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Doria C, Toniolo L, Verratti V, Cancellara P, Pietrangelo T, Marconi V, Paoli A, Pogliaghi S, Fanò G, Reggiani C, Capelli C. Improved V̇O2 uptake kinetics and shift in muscle fiber type in high-altitude trekkers. J Appl Physiol (1985) 2011; 111:1597-605. [PMID: 21868681 DOI: 10.1152/japplphysiol.01439.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study investigated the effect of prolonged hypoxia on central [i.e., cardiovascular oxygen delivery (Q̇aO2)] and peripheral (i.e., O2 utilization) determinants of oxidative metabolism response during exercise in humans. To this aim, seven male mountaineers were examined before and immediately after the Himalayan Expedition Interamnia 8000–Manaslu 2008, lasting 43 days, among which, 23 days were above 5,000 m. The subjects showed a decrease in body weight ( P < 0.05) and of power output during a Wingate Anaerobic test ( P < 0.05) and an increase of thigh cross-sectional area ( P < 0.05). Absolute maximal O2 uptake (V̇O2max) did not change. The mean response time of V̇O2 kinetics at the onset of step submaximal cycling exercise was reduced significantly from 53.8 s ± 10.9 to 39.8 s ± 10.9 ( P < 0.05), whereas that of Q̇aO2 was not. Analysis of single fibers dissected from vastus lateralis biopsies revealed that the expression of slow isoforms of both heavy and light myosin subunits increased, whereas that of fast isoforms decreased. Unloaded shortening velocity of fibers was decreased significantly. In summary, independent findings converge in indicating that adaptation to chronic hypoxia brings about a fast-to-slow transition of muscle fibers, resulting in a faster activation of the mitochondrial oxidative metabolism. These results indicate that a prolonged and active sojourn in hypoxia may induce muscular ultrastructural and functional changes similar to those observed after aerobic training.
Collapse
Affiliation(s)
- C. Doria
- Department of Neurosciences and Imaging, University of Chieti-Pescara, Chieti
| | - L. Toniolo
- Department of Anatomy and Physiology, University of Padova
| | - V. Verratti
- Department of Neurosciences and Imaging, University of Chieti-Pescara, Chieti
| | - P. Cancellara
- Department of Anatomy and Physiology, University of Padova
| | - T. Pietrangelo
- Department of Neurosciences and Imaging, University of Chieti-Pescara, Chieti
| | - V. Marconi
- School of Exercise and Sport Sciences, University of Verona
| | - A. Paoli
- Department of Anatomy and Physiology, University of Padova
| | - S. Pogliaghi
- School of Exercise and Sport Sciences, University of Verona
| | - G. Fanò
- Department of Neurosciences and Imaging, University of Chieti-Pescara, Chieti
| | - C. Reggiani
- Department of Anatomy and Physiology, University of Padova
- CNR, Institute of Neuroscience, Padova; and
| | - C. Capelli
- School of Exercise and Sport Sciences, University of Verona
- CeRiSM, Rovereto, Trento, Italy
| |
Collapse
|
29
|
de Theije C, Costes F, Langen RC, Pison C, Gosker HR. Hypoxia and muscle maintenance regulation: implications for chronic respiratory disease. Curr Opin Clin Nutr Metab Care 2011; 14:548-53. [PMID: 21934612 DOI: 10.1097/mco.0b013e32834b6e79] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Muscle wasting and impaired muscle oxidative metabolism are common extrapulmonary features of chronic respiratory failure (CRF) that significantly increase disease burden. This review aims to address the question whether hypoxia, an obvious consequence of this disease, actually plays a causal role in these muscle impairments. RECENT FINDINGS In experimental models, a causal role for hypoxia in muscle atrophy and metabolic impairments has clearly been shown. Although the hypoxia-inducible factors and nuclear factor kappa B are putative mediators of these hypoxia-induced alterations, their true involvement remains to be proven. Molecular signatures of disrupted regulation of muscle mass and oxidative metabolism observed in these experimental models also have been shown in muscles of patients suffering from CRF, suggestive of but not conclusive for a causal role of hypoxia. Therapies, including but not restricted to those aimed at alleviating hypoxia, have been shown to partially but not completely restore muscle mass and oxidative capacity in CRF patients, which may imply an additive effect of nutritional modulation of substrate metabolism. SUMMARY Although hypoxia clearly affects skeletal muscle maintenance, it remains to be confirmed whether and by which underlying molecular mechanisms hypoxia is causally involved in CRF-related muscle atrophy and impaired oxidative capacity.
Collapse
Affiliation(s)
- Chiel de Theije
- Nutrim School for Nutrition, Toxicology and Metabolism, Department of Anatomy and Embryology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Patterson AJ, Zhang L. Hypoxia and fetal heart development. Curr Mol Med 2011; 10:653-66. [PMID: 20712587 DOI: 10.2174/156652410792630643] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/30/2010] [Indexed: 12/18/2022]
Abstract
Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.
Collapse
Affiliation(s)
- A J Patterson
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
31
|
Wahl P, Zinner C, Achtzehn S, Behringer M, Bloch W, Mester J. Effects of acid–base balance and high or low intensity exercise on VEGF and bFGF. Eur J Appl Physiol 2010; 111:1405-13. [DOI: 10.1007/s00421-010-1767-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
|
32
|
Ohlendieck K. Proteomics of skeletal muscle glycolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2089-101. [DOI: 10.1016/j.bbapap.2010.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
33
|
Scott GR, Schulte PM, Egginton S, Scott ALM, Richards JG, Milsom WK. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose. Mol Biol Evol 2010; 28:351-63. [PMID: 20685719 DOI: 10.1093/molbev/msq205] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bar-headed geese (Anser indicus) fly at up to 9,000 m elevation during their migration over the Himalayas, sustaining high metabolic rates in the severe hypoxia at these altitudes. We investigated the evolution of cardiac energy metabolism and O(2) transport in this species to better understand the molecular and physiological mechanisms of high-altitude adaptation. Compared with low-altitude geese (pink-footed geese and barnacle geese), bar-headed geese had larger lungs and higher capillary densities in the left ventricle of the heart, both of which should improve O(2) diffusion during hypoxia. Although myoglobin abundance and the activities of many metabolic enzymes (carnitine palmitoyltransferase, citrate synthase, 3-hydroxyacyl-coA dehydrogenase, lactate dehydrogenase, and pyruvate kinase) showed only minor variation between species, bar-headed geese had a striking alteration in the kinetics of cytochrome c oxidase (COX), the heteromeric enzyme that catalyzes O(2) reduction in oxidative phosphorylation. This was reflected by a lower maximum catalytic activity and a higher affinity for reduced cytochrome c. There were small differences between species in messenger RNA and protein expression of COX subunits 3 and 4, but these were inconsistent with the divergence in enzyme kinetics. However, the COX3 gene of bar-headed geese contained a nonsynonymous substitution at a site that is otherwise conserved across vertebrates and resulted in a major functional change of amino acid class (Trp-116 → Arg). This mutation was predicted by structural modeling to alter the interaction between COX3 and COX1. Adaptations in mitochondrial enzyme kinetics and O(2) transport capacity may therefore contribute to the exceptional ability of bar-headed geese to fly high.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Mounier R, Pedersen BK, Plomgaard P. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle. Exp Physiol 2010; 95:899-907. [PMID: 20494919 DOI: 10.1113/expphysiol.2010.052928] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is well known to exhibit a high degree of plasticity depending on environmental changes, such as various oxygen concentrations. Studies of the oxygen-sensitive subunit alpha of hypoxia-inducible factor-1 (HIF-1) are difficult owing to the large variety of functionally diverse muscle fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1alpha mRNA and protein owing to their higher oxidative capacity. We have shown, in normoxic conditions, a higher HIF-1alpha protein expression in predominantly oxidative muscles than in predominantly glycolytic muscles. However, the HIF-1alpha mRNA expression pattern was not in agreement with the HIF-1alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented a significantly higher VEGF protein content than vastus lateralis and triceps muscle. In conclusion, we have shown that there are muscle-specific differences in HIF-1alpha and VEGF expression within human skeletal muscle at rest in normoxic conditions. Recent results, when combined with the findings described here, support a key role for HIF-1alpha for maintaining muscle homeostasis in non-hypoxic conditions.
Collapse
Affiliation(s)
- Rémi Mounier
- Centre of Inflammation and Metabolism, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
35
|
Schmutz S, Däpp C, Wittwer M, Durieux AC, Mueller M, Weinstein F, Vogt M, Hoppeler H, Flück M. A hypoxia complement differentiates the muscle response to endurance exercise. Exp Physiol 2010; 95:723-35. [DOI: 10.1113/expphysiol.2009.051029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Cerretelli P, Gelfi C. Energy metabolism in hypoxia: reinterpreting some features of muscle physiology on molecular grounds. Eur J Appl Physiol 2010; 111:421-32. [PMID: 20352258 DOI: 10.1007/s00421-010-1399-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2010] [Indexed: 02/03/2023]
Abstract
An holistic approach for interpreting classical data on the adaptation of the animal and, particularly, of the human body to hypoxic stress was promoted by the discovery of HIF-1, the "master regulator" of cell hypoxic signaling. Mitochondrial production of ROS stabilizes the O(2)-regulated HIF-1α subunit of the HIF-1 dimer promoting transaction functions in a large number of potential target genes, activating transcription of sequences into RNA and, eventually, protein production. The aim of the present preliminary study is to assess whether adaptive changes in oxygen sensing and metabolic signaling, particularly in the control of energy turnover known to occur in cultured cells exposed to hypoxia, are detectable also in the muscles of animals and man. For the present analysis, data obtained from the proteome of the rat gastrocnemius and of the vastus lateralis muscle of humans together with functional measurements were compared with homologous data from hypoxic cultured cells. In particular, the following variables were assessed: (1) the role of stress response proteins in the maintenance of ROS homeostasis, (2) the activity of the PDK1 gene on the shunting of pyruvate away from the TCA cycle in rodents and in humans, (3) the COX-4/COX-2 ratio in hypoxic rodents, (4) the overall efficiency of oxidative phosphorylation in humans during exercise in hypoxia, (5) some features of muscle mitochondrial autophagy in humans undergoing subchronic and chronic altitude exposure. Despite the limited number of observations and the differences in the experimental approach, some initial interesting results were obtained encouraging to pursue this innovative effort.
Collapse
Affiliation(s)
- Paolo Cerretelli
- Istituto di Bioimmagini e Fisiologia Molecolare del Consiglio Nazionale delle Ricerche (CNR), Palazzo LITA, Via Fratelli Cervi, 93, 20190, Segrate, Milan, Italy.
| | | |
Collapse
|
37
|
Flueck M. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude. Exp Physiol 2010; 95:451-62. [DOI: 10.1113/expphysiol.2009.047605] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Gamboa JL, Andrade FH. Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia. Am J Physiol Regul Integr Comp Physiol 2009; 298:R575-83. [PMID: 20007520 DOI: 10.1152/ajpregu.00320.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic hypoxia reduces aerobic capacity (mitochondrial content) in limb skeletal muscles, and one of the causes seems to be decreased physical activity. Diaphragm and other respiratory muscles, however, may have a different pattern of adaptation as hypoxia increases the work of breathing. Thus, we hypothesized that chronic hypoxia would not reduce mitochondrial content in mouse diaphragm. Adult male C57BL/6J mice were kept in normoxia (Fi(O(2)) = 21%, control) or normobaric hypoxia (Fi(O(2)) = 10%, hypoxia) for 1, 2, and 4 wk. Mice were then killed, and the diaphragm and gastrocnemius muscles collected for analysis. In the diaphragm, cytochrome c oxidase histochemistry showed less intense staining in the hypoxia group. The total content of subunits from the electron transport chain, pyruvate dehydrogenase kinase 1 (PDK1), and voltage-dependent anion channel 1 (VDAC1) was evaluated by Western blot. These proteins decreased by 25-30% after 4 wk of hypoxia (P < 0.05 vs. control for all comparisons), matching a comparable decrease in diaphragmatic mitochondrial volume density (control 33.6 +/- 5.5% vs. hypoxia 26.8 +/- 6.7%, P = 0.013). Mitochondrial volume density or protein content did not change in gastrocnemius after hypoxia. Hypoxia decreased the content of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgamma cofactor 1-alpha (PGC-1alpha) in diaphragm but not in gastrocnemius. PGC-1alpha mRNA levels in diaphragm were also reduced with hypoxia. BCL2/adenovirus E1B interacting protein 3 (BNIP-3) mRNA levels were upregulated after 1 and 2 wk of hypoxia in diaphragm and gastrocnemius, respectively; BNIP-3 protein content increased only in the diaphragm after 4 wk of hypoxia. Contrary to our hypothesis, these results show that chronic hypoxia decreases mitochondrial content in mouse diaphragm, despite the increase in workload. A combination of reduced mitochondrial biogenesis and increased mitophagy seems to be responsible for the decrease in mitochondrial content in the mouse diaphragm after hypoxia.
Collapse
Affiliation(s)
- Jorge L Gamboa
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
39
|
Abstract
The ascent of humans to the summits of the highest peaks on Earth initiated a spurt of explorations into the physiological consequences of physical activity at altitude. The past three decades have demonstrated that the resetting of respiratory and cardiovascular control with chronic exposure to altitudes above 4000 m is accompanied by important structural-functional adjustments of skeletal muscle. The fully altitude-adapted phenotype preserves energy charge at reduced aerobic capacity through the promotion of anaerobic substrate flux and tighter metabolic control, often at the expense of muscle mass. In seeming contrast, intense physical activity at moderate hypoxia (2500 to 4000 m) modifies this response in both low and high altitude natives through metabolic compensation by elevating local aerobic capacity and possibly preventing muscle fiber atrophy. The combined use of classical morphometry and contemporary proteomic technology provides a highly resolved picture of the temporal control of hypoxia-induced muscular adaptations. The muscle proteome signature identifies mitochondrial autophagy and protein degradation as prime adaptive mechanisms to passive altitude exposure and ascent to extreme altitude. Protein measures also explain the lactate paradox by a sparing of glycolytic enzymes from general muscle wasting. Enhanced mitochondrial and angiogenic protein expression in human muscle with exercise up to 4000 m is related to the reduction in intramuscular oxygen content below 1% (8 torr), when the master regulator of hypoxia-dependent gene expression, HIF-1alpha, is stabilized. Accordingly, it is proposed here that the catabolic consequences of chronic hypoxia exposure reflect the insufficient activation of hypoxia-sensitive signaling and the suppression of energy-consuming protein translation.
Collapse
Affiliation(s)
- Martin Flueck
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|