1
|
Oliveira BC, Bari S, Melenhorst JJ. Leveraging Vector-Based Gene Disruptions to Enhance CAR T-Cell Effectiveness. Cancers (Basel) 2025; 17:383. [PMID: 39941752 PMCID: PMC11815729 DOI: 10.3390/cancers17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy represents a breakthrough in the treatment of relapsed and refractory B-cell malignancies, such as chronic lymphocytic leukemia (CLL), inducing long-term, sometimes curative, responses. However, fewer than 30% of CLL patients achieve such outcomes. It has been shown that a smaller subset of T cells capable of expansion and persistence is crucial for treatment effectiveness. Notably, a pre-existing mutation in the epigenetic regulator TET2, combined with CAR vector-induced disruption of the other intact allele, significantly enhanced the potency of the CAR-engineered T-cell clone in one CLL patient. This finding aligns with independent research, suggesting that the CAR gene's genomic insertion site influences tumor-targeting capability. Thus, it is plausible that vector-induced gene disruptions affect CAR T-cell function. This review synthesizes existing knowledge on vector integration into the host genome and its impact on clinical outcomes in CAR T-cell therapy patients. Our aim is to inform the development of improved therapies and enhance their overall efficacy.
Collapse
Affiliation(s)
| | | | - J. Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44016, USA; (B.C.O.); (S.B.)
| |
Collapse
|
2
|
Lyne AM, Kent DG, Laurenti E, Cornils K, Glauche I, Perié L. A track of the clones: new developments in cellular barcoding. Exp Hematol 2018; 68:15-20. [DOI: 10.1016/j.exphem.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022]
|
3
|
Aranyossy T, Thielecke L, Glauche I, Fehse B, Cornils K. Genetic Barcodes Facilitate Competitive Clonal Analyses In Vivo. Hum Gene Ther 2018; 28:926-937. [PMID: 28847169 DOI: 10.1089/hum.2017.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Monitoring the fate of individual cell clones is an important task to better understand normal tissue regeneration, for example after hematopoietic stem cell (HSC) transplantation, but also cancerogenesis. Based on their integration into the host cell's genome, retroviral vectors are commonly used to stably mark target cells and their progeny. The development of genetic barcoding techniques has opened new possibilities to determine clonal composition and dynamics in great detail. A modular genetic barcode was recently introduced consisting of 32 variable positions (BC32) with a customized backbone, and its advantages were demonstrated with regard to barcode calling and quantification. The study presented applied the BC32 system in a complex in vivo situation, namely to analyze clonal reconstitution dynamics for HSC grafts consisting of up to three cell populations with distinguishable barcodes using different alpha- and lentiviral vectors. In a competitive transplantation setup, it was possible to follow the differently marked cell populations within individual animals. This enabled the clonal contribution of the different BC32 constructs during reconstitution and long-term hematopoiesis in the peripheral blood and the spatial distribution in bone marrow and spleen to be identified. Thus, it was demonstrated that the system allows the output of individually marked cells to be tracked in vivo and their influence on clonal dynamics to be analyzed. Successful application of the BC32 system in a complex, competitive in vivo situation provided proof-of-principle that its high complexity and the large Hamming distance between individual barcodes, combined with the easy customization, facilitate efficient and precise quantification, even without prior knowledge of individual barcode sequences. Importantly, simultaneous high-sensitivity analyses of different cell populations in single animals may significantly reduce numbers of animals required to investigate specific scientific questions in accordance with RRR principles. It is concluded that this BC32 system will be excellently suited for various research applications in regenerative medicine and cancer biology.
Collapse
Affiliation(s)
- Tim Aranyossy
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Lars Thielecke
- 2 Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ingmar Glauche
- 2 Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Boris Fehse
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Kerstin Cornils
- 1 Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,3 Department of Pediatric Hematology and Oncology, Division Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,4 Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Biasco L. Integration Site Analysis in Gene Therapy Patients: Expectations and Reality. Hum Gene Ther 2018; 28:1122-1129. [PMID: 29160103 DOI: 10.1089/hum.2017.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integration site (IS) analysis is one of the major tools for addressing the safety of gene therapy clinical protocols based on the use of integrating vectors. Over the past years, the study of viral insertions in gene therapy-treated patients has allowed identifying insertional mutagenesis events, evaluating the safety of new viral vector platforms and tracking the in vivo clonal dynamics of genetically engineered cell products. While gene therapy is progressively expanding its impact on a broader area of clinical applications, increasingly more accessible, faster, and more reliable safety readouts are required from IS analysis. Several actors, from researchers to clinicians, from regulatory agencies to private companies, have to interface to different degrees with the results of IS analysis while developing and evaluating gene therapy products based on retroviral vectors. This review is aimed at providing a brief overview of what the current state and the future is of these studies with a particular focus on what are the main analytical constraints that should be considered upon conducting IS analysis in clinical gene therapy.
Collapse
Affiliation(s)
- Luca Biasco
- 1 Harvard Medical School, Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts.,2 University College London , Great Ormond Street Institute of Child Health, Faculty of Population Health Sciences, London, United Kingdom
| |
Collapse
|
5
|
Brendel C, Rothe M, Santilli G, Charrier S, Stein S, Kunkel H, Abriss D, Müller-Kuller U, Gaspar B, Modlich U, Galy A, Schambach A, Thrasher AJ, Grez M. Non-Clinical Efficacy and Safety Studies on G1XCGD, a Lentiviral Vector for Ex Vivo Gene Therapy of X-Linked Chronic Granulomatous Disease. HUM GENE THER CL DEV 2018; 29:69-79. [PMID: 29664709 DOI: 10.1089/humc.2017.245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a debilitating primary immunodeficiency affecting phagocyte function due to the absence of nicotinamide dinucleotide phosphate (NADPH) oxidase activity. The vast majority of CGD patients in the Western world have mutations within the X-linked CYBB gene encoding for gp91phox (NOX2), the redox center of the NADPH oxidase complex (XCGD). Current treatments of XCGD are not entirely satisfactory, and prior attempts at autologous gene therapy using gammaretrovirus vectors did not provide long-term curative effects. A new strategy was developed based on the use of the lentiviral vector G1XCGD expressing high levels of the gp91phox transgene in myeloid cells. As a requisite for a clinical trial approval, standardized non-clinical studies were conducted in vitro and in mice in order to evaluate the pharmacodynamics and biosafety of the vector and the biodistribution of G1XCGD-transduced cells. Transduced CD34+ cells derived from XCGD patients engrafted and differentiated similarly to their non-transduced counterparts in xenograft mouse models and generated therapeutically relevant levels of NADPH activity in myeloid cells expressing gp91phox. Expression of functional gp91phox in hematopoietic cells did not affect their homing properties, which engrafted at high levels in mice. Extensive in vitro and in vivo genotoxicity studies found no evidence for adverse mutagenesis related to vector treatment. These studies paved the way for the approval of clinical trials in Europe and in the United States for the treatment of XCGD patients with G1XCGD gene-modified autologous hematopoietic cells.
Collapse
Affiliation(s)
- Christian Brendel
- 1 Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus, Frankfurt, Germany .,2 Division of Hematology/Oncology, Boston Children's Hospital , Boston, Massachusetts.,3 Harvard Medical School , Boston, Massachusetts.,4 Pediatric Oncology, Dana-Farber Cancer Institute , Boston, Massachusetts.,5 Harvard Stem Cell Institute, Harvard University , Boston, Massachusetts
| | - Michael Rothe
- 6 Hannover Medical School, Institute of Experimental Hematology , Hannover, Germany
| | - Giorgia Santilli
- 7 UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Trust London , United Kingdom
| | | | - Stefan Stein
- 1 Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus, Frankfurt, Germany
| | - Hana Kunkel
- 1 Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus, Frankfurt, Germany
| | - Daniela Abriss
- 1 Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus, Frankfurt, Germany
| | - Uta Müller-Kuller
- 1 Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus, Frankfurt, Germany
| | - Bobby Gaspar
- 7 UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Trust London , United Kingdom
| | - Ute Modlich
- 6 Hannover Medical School, Institute of Experimental Hematology , Hannover, Germany .,9 Research Group Gene Modification in Stem Cells , Paul-Ehrlich-Institute, Langen, Germany
| | | | - Axel Schambach
- 2 Division of Hematology/Oncology, Boston Children's Hospital , Boston, Massachusetts.,6 Hannover Medical School, Institute of Experimental Hematology , Hannover, Germany .,10 Hannover Medical School , Cluster of Excellence REBIRTH, Hannover, Germany
| | - Adrian J Thrasher
- 7 UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital for Children NHS Trust London , United Kingdom
| | - Manuel Grez
- 1 Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus, Frankfurt, Germany
| |
Collapse
|
6
|
Analyzing the Genotoxicity of Retroviral Vectors in Hematopoietic Cell Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:21-30. [PMID: 29159200 PMCID: PMC5684499 DOI: 10.1016/j.omtm.2017.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retroviral vectors, including those derived from gammaretroviruses and lentiviruses, have found their way into the clinical arena and demonstrated remarkable efficacy for the treatment of immunodeficiencies, leukodystrophies, and globinopathies. Despite these successes, gene therapy unfortunately also has had to face severe adverse events in the form of leukemias and myelodysplastic syndromes, related to the semi-random vector integration into the host cell genome that caused deregulation of neighboring proto-oncogenes. Although improvements in vector design clearly lowered the risk of this insertional mutagenesis, analysis of potential genotoxicity and the consequences of vector integration remain important parameters for basic and translational research and most importantly for the clinic. Here, we review current assays to analyze biodistribution and genotoxicity in the pre-clinical setting and describe tools to monitor vector integration sites in vector-treated patients as a biosafety readout.
Collapse
|
7
|
Biasco L, Rothe M, Schott JW, Schambach A. Integrating Vectors for Gene Therapy and Clonal Tracking of Engineered Hematopoiesis. Hematol Oncol Clin North Am 2017; 31:737-752. [DOI: 10.1016/j.hoc.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Debnath S, Jaako P, Siva K, Rothe M, Chen J, Dahl M, Gaspar HB, Flygare J, Schambach A, Karlsson S. Lentiviral Vectors with Cellular Promoters Correct Anemia and Lethal Bone Marrow Failure in a Mouse Model for Diamond-Blackfan Anemia. Mol Ther 2017; 25:1805-1814. [PMID: 28434866 PMCID: PMC5542636 DOI: 10.1016/j.ymthe.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 01/22/2023] Open
Abstract
Diamond-Blackfan anemia is a congenital erythroid hypoplasia and is associated with physical malformations and a predisposition to cancer. Twenty-five percent of patients with Diamond-Blackfan anemia have mutations in a gene encoding ribosomal protein S19 (RPS19). Through overexpression of RPS19 using a lentiviral vector with the spleen focus-forming virus promoter, we demonstrated that the Diamond-Blackfan anemia phenotype can be successfully treated in Rps19-deficient mice. In our present study, we assessed the efficacy of a clinically relevant promoter, the human elongation factor 1α short promoter, with or without the locus control region of the β-globin gene for treatment of RPS19-deficient Diamond-Blackfan anemia. The findings demonstrate that these vectors rescue the proliferation defect and improve erythroid development of transduced RPS19-deficient bone marrow cells. Remarkably, bone marrow failure and severe anemia in Rps19-deficient mice was cured with enforced expression of RPS19 driven by the elongation factor 1α short promoter. We also demonstrate that RPS19-deficient bone marrow cells can be transduced and these cells have the capacity to repopulate bone marrow in long-term reconstituted mice. Our results collectively demonstrate the feasibility to cure RPS19-deficient Diamond-Blackfan anemia using lentiviral vectors with cellular promoters that possess a reduced risk of insertional mutagenesis.
Collapse
Affiliation(s)
- Shubhranshu Debnath
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Pekka Jaako
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Kavitha Siva
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Jun Chen
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Maria Dahl
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - H Bobby Gaspar
- Molecular Immunology Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Johan Flygare
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, Lund 22184, Sweden.
| |
Collapse
|
9
|
Limitations and challenges of genetic barcode quantification. Sci Rep 2017; 7:43249. [PMID: 28256524 PMCID: PMC5335698 DOI: 10.1038/srep43249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Genetic barcodes are increasingly used to track individual cells and to quantitatively assess their clonal contributions over time. Although barcode quantification relies entirely on counting sequencing reads, detailed studies about the method’s accuracy are still limited. We report on a systematic investigation of the relation between barcode abundance and resulting read counts after amplification and sequencing using cell-mixtures that contain barcodes with known frequencies (“miniBulks”). We evaluated the influence of protocol modifications to identify potential sources of error and elucidate possible limitations of the quantification approach. Based on these findings we designed an advanced barcode construct (BC32) to improved barcode calling and quantification, and to ensure a sensitive detection of even highly diluted barcodes. Our results emphasize the importance of using curated barcode libraries to obtain interpretable quantitative data and underline the need for rigorous analyses of any utilized barcode library in terms of reliability and reproducibility.
Collapse
|
10
|
Browning DL, Everson EM, Leap DJ, Hocum JD, Wang H, Stamatoyannopoulos G, Trobridge GD. Evidence for the in vivo safety of insulated foamy viral vectors. Gene Ther 2016; 24:187-198. [PMID: 28024082 PMCID: PMC5374020 DOI: 10.1038/gt.2016.88] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
Retroviral vector mediated stem cell gene therapy is a promising approach for the treatment of hematopoietic disorders. However, genotoxic side effects from integrated vector proviruses are a significant concern for the use of retroviral vectors in the clinic. Insulated foamy viral (FV) vectors are potentially safer retroviral vectors for hematopoietic stem cell gene therapy. We evaluated two newly identified human insulators, A1 and A2 for use in FV vectors. These insulators had moderate insulating capacity and higher titers than previously developed insulated FV vectors. The A1 insulated FV vector was chosen for comparison with the previously described 650cHS4 insulated FV vector in human cord blood CD34+ repopulating cells in an immunodeficient mouse model. To maximize the effects of the insulators on the safety of FV vectors, FV vectors containing a highly genotoxic spleen focus forming virus (SFFV) promoter was used to elicit differences in genotoxicity. In vivo, the A1 insulated FV vector showed an approximate 50% reduction in clonal dominance compared to either the 650cHS4 insulated or control FV vectors, although the transduction efficiency of the A1 insulated vector was higher. This data suggests that the A1 insulated FV vector is promising for future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- D L Browning
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - E M Everson
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - D J Leap
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - J D Hocum
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - H Wang
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - G Stamatoyannopoulos
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - G D Trobridge
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.,Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
11
|
Dahl M, Doyle A, Olsson K, Månsson JE, Marques ARA, Mirzaian M, Aerts JM, Ehinger M, Rothe M, Modlich U, Schambach A, Karlsson S. Lentiviral gene therapy using cellular promoters cures type 1 Gaucher disease in mice. Mol Ther 2015; 23:835-844. [PMID: 25655314 DOI: 10.1038/mt.2015.16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/22/2015] [Indexed: 12/17/2022] Open
Abstract
Gaucher disease is caused by an inherited deficiency of the enzyme glucosylceramidase. Due to the lack of a fully functional enzyme, there is progressive build-up of the lipid component glucosylceramide. Insufficient glucosylceramidase activity results in hepatosplenomegaly, cytopenias, and bone disease in patients. Gene therapy represents a future therapeutic option for patients unresponsive to enzyme replacement therapy and lacking a suitable bone marrow donor. By proof-of-principle experiments, we have previously demonstrated a reversal of symptoms in a murine disease model of type 1 Gaucher disease, using gammaretroviral vectors harboring strong viral promoters to drive glucosidase β-acid (GBA) gene expression. To investigate whether safer vectors can correct the enzyme deficiency, we utilized self-inactivating lentiviral vectors (SIN LVs) with the GBA gene under the control of human phosphoglycerate kinase (PGK) and CD68 promoter, respectively. Here, we report prevention of, as well as reversal of, manifest disease symptoms after lentiviral gene transfer. Glucosylceramidase activity above levels required for clearance of glucosylceramide from tissues resulted in reversal of splenomegaly, reduced Gaucher cell infiltration and a restoration of hematological parameters. These findings support the use of SIN-LVs with cellular promoters in future clinical gene therapy protocols for type 1 Gaucher disease.
Collapse
Affiliation(s)
- Maria Dahl
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden; Lund Strategic Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, Lund, Sweden
| | - Alexander Doyle
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden; Lund Strategic Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, Lund, Sweden
| | - Karin Olsson
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden; Lund Strategic Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, Lund, Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry, Institute of Biomedicine, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - André R A Marques
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes M Aerts
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands
| | - Mats Ehinger
- Department of Pathology, Lund University Hospital, Lund, Sweden
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ute Modlich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Stefan Karlsson
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden; Lund Strategic Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
12
|
Zhou S, Bonner MA, Wang YD, Rapp S, De Ravin SS, Malech HL, Sorrentino BP. Quantitative shearing linear amplification polymerase chain reaction: an improved method for quantifying lentiviral vector insertion sites in transplanted hematopoietic cell systems. Hum Gene Ther Methods 2015; 26:4-12. [PMID: 25545666 DOI: 10.1089/hgtb.2014.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In gene therapy trials targeting blood disorders, it is important to detect dominance of transduced hematopoietic stem cell (HSC) clones arising from vector insertion site (VIS) effects. Current methods for VIS analysis often do not have defined levels of quantitative accuracy and therefore can fail to detect early clonal dominance. We have developed a rapid and inexpensive method for measuring clone size based on random shearing of genomic DNA, minimal exponential PCR amplification, and shear site counts as a quantitative endpoint. This quantitative shearing linear amplification PCR (qsLAM PCR) assay utilizes an internal control sample containing 19 lentiviral insertion sites per cell that is mixed with polyclonal samples derived from transduced human CD34+ cells. Samples were analyzed from transplanted pigtail macaques and from a participant in our X-linked severe combined immunodeficiency (XSCID) lentiviral vector trial and yielded controlled and quantitative results in all cases. One case of early clonal dominance was detected in a monkey transplanted with limiting numbers of transduced HSCs, while the clinical samples from the XSCID trial participant showed highly diverse clonal representation. These studies demonstrate that qsLAM PCR is a facile and quantitative assay for measuring clonal repertoires in subjects enrolled in human gene therapy trials using lentiviral-transduced HSCs.
Collapse
Affiliation(s)
- Sheng Zhou
- 1 Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, TN 38120
| | | | | | | | | | | | | |
Collapse
|
13
|
Niederer HA, Bangham CRM. Integration site and clonal expansion in human chronic retroviral infection and gene therapy. Viruses 2014; 6:4140-64. [PMID: 25365582 PMCID: PMC4246213 DOI: 10.3390/v6114140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety.
Collapse
Affiliation(s)
- Heather A Niederer
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| | - Charles R M Bangham
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
14
|
Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e200. [PMID: 25291142 PMCID: PMC4217076 DOI: 10.1038/mtna.2014.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/10/2014] [Indexed: 12/22/2022]
Abstract
Insertional leukemogenesis represents the major risk factor of hematopoietic stem cell (HSC) based gene therapy utilizing integrating viral vectors. To develop a pre-clinical model for the evaluation of vector-related genotoxicity directly in the relevant human target cells, cord blood CD34+ HSCs were transplanted into immunodeficient NOD.SCID.IL2rg−/− (NSG) mice after transduction with an LTR-driven gammaretroviral vector (GV). Furthermore, we specifically investigated the effect of prolonged in vitro culture in the presence of cytokines recently described to promote HSC expansion or maintenance. Clonality of human hematopoiesis in NSG mice was assessed by high throughput insertion site analyses and validated by insertion site-specific PCR depicting a GV typical integration profile with insertion sites resembling to 25% those of clinical studies. No overrepresentation of integrations in the vicinity of cancer-related genes was observed, however, several dominant clones were identified including two clones harboring integrations in the ANGPT1 and near the ANGPT2 genes associated with deregulated ANGPT1- and ANGPT2-mRNA levels. While these data underscore the potential value of the NSG model, our studies also identified short-comings such as overall low numbers of engrafted HSCs, limited in vivo observation time, and the challenges of in-depth insertion site analyses by low contribution of gene modified hematopoiesis.
Collapse
|
15
|
Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, Klein A, Hofmann O, Camargo FD. Clonal dynamics of native haematopoiesis. Nature 2014; 514:322-7. [PMID: 25296256 DOI: 10.1038/nature13824] [Citation(s) in RCA: 618] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
It is currently thought that life-long blood cell production is driven by the action of a small number of multipotent haematopoietic stem cells. Evidence supporting this view has been largely acquired through the use of functional assays involving transplantation. However, whether these mechanisms also govern native non-transplant haematopoiesis is entirely unclear. Here we have established a novel experimental model in mice where cells can be uniquely and genetically labelled in situ to address this question. Using this approach, we have performed longitudinal analyses of clonal dynamics in adult mice that reveal unprecedented features of native haematopoiesis. In contrast to what occurs following transplantation, steady-state blood production is maintained by the successive recruitment of thousands of clones, each with a minimal contribution to mature progeny. Our results demonstrate that a large number of long-lived progenitors, rather than classically defined haematopoietic stem cells, are the main drivers of steady-state haematopoiesis during most of adulthood. Our results also have implications for understanding the cellular origin of haematopoietic disease.
Collapse
Affiliation(s)
- Jianlong Sun
- 1] Stem Cell Program, Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [3] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Azucena Ramos
- Stem Cell Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Brad Chapman
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Jonathan B Johnnidis
- Department of Immunology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Linda Le
- Stem Cell Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yu-Jui Ho
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Allon Klein
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Oliver Hofmann
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Fernando D Camargo
- 1] Stem Cell Program, Children's Hospital, Boston, Massachusetts 02115, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA [3] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
16
|
Kustikova OS, Stahlhut M, Ha TC, Scherer R, Schambach A, Baum C. Dose response and clonal variability of lentiviral tetracycline-regulated vectors in murine hematopoietic cells. Exp Hematol 2014; 42:505-515.e7. [DOI: 10.1016/j.exphem.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/23/2014] [Accepted: 03/06/2014] [Indexed: 12/14/2022]
|
17
|
Porter SN, Baker LC, Mittelman D, Porteus MH. Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo. Genome Biol 2014; 15:R75. [PMID: 24886633 PMCID: PMC4073073 DOI: 10.1186/gb-2014-15-5-r75] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 05/30/2014] [Indexed: 12/03/2022] Open
Abstract
Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents.
Collapse
|
18
|
Phaltane R, Haemmerle R, Rothe M, Modlich U, Moritz T. Efficiency and safety of O⁶-methylguanine DNA methyltransferase (MGMT(P140K))-mediated in vivo selection in a humanized mouse model. Hum Gene Ther 2014; 25:144-55. [PMID: 24218991 DOI: 10.1089/hum.2013.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Efficient O⁶-methylguanine DNA methyltransferase (MGMT(P140K))-mediated myeloprotection and in vivo selection have been demonstrated in numerous animal models and most recently in a phase I clinical study in glioblastoma patients. However, this strategy may augment the genotoxic risk of integrating vectors because of chemotherapy-induced DNA damage and the proliferative stress exerted during the in vivo selection. Thus, to improve the safety of the procedure, we evaluated a self-inactivating lentiviral MGMT(P140K) vector for transduction of human cord blood-derived CD34⁺ cells followed by transplantation of the cells into NOD/LtSz-scid/Il2rγ⁻/⁻ mice. These experiments demonstrated significant and stable enrichment of MGMT(P140K) transgenic human cells in the murine peripheral blood and bone marrow. Clonal inventory analysis utilizing linear amplification-mediated polymerase chain reaction and high-throughput sequencing revealed a characteristic lentiviral integration profile. Among the bone marrow insertions retrieved, we observed considerable overlap to previous MGMT(P140K) preclinical models or the clinical study. However, no significant differences between our chemotherapy-treated and nontreated cohorts were observed. This also hold true when specific cancer gene databases and a functional annotation of hit genes by the Panther Database with respect to molecular function, biological process, or cellular component were assessed. Thus, in summary, our data demonstrate efficient and long-term in vivo selection without overt hematological abnormalities using the lentiviral MGMT(P140K) vector. Furthermore, the study introduces humanized mouse models as a novel tool for the pre-clinical assessment of human gene therapy related toxicity.
Collapse
Affiliation(s)
- Ruhi Phaltane
- 1 REBIRTH Research Group Reprogramming and Gene Therapy, Hannover Medical School , 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
19
|
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5:1642-61. [PMID: 24106209 PMCID: PMC3840483 DOI: 10.1002/emmm.201202287] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023] Open
Abstract
The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders.
Collapse
Affiliation(s)
| | - Hildegard Büning
- Department I of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of CologneCologne, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical SchoolHannover, Germany
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical SchoolBoston, MA, USA
| | - Manuel Grez
- Institute for Biomedical ResearchGeorg-Speyer-Haus, Frankfurt, Germany
| |
Collapse
|
20
|
Rittelmeyer I, Rothe M, Brugman MH, Iken M, Schambach A, Manns MP, Baum C, Modlich U, Ott M. Hepatic lentiviral gene transfer is associated with clonal selection, but not with tumor formation in serially transplanted rodents. Hepatology 2013; 58:397-408. [PMID: 23258554 DOI: 10.1002/hep.26204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022]
Abstract
UNLABELLED Lentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration-associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo, we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH((-/-)) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation-mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene-corrected mice was increased compared to 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity. CONCLUSION We did not find evidence for vector-induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long-term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation.
Collapse
Affiliation(s)
- Ina Rittelmeyer
- Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|