1
|
Martin DS, Grocott MPW. Heterogeneity of treatment effect: the case for individualising oxygen therapy in critically ill patients. Crit Care 2025; 29:50. [PMID: 39875948 PMCID: PMC11776231 DOI: 10.1186/s13054-025-05254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/04/2025] [Indexed: 01/30/2025] Open
Abstract
Oxygen therapy is ubiquitous in critical illness but oxygenation targets to guide therapy remain controversial despite several large randomised controlled trials (RCTs). Findings from RCTs evaluating different approaches to oxygen therapy in critical illness present a confused picture for several reasons. Differences in both oxygen target measures (e.g. oxygen saturation or partial pressure) and the numerical thresholds used to define lower and higher targets complicate comparisons between trials. The duration of and adherence to oxygenation targets is also variable with consequent substantial variation in both the dose and the dose separation. Finally, heterogeneity of treatment effects (HTE) may also be a significant factor. HTE is defined as non-random variation in the benefit or harm of a treatment, in which the variation is associated with or attributable to patient characteristics. This narrative review aims to make the case that such heterogeneity is likely in relation to oxygen therapy for critically ill patients and that this has significant implications for the design and interpretation of trials of oxygen therapy in this context. HTE for oxygen therapy amongst critically ill patients may explain the contrasting results from different clinical trials of oxygen therapy. Individualised oxygen therapy may overcome this challenge, and future studies should incorporate ways to evaluate this approach.
Collapse
Affiliation(s)
- Daniel S Martin
- Peninsula Medical School, University of Plymouth, John Bull Building, Plymouth, UK
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK.
| |
Collapse
|
2
|
Hasan MM, Sekiya R, Zhang X, Yassouf MY, Li TS. Comparison of hypoxia- and hyperoxia-induced alteration of epigene expression pattern in lungs of Pleurodeles waltl and Mus musculus. PLoS One 2024; 19:e0299661. [PMID: 38416753 PMCID: PMC10901355 DOI: 10.1371/journal.pone.0299661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Epigenetics is an emerging field of research because of its involvement in susceptibility to diseases and aging. Hypoxia and hyperoxia are known to be involved widely in various pathophysiologies. Here, we compared the differential epigene expression pattern between Pleurodeles waltl and Mus musculus (commonly known as Iberian ribbed newt and mouse, respectively) exposed to hypoxia and hyperoxia. Adult healthy newts and mice were exposed to normobaric hypoxia (8% O2) and hyperoxia (80% O2) for 2 hours. We collected the lungs and analyzed the expression of hypoxia-inducible factor 1 alpha (Hif1α) and several key epigenes from DNA methyltransferase (DNMT) family, histone deacetylase (HDAC) family, and methyl-CpG binding domain (MBD) family. The exposure to hypoxia significantly increased the mRNA levels of DNA methyltransferase 3 alpha (Dnmt3α), methyl-CpG binding domain protein 2 (Mbd2), Mbd3, and histone deacetylase 2 (Hdac2) in lungs of newts, but decreased the mRNA levels of DNA methyltransferase 1 (Dnmt1) and Dnmt3α in lungs of mice. The exposure to hyperoxia did not significantly change the expression of any gene in either newts or mice. The differential epigene expression pattern in response to hypoxia between newts and mice may provide novel insights into the prevention and treatment of disorders developed due to hypoxia exposure.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Mhd Yousuf Yassouf
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| |
Collapse
|
3
|
Qu M, Long Y, Wang Y, Yin N, Zhang X, Zhang J. Hypoxia Increases ATX Expression by Histone Crotonylation in a HIF-2α-Dependent Manner. Int J Mol Sci 2023; 24:ijms24087031. [PMID: 37108194 PMCID: PMC10138485 DOI: 10.3390/ijms24087031] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Autotaxin (ATX), the key enzyme that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC), is involved in tumorigenesis through the ATX-LPA axis and is regarded as a valuable target in tumor therapy. Hypoxia is a major feature of solid tumors and contributes to tumor development with striking alterations in the gene expression profile. Here, we show that hypoxia induces ATX expression in a hypoxia-inducible factor (HIF) 2α-dependent fashion in human colon cancer SW480 cells. HIF-2α is directly bound to specific hypoxia response elements (HREs) in the ATX promoter. Under hypoxic conditions, knockout or inhibition of ATX suppressed the migration of SW480 cells, which could be rescued by the addition of LPA, suggesting that the induction of ATX during hypoxia promotes cancer cell migration through the ATX-LPA axis. Further studies showed that ATX expression was induced by HIF-2α through recruiting p300/CBP, which led to crotonylation but not acetylation of histone H3 in the ATX promoter region during hypoxia. Moreover, elevation of cellular histone crotonylation levels could induce ATX expression under normoxic conditions. In conclusion, our findings reveal that ATX is induced in SW480 cells during hypoxia by histone crotonylation in a HIF-2α-dependent manner, while as a novel mechanism of ATX expression regulation, the upregulation of ATX expression by histone crotonylation is not confined to hypoxia.
Collapse
Affiliation(s)
- Mengxia Qu
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yang Long
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuqin Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas-Health Science Center at Houston, Houston, TX 77030, USA
| | - Nan Yin
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaotian Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Junjie Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Hypobaric hypoxia exposure alters transcriptome in mouse testis and impairs spermatogenesis in offspring. Gene X 2022; 823:146390. [PMID: 35248658 DOI: 10.1016/j.gene.2022.146390] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Male fertility relies on continual and robust spermatogenesis. Environmental hypoxia adversely affects reproductive health in humans and animal studies provide compelling evidences that hypoxia impairs spermatogenesis in directly exposed individuals. However, a detail examination of hypoxia induced changes in testicular gene expression is still lacking and spermatogenesis in offspring of hypoxia exposed animals of awaits investigation. In this study, a hypobaric hypoxic chamber was used to simulate hypoxic conditions in mice and effects of hypoxia on spermatogenesis, fertility and testicular gene expression were evaluated. The results showed that hypoxia exposure reduced the number of undifferentiated spermatogonia but did not change the regenerative capacity of spermatogonial stem cells (SSCs) after transplantation. Hypoxia significantly increased the percent of abnormal sperm and these defects were recovered 2 months after returning to the normoxia. Transcriptome analysis of testicular tissues from control and hypoxia treated animals revealed that 766 genes were up-regulated and 965 genes were down-regulated. Surprisingly, expressions of genes that regulate epigenetic modifications were altered, indicating hypoxia-induced damage to spermatogenesis may be intergenerational. Indeed, animals that were sired by hypoxia exposed males exhibited impaired spermatogenesis. Together, these findings suggest that hypoxia exposure alters testicular gene expression and causes long-lasting damage to spermatogenesis.
Collapse
|
5
|
Transcriptomic profiling of Gh/Igf system reveals a prompted tissue-specific differentiation and novel hypoxia responsive genes in gilthead sea bream. Sci Rep 2021; 11:16466. [PMID: 34385497 PMCID: PMC8360970 DOI: 10.1038/s41598-021-95408-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
A customized PCR-array was used for the simultaneous gene expression of the Gh/Igf system and related markers of muscle growth, and lipid and energy metabolism during early life stages of gilthead sea bream (60–127 days posthatching). Also, transcriptional reprogramming by mild hypoxia was assessed in fingerling fish with different history trajectories on O2 availability during the same time window. In normoxic fish, the expression of almost all the genes in the array varied over time with a prompted liver and muscle tissue-specific differentiation, which also revealed temporal changes in the relative expression of markers of the full gilthead sea bream repertoire of Gh receptors, Igfs and Igf-binding proteins. Results supported a different contribution through development of ghr and igf subtypes on the type of action of GH via systemic or direct effects at the local tissue level. This was extensive to Igfbp1/2/4 and Igfbp3/5/6 clades that clearly evolved through development as hepatic and muscle Igfbp subtypes, respectively. This trade-off is however very plastic to cope changes in the environment, and ghr1 and igfbp1/3/4/5 emerged as hypoxic imprinting genes during critical early developmental windows leading to recognize individuals with different history trajectories of oxygen availability and metabolic capabilities later in life.
Collapse
|
6
|
Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8280. [PMID: 34444030 PMCID: PMC8392481 DOI: 10.3390/ijerph18168280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022]
Abstract
Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.
Collapse
Affiliation(s)
- Manju Padmasekar
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Seeger
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| |
Collapse
|
7
|
Targeting the Mild-Hypoxia Driving Force for Metabolic and Muscle Transcriptional Reprogramming of Gilthead Sea Bream ( Sparus aurata) Juveniles. BIOLOGY 2021; 10:biology10050416. [PMID: 34066667 PMCID: PMC8151949 DOI: 10.3390/biology10050416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Simple Summary Reduced oxygen availability generates a number of adaptive features across all the animal kingdom, and the goal of this study was targeting the mild-hypoxia driving force for metabolic and muscle transcriptional reprogramming of gilthead sea bream juveniles. Attention was focused on blood metabolic and muscle transcriptomic landmarks before and after exhaustive exercise. Our results after mild-hypoxia conditioning highlighted an increased contribution of lipid metabolism to whole energy supply to preserve the aerobic energy production, a better swimming performance regardless of changes in feed intake, as well as reduced protein turnover and improved anaerobic fitness with the restoration of normoxia. Abstract On-growing juveniles of gilthead sea bream were acclimated for 45 days to mild-hypoxia (M-HYP, 40–60% O2 saturation), whereas normoxic fish (85–90% O2 saturation) constituted two different groups, depending on if they were fed to visual satiety (control fish) or pair-fed to M-HYP fish. Following the hypoxia conditioning period, all fish were maintained in normoxia and continued to be fed until visual satiation for 3 weeks. The time course of hypoxia-induced changes was assessed by changes in blood metabolic landmarks and muscle transcriptomics before and after exhaustive exercise in a swim tunnel respirometer. In M-HYP fish, our results highlighted a higher contribution of aerobic metabolism to whole energy supply, shifting towards a higher anaerobic fitness following normoxia restoration. Despite these changes in substrate preference, M-HYP fish shared a persistent improvement in swimming performance with a higher critical speed at exercise exhaustion. The machinery of muscle contraction and protein synthesis and breakdown was also largely altered by mild-hypoxia conditioning, contributing this metabolic re-adjustment to the positive regulation of locomotion and to the catch-up growth response during the normoxia recovery period. Altogether, these results reinforce the presence of large phenotypic plasticity in gilthead sea bream, and highlights mild-hypoxia as a promising prophylactic measure to prepare these fish for predictable stressful events.
Collapse
|
8
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
9
|
Sawada Y, Gallo RL. Role of Epigenetics in the Regulation of Immune Functions of the Skin. J Invest Dermatol 2020; 141:1157-1166. [PMID: 33256976 DOI: 10.1016/j.jid.2020.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
This review is intended to illuminate the emerging understanding of epigenetic modifications that regulate both adaptive and innate immunity in the skin. Host defense of the epidermis and dermis involves the interplay of many cell types to enable homeostasis; tolerance to the external environment; and appropriate response to transient microbial, chemical, and physical insults. To understand this process, the study of cutaneous immunology has focused on immune responses that reflect both adaptive learned and genetically programmed innate defense systems. However, recent advances have begun to reveal that epigenetic modifications of chromatin structure also have a major influence on the skin immune system. This deeper understanding of how enzymatic changes in chromatin structure can modify the skin immune system and may explain how environmental exposures during life, and the microbiome, lead to both short-term and long-term changes in cutaneous allergic and other inflammatory processes. Understanding the mechanisms responsible for alterations in gene and chromatin structure within skin immunocytes could provide key insights into the pathogenesis of inflammatory skin diseases that have thus far evaded understanding by dermatologists.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of California, San Diego, San Diego, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, San Diego, California, USA.
| |
Collapse
|
10
|
Hall JE, Lawrence ES, Simonson TS, Fox K. Seq-ing Higher Ground: Functional Investigation of Adaptive Variation Associated With High-Altitude Adaptation. Front Genet 2020; 11:471. [PMID: 32528523 PMCID: PMC7247851 DOI: 10.3389/fgene.2020.00471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Human populations at high altitude exhibit both unique physiological responses and strong genetic signatures of selection thought to compensate for the decreased availability of oxygen in each breath of air. With the increased availability of genomic information from Tibetans, Andeans, and Ethiopians, much progress has been made to elucidate genetic adaptations to chronic hypoxia that have occurred throughout hundreds of generations in these populations. In this perspectives piece, we discuss specific hypoxia-pathway variants that have been identified in high-altitude populations and methods for functional investigation, which may be used to determine the underlying causal factors that afford adaptation to high altitude.
Collapse
Affiliation(s)
- James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Keolu Fox
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Bhanushali D, Tyagi R, Limaye Rishi Nityapragya N, Anand A. Effect of mindfulness meditation protocol in subjects with various psychometric characteristics at high altitude. Brain Behav 2020; 10:e01604. [PMID: 32207242 PMCID: PMC7218243 DOI: 10.1002/brb3.1604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/04/2020] [Accepted: 02/29/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Incidence of high altitude-related sickness is increasing due to more number of people visiting the areas of high altitude which may result in life-threatening conditions including acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), high altitude cerebral edema (HACE), and High-altitude pulmonary hypertension (HAPH). We hypothesized that an advanced yoga regimen may be beneficial in dealing with the physiology of acclimatization. METHODS Anthropometric, Biochemical, and Psychological assessments were carried out in 48 participants before and after the advance meditation program (AMP) in the experimental group. Individuals with an age range of 20-65 years with no comorbidities were included in the study. Participants were exposed to AMP for 4 days. All assessments were carried out at the baseline and after the course. Prakriti was constituted for all participants using a standard questionnaire. The study was carried out after obtaining the written informed consent as per the guidelines outlined by the Institute Ethics Committee. RESULTS Po2 and glucose levels were found significantly reduced along with changes in the Happiness index, anxiety, and mental well-being. However, participants with lowered Po2, after 4 days of mindfulness intervention, showed a positive outcome measured by the established scales of anxiety, happiness, and information processing. Psychometric or Prakriti wise analysis revealed that subject with "Pitta" constitution exposed to high altitude and advance meditation showed changes in more parameters than "Vatta" or "Kapha" Constitution. CONCLUSIONS Advance meditation in the high altitude zone confers biochemical and neuro-cognitive benefits. Molecular studies may require to understand the role of hypoxic condition in improving the disease state.
Collapse
Affiliation(s)
- Disha Bhanushali
- Ved Vignan Maha Vidya Peeth, Sri Sri Institute of Advanced Research, Bangaluru, India
| | - Rahul Tyagi
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Childebayeva A, Harman T, Weinstein J, Goodrich JM, Dolinoy DC, Day TA, Bigham AW, Brutsaert TD. DNA Methylation Changes Are Associated With an Incremental Ascent to High Altitude. Front Genet 2019; 10:1062. [PMID: 31737045 PMCID: PMC6828981 DOI: 10.3389/fgene.2019.01062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and nongenetic factors are involved in the individual ability to physiologically acclimatize to high-altitude hypoxia through processes that include increased heart rate and ventilation. High-altitude acclimatization is thought to have a genetic component, yet it is unclear if other factors, such as epigenetic gene regulation, are involved in acclimatization to high-altitude hypoxia in nonacclimatized individuals. We collected saliva samples from a group of healthy adults of European ancestry (n = 21) in Kathmandu (1,400 m; baseline) and three altitudes during a trek to the Everest Base Camp: Namche (3,440 m; day 3), Pheriche (4,240 m; day 7), and Gorak Shep (5,160 m; day 10). We used quantitative bisulfite pyrosequencing to determine changes in DNA methylation, a well-studied epigenetic marker, in LINE-1, EPAS1, EPO, PPARa, and RXRa. We found significantly lower DNA methylation between baseline (1,400 m) and high altitudes in LINE-1, EPO (at 4,240 m only), and RXRa. We found increased methylation in EPAS1 (at 4,240 m only) and PPARa. We also found positive associations between EPO methylation and systolic blood pressure and RXRa methylation and hemoglobin. Our results show that incremental exposure to hypoxia can affect the epigenome. Changes to the epigenome, in turn, could underlie the process of altitude acclimatization.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Taylor Harman
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Julien Weinstein
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.,Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, MI, United States.,Department of Anthropology, University of California, Los Angeles, CA, United States
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
13
|
Heinrich EC, Wu L, Lawrence ES, Cole AM, Anza-Ramirez C, Villafuerte FC, Simonson TS. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Ann Hum Genet 2019; 83:171-176. [PMID: 30719713 PMCID: PMC7920394 DOI: 10.1111/ahg.12299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
EGLN1 encodes the hypoxia-inducible factor (HIF) pathway prolyl hydroxylase 2 (PHD2) that serves as an oxygen-sensitive regulator of HIF activity. The EGLN1 locus exhibits a signature of positive selection in Tibetan and Andean populations and is associated with hemoglobin concentration in Tibetans. Recent reports provide evidence for functional roles of protein-coding variants within the first exon of EGLN1 (rs186996510, rs12097901) that are linked to an adaptive signal in Tibetans, yet whether these same variants are present and contribute to adaptation in Andean highlanders is unknown. We determined the frequencies of these adaptive Tibetan alleles in Quechua Andeans resident at high altitude (4,350 m) in addition to individuals of Nepali ancestry resident at sea level. The rs186996510 C (minor) allele previously found at high frequency in Tibetans is absent in Andean (G: 100%) and rare among Nepali (C: 11.8%, G: 88.2%) cohorts. The minor G allele of rs12097901 is found at similarly low frequencies in Andeans (G: 12.7%, C: 87.3%) and Nepalis (G: 23.5%, C: 76.5%) compared to Tibetans. These results suggest that adaptation involving EGLN1 in Andeans involves different mechanisms than those described in Tibetans. The precise Andean adaptive variants remain to be determined.
Collapse
Affiliation(s)
- Erica C. Heinrich
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Lu Wu
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Elijah S. Lawrence
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Amy M. Cole
- Department of Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cecilia Anza-Ramirez
- Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | | | - Tatum S. Simonson
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Item C, Schanzer A, Metz T, Greber-Platzer S, Lischka J. Demethylation of the hypoxia induction factor 1 binding site of GPX3 at excess blood ammonia in propionic acidemia. Clin Biochem 2019; 66:100-102. [DOI: 10.1016/j.clinbiochem.2019.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022]
|
15
|
Human Genetic Adaptation to High Altitude: Evidence from the Andes. Genes (Basel) 2019; 10:genes10020150. [PMID: 30781443 PMCID: PMC6410003 DOI: 10.3390/genes10020150] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Whether Andean populations are genetically adapted to high altitudes has long been of interest. Initial studies focused on physiological changes in the O₂ transport system that occur with acclimatization in newcomers and their comparison with those of long-resident Andeans. These as well as more recent studies indicate that Andeans have somewhat larger lung volumes, narrower alveolar to arterial O₂ gradients, slightly less hypoxic pulmonary vasoconstrictor response, greater uterine artery blood flow during pregnancy, and increased cardiac O2 utilization, which overall suggests greater efficiency of O₂ transfer and utilization. More recent single nucleotide polymorphism and whole-genome sequencing studies indicate that multiple gene regions have undergone recent positive selection in Andeans. These include genes involved in the regulation of vascular control, metabolic hemostasis, and erythropoiesis. However, fundamental questions remain regarding the functional links between these adaptive genomic signals and the unique physiological attributes of highland Andeans. Well-designed physiological and genome association studies are needed to address such questions. It will be especially important to incorporate the role of epigenetic processes (i.e.; non-sequence-based features of the genome) that are vital for transcriptional responses to hypoxia and are potentially heritable across generations. In short, further exploration of the interaction among genetic, epigenetic, and environmental factors in shaping patterns of adaptation to high altitude promises to improve the understanding of the mechanisms underlying human adaptive potential and clarify its implications for human health.
Collapse
|
16
|
Ivy CM, Scott GR. Evolved changes in breathing and CO 2 sensitivity in deer mice native to high altitudes. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1027-R1037. [PMID: 30183337 DOI: 10.1152/ajpregu.00220.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We examined the control of breathing by O2 and CO2 in deer mice native to high altitude to help uncover the physiological specializations used to cope with hypoxia in high-altitude environments. Highland deer mice ( Peromyscus maniculatus) and lowland white-footed mice ( P. leucopus) were bred in captivity at sea level. The first and second generation progeny of each population was raised to adulthood and then acclimated to normoxia or hypobaric hypoxia (12 kPa O2, simulating hypoxia at ~4,300 m) for 6-8 wk. Ventilatory responses to poikilocapnic hypoxia (stepwise reductions in inspired O2) and hypercapnia (stepwise increases in inspired CO2) were then compared between groups. Both generations of lowlanders appeared to exhibit ventilatory acclimatization to hypoxia (VAH), in which hypoxia acclimation enhanced the hypoxic ventilatory response and/or made the breathing pattern more effective (higher tidal volumes and lower breathing frequencies at a given total ventilation). In contrast, hypoxia acclimation had no effect on breathing in either generation of highlanders, and breathing was generally similar to hypoxia-acclimated lowlanders. Therefore, attenuation of VAH may be an evolved feature of highlanders that persists for multiple generations in captivity. Hypoxia acclimation increased CO2 sensitivity of breathing, but in this case, the effect of hypoxia acclimation was similar in highlanders and lowlanders. Our results suggest that highland deer mice have evolved high rates of alveolar ventilation that are unaltered by exposure to chronic hypoxia, but they have preserved ventilatory sensitivity to CO2.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University , Hamilton, ON , Canada
| | - Graham R Scott
- Department of Biology, McMaster University , Hamilton, ON , Canada
| |
Collapse
|
17
|
Julian CG. Epigenomics and human adaptation to high altitude. J Appl Physiol (1985) 2017; 123:1362-1370. [PMID: 28819001 PMCID: PMC6157641 DOI: 10.1152/japplphysiol.00351.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, major technological and analytical advancements have propelled efforts toward identifying the molecular mechanisms that govern human adaptation to high altitude. Despite remarkable progress with respect to the identification of adaptive genomic signals that are strongly associated with the "hypoxia-tolerant" physiological characteristics of high-altitude populations, many questions regarding the fundamental biological processes underlying human adaptation remain unanswered. Vital to address these enduring questions will be determining the role of epigenetic processes, or non-sequence-based features of the genome, that are not only critical for the regulation of transcriptional responses to hypoxia but heritable across generations. This review proposes that epigenomic processes are involved in shaping patterns of adaptation to high altitude by influencing adaptive potential and phenotypic variability under conditions of limited oxygen supply. Improved understanding of the interaction between genetic, epigenetic, and environmental factors holds great promise to provide deeper insight into the mechanisms underlying human adaptive potential, and clarify its implications for biomedical research.
Collapse
Affiliation(s)
- Colleen G Julian
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
18
|
Nanduri J, Semenza GL, Prabhakar NR. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1096-L1100. [PMID: 28839104 DOI: 10.1152/ajplung.00325.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
DNA methylation of cytosine residues is a well-studied epigenetic change, which regulates gene transcription by altering accessibility for transcription factors. Hypoxia is a pervasive stimulus that affects many physiological processes. The circulatory and respiratory systems adapt to chronic sustained hypoxia, such as that encountered during a high-altitude sojourn. Many people living at sea level experience chronic intermittent hypoxia (IH) due to sleep apnea, which leads to cardiovascular and respiratory maladaptation. This article presents a brief update on emerging evidence suggesting that changes in DNA methylation contribute to pathologies caused by chronic IH and potentially mediate adaptations to chronic sustained hypoxia by affecting the hypoxia-inducible factor (HIF) signaling pathway.
Collapse
Affiliation(s)
- Jayasri Nanduri
- Institute For Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Science Division, The University of Chicago, Chicago, Illinois
| | - Gregg L Semenza
- Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and.,McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nanduri R Prabhakar
- Institute For Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Science Division, The University of Chicago, Chicago, Illinois;
| |
Collapse
|
19
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
20
|
Item CB, Farhadi S, Schanzer A, Greber-Platzer S. DNA methylated alleles of the phenylalanine hydroxylase promoter remodeled at elevated phenylalanine levels in newborns with hyperphenylalaninemia. Clin Biochem 2017; 50:729-732. [PMID: 28389235 DOI: 10.1016/j.clinbiochem.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Although high phenylalanine (phe) exposure has been shown to influence the DNA methylation status of leukocytes in hyperphenylalaninemia (HPA), the potential of DNA methylation changes as a biomarker of pretreatment high phe exposure in diet free newborns with HPA has not been explored. We therefore investigated the DNA methylation pattern of the phenylalanine hydroxylase (PAH) gene promoter at different phe levels, and the possibility of DNA methylation pattern changes being a biomarker of high phe exposure in diet free newborns with HPA. DESIGN AND METHODS With a combination of methylated PCR, high resolution melting, and sequencing, the cytosine phosphodiester bond guanine (CpG) dinucleotides in the 5' untranslated region of the PAH gene were analysed 2-15days after birth using leukocyte DNA from diet free 16 newborns with HPA and 16 healthy controls. RESULTS In 2-3days blood cards, GTGTG and GTGC/TG alleles were both detected at similar low mean phe levels in healthy controls (59.39±14.62 and 55.33±13.43μmol/L) and non-phenylketonuria (PKU) HPA (265.00 and 244.25±73.73μmol/L). In HPA with PKU, the GTGTG and GTGC/TG alleles were both detected at dissimilar elevated mean phe levels (380.80±64.62 and 589.00±191.96μmol/L). In ≥7day blood cards, GTGTG and GTGC/TG alleles were both detected at similar excess mean phe levels in HPA with PKU (2297±374.38 and 1562.66±718.23μmol/L). CONCLUSION The demethylated GTGTG and partial methylated GTGC/TG alleles are not pathogenic alleles. Our results suggest a specific remodeling of the DNA methylated alleles of the PAH promoter at elevated, but not excess phe levels in diet free newborns with PKU.
Collapse
Affiliation(s)
- Chike Bellarmine Item
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria.
| | - Somayeh Farhadi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Andrea Schanzer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Susanne Greber-Platzer
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| |
Collapse
|
21
|
Robinson JC, Abbott C, Meadows CA, Roach RC, Honigman B, Bull TM. Long-Term Health Outcomes in High-Altitude Pulmonary Hypertension. High Alt Med Biol 2017; 18:61-66. [PMID: 28061144 DOI: 10.1089/ham.2016.0098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Robinson, Jeffrey C., Cheryl Abbott, Christina A. Meadows, Robert C. Roach, Benjamin Honigman, and Todd M. Bull. Long-term health outcomes in high-altitude pulmonary hypertension. High Alt Med Biol. 18:61-66, 2017. BACKGROUND High-altitude pulmonary hypertension (HAPH) is one of several known comorbidities that effect populations living at high altitude, but there have been no studies looking at long-term health consequences of HAPH. We aimed to determine whether HAPH during adolescence predisposes to significant pulmonary hypertension (PH) later in life, as well as identify how altitude exposure and HAPH correlate with functional class and medical comorbidities. METHODS We utilized a previously published cohort of 28 adolescents from Leadville, Colorado, that underwent right heart catheterization at 10,150 ft (3094 m) in 1962, with many demonstrating PH as defined by resting mean pulmonary arterial pressure ≥25 mmHg. We located participants of the original study and had living subjects complete demographic and health surveys to assess for the presence of PH and other medical comorbidities, along with current functional status. RESULTS Seventy-five percent of the individuals who participated in the original study were located. Those with HAPH in the past were more prone to have exertional limitation corresponding to WHO functional class >1. Fifty-five years following the original study, we found no significant differences in prevalence of medical comorbidities, including PH, among those with and without HAPH in their youth. CONCLUSIONS Surveyed individuals did not report significant PH, but those with HAPH in their youth were more likely to report functional limitation. With a significant worldwide population living at moderate and high altitudes, further study of long-term health consequences is warranted.
Collapse
Affiliation(s)
- Jeffrey C Robinson
- 1 Colorado Pulmonary Vascular Disease Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado
| | - Cheryl Abbott
- 1 Colorado Pulmonary Vascular Disease Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado
| | - Christina A Meadows
- 1 Colorado Pulmonary Vascular Disease Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado
| | - Robert C Roach
- 2 Altitude Research Center and Department of Emergency Medicine, University of Colorado School of Medicine , Aurora, Colorado
| | - Benjamin Honigman
- 2 Altitude Research Center and Department of Emergency Medicine, University of Colorado School of Medicine , Aurora, Colorado
| | - Todd M Bull
- 1 Colorado Pulmonary Vascular Disease Center, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|