1
|
Brambilla S, Nelson MA, Brown MJ. Review of particle deposition to and removal from clothing, skin, and hair after a radioactive airborne dispersal event. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107296. [PMID: 37734236 DOI: 10.1016/j.jenvrad.2023.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Explosive Radiological Dispersal Devices (RDD) - aka dirty bombs - are seen as a credible method to carry out a radiological terror attack. After exploding a radioactive source, the radionuclide-laden plume will be blown downwind of ground zero, with particles falling out and potentially depositing on people caught in and under the cloud. Some of these people may not show any sign of radiation sickness and therefore not realize they have been contaminated and may take the radioactive particulate with them on their daily activities, thus spreading the radioactive particulate outside the initially contaminated area. This paper reviews the scientific literature to better understand the rate at which particulate deposits on and is removed from the different "surfaces" of a person, i.e., hair, skin, and clothing. Prior research indicates that: 1) particle deposition is usually higher on skin than on hair and clothing; 2) particle deposition is greater for a person with higher skin moisture, 3) stronger wind increases the deposition flux onto a person, and 4) the fraction of particulate deposited on the hair, skin, and clothing respectively depends on the length of the hair, assuming all the hair surface is available for deposition. The studies taken into consideration show that the largest uncertainty in particulate deposition onto a person is due to clothing type because of the different possible weave arrangements and tightness which translate into differences in actual surface area and surface roughness. A factor of 2-to-20 variation in deposition rate was found. Removal of the particulate from the contaminated person may be due to wind, a person's movement, and/or contact transfer, i.e., by touching a different clean surface. Experiments show that the majority of the particulate is resuspended within 2-6 h mostly depending on the intensity of physical activity. The largest uncertainty in particulate removal from skin depends on the skin moisture, transfer rate of single-contact, and how many objects/people a person touches per hour. No data for hair were found for particle removal and resuspension. The studies considered did not utilize radionuclides directly; however, data on adhesion of radioactive vs. their non-radioactive counterpart have shown that the uncertainty due to the radioactivity of the particles is lower than that due to other factors. An idealized scenario involving a single building in the path of the cloud showed the impact of building-influenced flow on the cloud transport path and mixing, which affects the radiological dose the downwind population is exposed to and consequently the health effects.
Collapse
Affiliation(s)
- Sara Brambilla
- Los Alamos National Laboratory, Bikini Atoll Rd, Los Alamos, NM, 87545, United States.
| | - Matthew A Nelson
- Los Alamos National Laboratory, Bikini Atoll Rd, Los Alamos, NM, 87545, United States
| | - Michael J Brown
- Los Alamos National Laboratory, Bikini Atoll Rd, Los Alamos, NM, 87545, United States
| |
Collapse
|
2
|
Kinahan SM, Silcott DB, Silcott BE, Silcott RM, Silcott PJ, Silcott BJ, Distelhorst SL, Herrera VL, Rivera DN, Crown KK, Lucero GA, Santarpia JL. Aerosol tracer testing in Boeing 767 and 777 aircraft to simulate exposure potential of infectious aerosol such as SARS-CoV-2. PLoS One 2021; 16:e0246916. [PMID: 34851965 PMCID: PMC8635387 DOI: 10.1371/journal.pone.0246916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic has reintroduced questions regarding the potential risk of SARS-CoV-2 exposure amongst passengers on an aircraft. Quantifying risk with computational fluid dynamics models or contact tracing methods alone is challenging, as experimental results for inflight biological aerosols is lacking. Using fluorescent aerosol tracers and real time optical sensors, coupled with DNA-tagged tracers for aerosol deposition, we executed ground and inflight testing on Boeing 767 and 777 airframes. Analysis here represents tracer particles released from a simulated infected passenger, in multiple rows and seats, to determine the exposure risk via penetration into breathing zones in that row and numerous rows ahead and behind the index case. We present here conclusions from 118 releases of fluorescent tracer particles, with 40+ Instantaneous Biological Analyzer and Collector sensors placed in passenger breathing zones for real-time measurement of simulated virus particle penetration. Results from both airframes showed a minimum reduction of 99.54% of 1 μm aerosols from the index source to the breathing zone of a typical passenger seated directly next to the source. An average 99.97 to 99.98% reduction was measured for the breathing zones tested in the 767 and 777, respectively. Contamination of surfaces from aerosol sources was minimal, and DNA-tagged 3 μm tracer aerosol collection techniques agreed with fluorescent methodologies.
Collapse
Affiliation(s)
- Sean M. Kinahan
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- National Strategic Research Center, Omaha, Nebraska, United States of America
| | | | | | | | | | | | | | - Vicki L. Herrera
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Danielle N. Rivera
- National Strategic Research Center, Omaha, Nebraska, United States of America
| | - Kevin K. Crown
- National Strategic Research Center, Omaha, Nebraska, United States of America
| | - Gabriel A. Lucero
- National Strategic Research Center, Omaha, Nebraska, United States of America
| | - Joshua L. Santarpia
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- National Strategic Research Center, Omaha, Nebraska, United States of America
| |
Collapse
|
3
|
Al Assaad D, Yang S, Licina D. Particle release and transport from human skin and clothing: A CFD modeling methodology. INDOOR AIR 2021; 31:1377-1390. [PMID: 33896029 DOI: 10.1111/ina.12840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 05/04/2023]
Abstract
Particle release from human skin and clothing has been identified as an important contributor to particulate matter burden indoors. However, knowledge about modeling the coarse particle release from skin and clothing is limited. This study developed a new empirically validated CFD modeling methodology for particle release and transport from seated occupants in an office setting. We tested three modeling approaches for particle emissions: Uniform; Uniform + Localized; and Uniform + Localized with Body Motion; applied to four office scenarios involving a single occupant and two occupants facing each other at 1- and 2-m distances. Uniform particle emissions from skin and clothing underpredicted personal inhalation exposure by as much as 55%-80%. Combining uniform with localized emissions from the armpits drastically reduced the error margin to <10%. However, this modeling approach heavily underestimated particle mass exchange (cross-contamination) between the occupants. Accounting for the occupant's body motion-by applying the momentum theory method-yielded the most accurate personal exposure and cross-contamination results, with errors below 12%. The study suggests that for accurate modeling of particle release and transport from seated occupants indoors, localized body emissions in combination with simplified bodily movements need to be taken into account.
Collapse
Affiliation(s)
- Douaa Al Assaad
- Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon
| | - Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Licina D, Morrison GC, Bekö G, Weschler CJ, Nazaroff WW. Clothing-Mediated Exposures to Chemicals and Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5559-5575. [PMID: 31034216 DOI: 10.1021/acs.est.9b00272] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A growing body of evidence identifies clothing as an important mediator of human exposure to chemicals and particles, which may have public health significance. This paper reviews and critically assesses the state of knowledge regarding how clothing, during wear, influences exposure to molecular chemicals, abiotic particles, and biotic particles, including microbes and allergens. The underlying processes that govern the acquisition, retention, and transmission of clothing-associated contaminants and the consequences of these for subsequent exposures are explored. Chemicals of concern have been identified in clothing, including byproducts of their manufacture and chemicals that adhere to clothing during use and care. Analogously, clothing acts as a reservoir for biotic and abiotic particles acquired from occupational and environmental sources. Evidence suggests that while clothing can be protective by acting as a physical or chemical barrier, clothing-mediated exposures can be substantial in certain circumstances and may have adverse health consequences. This complex process is influenced by the type and history of the clothing; the nature of the contaminant; and by wear, care, and storage practices. Future research efforts are warranted to better quantify, predict, and control clothing-related exposures.
Collapse
Affiliation(s)
- Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering , Technical University of Denmark , Lyngby 2800 , Denmark
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering , Technical University of Denmark , Lyngby 2800 , Denmark
- Environmental and Occupational Health Sciences Institute , Rutgers University , Piscataway , New Jersey 08901 , United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering , University of California , Berkeley , California 94720-1710 , United States
| |
Collapse
|
5
|
Drewry DG, Sauer LM, Shaw-Saliba K, Therkorn J, Rainwater-Lovett K, Pilholski T, Garibaldi BT. Identifying Potential Provider and Environmental Contamination on a Clinical Biocontainment Unit Using Aerosolized Pathogen Simulants. Health Secur 2018; 16:83-91. [PMID: 29624490 DOI: 10.1089/hs.2017.0064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Johns Hopkins Hospital created a biocontainment unit (BCU) to care for patients with highly infectious diseases while assuring healthcare worker safety. Research to date for BCU protocols and practices are based on case reports and lessons learned from patient care and exercises. This study seeks to be the first to explore the influences of healthcare worker movement and personal protective equipment (PPE) doffing on the transport of simulant pathogen particles in a BCU. A cough device released 1 μm fluorescent polystyrene beads (PSLs) in the patient room. PSL transport was then examined under 2 scenarios: (1) PSL release only, no healthcare workers; and (2) PSL release during 5-minute simulated activity by healthcare workers. Airborne PSL concentrations were quantified every second for 30 minutes per scenario by 7 optical particle sensors located throughout the BCU. PSLs were not detected in the donning room at any time nor in the doffing room during the first test scenario where no healthcare worker was present. The main difference detected between the tested scenarios was the presence of PSLs in the doffing room when healthcare workers were removing PPE, potentially due to re-aerosolization of PSLs off the exterior PPE surface or opening of the patient room door. Future work will further explore the potential for re-aerosolization of particles off of PPE during doffing. The present study provides the groundwork for a systematic method for evaluating the BCU and doffing procedures for their respective safety, and it also pilots a systematic method for evaluating potential pathogen exposure pathways for BCU healthcare workers.
Collapse
|