1
|
Maze D, Girardin C, Benz N, Montier T, Pichon C, Midoux P. CFTR and dystrophin encoding plasmids carrying both luciferase reporter gene, nuclear import specific sequences and triple helix sites. Plasmid 2023; 127:102686. [PMID: 37207938 DOI: 10.1016/j.plasmid.2023.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Duchenne Muscular Dystrophy and Cystic Fibrosis are two major monogenetic diseases which could be treated by non-viral gene therapy. For this purpose, plasmid DNA (pDNA) coding for the functional genes requires its equipment with signal molecules favouring its intracellular trafficking and delivery in the nucleus of the target cells. Here, two novel constructions of large pDNAs encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and full-length dystrophin (DYS) genes are reported. The expression of CFTR and DYS genes are driven respectively by the hCEF1 airway epithelial cells and spc5-12 muscle cells specific promoter. Those pDNAs encode also the luciferase reporter gene driven by the CMV promoter to evaluate gene delivery in animals by bioluminescence. In addition, oligopurine • oligopyrimidine sequences are inserted to enable equipment of pDNAs with peptides conjugated with a triple helix forming oligonucleotide (TFO). Furthermore, specific κB sequences are also inserted to promote their NFκB-mediated nuclear import. pDNA constructions are reported; transfection efficiency, tissue specific expression of CFTR and dystrophin in target cells, and triple helix formation are demonstrated. These plasmids are tools of interest to develop non-viral gene therapy of Cystic Fibrosis and Duchenne Muscular Dystrophy.
Collapse
Affiliation(s)
- Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Nathalie Benz
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, Brest F-29200, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, Brest F-29200, France; Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, Brest F-29200, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071 Orléans cedex 02, France.
| |
Collapse
|
2
|
Girardin C, Maze D, Gonçalves C, Le Guen YT, Pluchon K, Pichon C, Montier T, Midoux P. Selective attachment of a microtubule interacting peptide to plasmid DNA via a triplex forming oligonucleotide for transfection improvement. Gene Ther 2022; 30:271-277. [PMID: 35794469 DOI: 10.1038/s41434-022-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
In nonviral gene therapy approaches, the linkage of signal molecules to plasmid DNA (pDNA) is of interest for guiding its delivery to the nucleus. Here, we report its linkage to a peptide (P79-98) mediating migration on microtubules by using a triplex-forming oligonucleotide (TFO). pDNA of 5 kbp and 21 kbp containing 6 and 36 oligopurine • oligopyrimidine sites (TH), respectively, inserted outside the luciferase gene sequence were used. TFO with a dibenzocyclooctyl (DBCO) group in 3' end comprising some Bridged Nucleic Acid bases was conjugated by click chemistry with the peptide carrying an azide function in the C-terminal end. We found the formation of 6 and 18 triplex with pDNA of 5 kbp and 21 kbp, respectively. A twofold increase of the transfection efficiency was observed in the hind-limbs upon Hydrodynamic Limb Vein (HLV) injection in mice of naked P79-98 -pDNA of 21 kbp. This work paves the way for the selective equipping of pDNA with intracellular targeting molecules while preserving the full expression of the encoded gene.
Collapse
Affiliation(s)
- Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | | | - Kevin Pluchon
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France. .,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France.
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France.
| |
Collapse
|
3
|
Rouatbi N, McGlynn T, Al-Jamal KT. Pre-clinical non-viral vectors exploited for in vivo CRISPR/Cas9 gene editing: an overview. Biomater Sci 2022; 10:3410-3432. [PMID: 35604372 DOI: 10.1039/d1bm01452h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustered regulatory interspaced short palindromic repeats or CRISPR/Cas9 has emerged as a potent and versatile tool for efficient genome editing. This technology has been exploited for several applications including disease modelling, cell therapy, diagnosis, and treatment of many diseases including cancer. The in vivo application of CRISPR/Cas9 is hindered by poor stability, pharmacokinetic profile, and the limited ability of the CRISPR payloads to cross biological barriers. Although viral vectors have been implemented as delivery tools for efficient in vivo gene editing, their application is associated with high immunogenicity and toxicity, limiting their clinical translation. Hence, there is a need to explore new delivery methods that can guarantee safe and efficient delivery of the CRISPR/Cas9 components to target cells. In this review, we first provide a brief history and principles of nuclease-mediated gene editing, we then focus on the different CRISPR/Cas9 formats outlining their potentials and limitations. Finally, we discuss the alternative non-viral delivery strategies currently adopted for in vivo CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Tasneem McGlynn
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
4
|
Le Guen YT, Pichon C, Guégan P, Pluchon K, Haute T, Quemener S, Ropars J, Midoux P, Le Gall T, Montier T. DNA nuclear targeting sequences for enhanced non-viral gene transfer: An in vitro and in vivo study. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:477-486. [PMID: 33898102 PMCID: PMC8053784 DOI: 10.1016/j.omtn.2021.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/14/2021] [Indexed: 11/25/2022]
Abstract
An important bottleneck for non-viral gene transfer commonly relates to translocation of nucleic acids into the nuclear compartment of target cells. So-called 3NFs are optimized short nucleotide sequences able to interact with the transcription factor nuclear factor κB (NF-κB), which can enhance the nuclear import of plasmid DNA (pDNA) carrying such motifs. In this work, we first designed a consistent set of six pDNAs featuring a common backbone and only varying in their 3NF sequences. These constructions were then transfected under various experimental settings. In vitro, cationic polymer-assisted pDNA delivery in five human-derived cell lines showed the potential advantage of 3NF carrying pDNA in diverse cellular contexts. In vivo, naked pDNAs were hydrodynamically delivered to muscle hindlimbs in healthy mice; this direct accurate comparative (in the absence of any gene carrier) revealed modest but consistent trends in favor of the pDNAs equipped with 3NF. In summary, the results reported emphasize the implications of various parameters on NF-κB-mediated pDNA nuclear import; under specific conditions, 3NF can provide modest to substantial advantages for pDNA gene transfer, in vitro as well as in vivo. This study thus further underscores the potential of optimized nuclear import for more efficient non-viral gene transfer applications.
Collapse
Affiliation(s)
- Yann T Le Guen
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, 45071 Orléans, France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire, Team Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, 75252 Paris, France
| | - Kévin Pluchon
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France.,Department of Cardiovascular and Thoracic Surgery, Brest University Hospital La Cavale Blanche, 29200 Brest, France
| | - Tanguy Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Sandrine Quemener
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Juliette Ropars
- CHRU de Brest, Service de Pédiatrie, Centre de Référence des Maladies Rares "Maladies Neuromusculaires", 29200 Brest, France.,Univ Brest, INSERM, UMR 1101, LaTIM, 29200 Brest, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, 45071 Orléans, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France.,CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Centre de Référence des Maladies Rares "Maladies Neuromusculaires", 29200 Brest, France
| |
Collapse
|
5
|
Le Guen YT, Le Gall T, Midoux P, Guégan P, Braun S, Montier T. Gene transfer to skeletal muscle using hydrodynamic limb vein injection: current applications, hurdles and possible optimizations. J Gene Med 2020; 22:e3150. [PMID: 31785130 DOI: 10.1002/jgm.3150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
Hydrodynamic limb vein injection is an in vivo locoregional gene delivery method. It consists of administrating a large volume of solution containing nucleic acid constructs in a limb with both blood inflow and outflow temporarily blocked using a tourniquet. The fast, high pressure delivery allows the musculature of the whole limb to be reached. The skeletal muscle is a tissue of choice for a variety of gene transfer applications, including gene therapy for Duchenne muscular dystrophy or other myopathies, as well as for the production of antibodies or other proteins with broad therapeutic effects. Hydrodynamic limb vein delivery has been evaluated with success in a large range of animal models. It has also proven to be safe and well-tolerated in muscular dystrophy patients, thus supporting its translation to the clinic. However, some possible limitations may occur at different steps of the delivery process. Here, we have highlighted the interests, bottlenecks and potential improvements that could further optimize non-viral gene transfer following hydrodynamic limb vein injection.
Collapse
Affiliation(s)
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, France
| | - Philippe Guégan
- Laboratoire de chimie des polymères, Sorbonne Université, CNRS UMR 8232, UPMC Paris 06, F-75005, Paris, France
| | - Serge Braun
- AFM Telethon, 1 rue de l'Internationale, BP59, 91002 Evry, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France
| |
Collapse
|
6
|
Guha TK, Pichavant C, Calos MP. Plasmid-Mediated Gene Therapy in Mouse Models of Limb Girdle Muscular Dystrophy. Mol Ther Methods Clin Dev 2019; 15:294-304. [PMID: 31890729 PMCID: PMC6923511 DOI: 10.1016/j.omtm.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022]
Abstract
We delivered plasmid DNA encoding therapeutic genes to the muscles of mouse models of limb girdle muscular dystrophy (LGMD) 2A, 2B, and 2D, deficient in calpain3, dysferlin, and alpha-sarcoglycan, respectively. We also delivered the human follistatin gene, which has the potential to increase therapeutic benefit. After intramuscular injection of DNA, electroporation was applied to enhance delivery to muscle fibers. When plasmids encoding the human calpain3 or dysferlin cDNA sequences were injected into quadriceps muscles of LGMD2A and LGMD2B mouse models, respectively, in 3-month studies, robust levels of calpain3 and dysferlin proteins were detected. We observed a statistically significant decrease in Evans blue dye penetration in LGMD2B mouse muscles after delivery of the dysferlin gene, consistent with repair of the muscle membrane defect in these mice. The therapeutic value of delivery of the genes for alpha-sarcoglycan and follistatin was documented by significant drops in Evans blue dye penetration in gastrocnemius muscles of LGMD2D mice. These results indicated for the first time that a combined gene therapy involving both alpha-sarcoglycan and follistatin would be valuable for LGMD2D patients. We suggest that this non-viral gene delivery method should be explored for its translational potential in patients.
Collapse
Affiliation(s)
- Tuhin K. Guha
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Christophe Pichavant
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Michele P. Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| |
Collapse
|
7
|
Abstract
Non-viral gene delivery to skeletal muscle was one of the first applications of gene therapy that went into the clinic, mainly because skeletal muscle is an easily accessible tissue for local gene transfer and non-viral vectors have a relatively safe and low immunogenic track record. However, plasmid DNA, naked or complexed to the various chemistries, turn out to be moderately efficient in humans when injected locally and very inefficient (and very toxic in some cases) when injected systemically. A number of clinical applications have been initiated however, based on transgenes that were adapted to good local impact and/or to a wide physiological outcome (i.e., strong humoral and cellular immune responses following the introduction of DNA vaccines). Neuromuscular diseases seem more challenging for non-viral vectors. Nevertheless, the local production of therapeutic proteins that may act distantly from the injected site and/or the hydrodynamic perfusion of safe plasmids remains a viable basis for the non-viral gene therapy of muscle disorders, cachexia, as well as peripheral neuropathies.
Collapse
|
8
|
Ma J, Pichavant C, du Bois H, Bhakta M, Calos MP. DNA-Mediated Gene Therapy in a Mouse Model of Limb Girdle Muscular Dystrophy 2B. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:123-131. [PMID: 29159199 PMCID: PMC5684445 DOI: 10.1016/j.omtm.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/26/2022]
Abstract
Mutations in the gene for dysferlin cause a degenerative disorder of skeletal muscle known as limb girdle muscular dystrophy 2B. To achieve gene delivery of plasmids encoding dysferlin to hind limb muscles of dysferlin knockout mice, we used a vascular injection method that perfused naked plasmid DNA into all major muscle groups of the hind limb. We monitored delivery by luciferase live imaging and western blot, confirming strong dysferlin expression that persisted over the 3-month time course of the experiment. Co-delivery of the follistatin gene, which may promote muscle growth, was monitored by ELISA. Immunohistochemistry documented the presence of dysferlin in muscle fibers in treated limbs, and PCR confirmed the presence of plasmid DNA. Because dysferlin is involved in repair of the sarcolemmal membrane, dysferlin loss leads to fragile sarcolemmal membranes that can be detected by permeability to Evan’s blue dye. We showed that after gene therapy with a plasmid encoding both dysferlin and follistatin, statistically significant reduction in Evan’s blue dye permeability was present in hamstring muscles. These results suggest that vascular delivery of plasmids carrying these therapeutic genes may lead to simple and effective approaches for improving the clinical condition of limb girdle muscular dystrophy 2B.
Collapse
Affiliation(s)
- Julia Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Christophe Pichavant
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Haley du Bois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Mital Bhakta
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| |
Collapse
|
9
|
Ahlén G, Frelin L, Holmström F, Smetham G, Augustyn S, Sällberg M. A targeted controlled force injection of genetic material in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16016. [PMID: 27069951 PMCID: PMC4813609 DOI: 10.1038/mtm.2016.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
A general limitation in gene delivery is the cellular uptake in lager animals including humans. Several approaches have been tested including liposomes, micro-needles, in vivo electro-transfer, ballistic delivery, and needle-free delivery. All these techniques have individual limitations. One approach reproducibly delivering genetic material in muscle tissue in nonhuman primates is hydrodynamic injection, a forced injection of a volume equaling the volume of the tissue to be transfected thereby causing an increased local pressure resulting in an improved uptake of genetic material. We transferred the principle of hydrodynamic injection to a device, where a small injection volume can be delivered to a targeted tissue volume, termed in vivo intracellular injection (IVIN). The device is based on needle(s) with apertures along the needle shafts, where multiple needles can fix the tissue volume to be transfected. The apertures direct the injection from a central needle outward or inward to the centroid of a geometric arrangement thereby targeting the tissue to be transfected. With a controlled force, this results in a targeted injection with increased transfection efficiency. We here show that the IVIN technology reproducibly improved plasmid uptake and expression and the immunogenicity. The IVIN technology can be generally applied to a targeted delivery of genetic materials.
Collapse
Affiliation(s)
- Gustaf Ahlén
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Fredrik Holmström
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| | | | | | - Matti Sällberg
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital Huddinge , Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
DNA plasmids can be used to induce a protective (or therapeutic) immune response by delivering genes encoding vaccine antigens. That naked DNA (without the refinement of coat proteins or host evasion systems) can cross from outside the cell into the nucleus and be expressed is particularly remarkable given the sophistication of the immune system in preventing infection by pathogens. As a result of the ease, low cost, and speed of custom gene synthesis, DNA vaccines dangle a tantalizing prospect of the next wave of vaccine technology, promising individual designer vaccines for cancer or mass vaccines with a rapid response time to emerging pandemics. There is considerable enthusiasm for the use of DNA vaccination as an approach, but this enthusiasm should be tempered by the successive failures in clinical trials to induce a potent immune response. The technology is evolving with the development of improved delivery systems that increase expression levels, particularly electroporation and the incorporation of genetically encoded adjuvants. This review will introduce some key concepts in the use of DNA plasmids as vaccines, including how the DNA enters the cell and is expressed, how it induces an immune response, and a summary of clinical trials with DNA vaccines. The review also explores the advances being made in vector design, delivery, formulation, and adjuvants to try to realize the promise of this technology for new vaccines. If the immunogenicity and expression barriers can be cracked, then DNA vaccines may offer a step change in mass vaccination.
Collapse
|
11
|
Yasuzaki Y, Yamada Y, Ishikawa T, Harashima H. Validation of Mitochondrial Gene Delivery in Liver and Skeletal Muscle via Hydrodynamic Injection Using an Artificial Mitochondrial Reporter DNA Vector. Mol Pharm 2015; 12:4311-20. [PMID: 26567847 DOI: 10.1021/acs.molpharmaceut.5b00511] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yukari Yasuzaki
- Laboratory for Molecular
Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yuma Yamada
- Laboratory for Molecular
Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Ishikawa
- Laboratory for Molecular
Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular
Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Fan Z, Kocis K, Valley R, Howard JF, Chopra M, Chen Y, An H, Lin W, Muenzer J, Powers W. High-Pressure Transvenous Perfusion of the Upper Extremity in Human Muscular Dystrophy: A Safety Study with 0.9% Saline. Hum Gene Ther 2015; 26:614-21. [PMID: 25953425 PMCID: PMC4575535 DOI: 10.1089/hum.2015.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/28/2015] [Indexed: 01/09/2023] Open
Abstract
We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.
Collapse
Affiliation(s)
- Zheng Fan
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Wellstone Muscular Dystrophy Cooperative Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keith Kocis
- Wellstone Muscular Dystrophy Cooperative Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert Valley
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James F. Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Wellstone Muscular Dystrophy Cooperative Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Manisha Chopra
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Wellstone Muscular Dystrophy Cooperative Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yasheng Chen
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hongyu An
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph Muenzer
- Wellstone Muscular Dystrophy Cooperative Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William Powers
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Wellstone Muscular Dystrophy Cooperative Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Belmadi N, Midoux P, Loyer P, Passirani C, Pichon C, Le Gall T, Jaffres PA, Lehn P, Montier T. Synthetic vectors for gene delivery: An overview of their evolution depending on routes of administration. Biotechnol J 2015; 10:1370-89. [DOI: 10.1002/biot.201400841] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
|
14
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
15
|
Mikkelsen JG. Nonviral Gene Therapy—The Challenge of Mobilizing DNA. SOMATIC GENOME MANIPULATION 2015:69-104. [DOI: 10.1007/978-1-4939-2389-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Abstract
Gene therapy for the muscular dystrophies has evolved as a promising treatment for this progressive group of disorders. Although corticosteroids and/or supportive treatments remain the standard of care for Duchenne muscular dystrophy, loss of ambulation, respiratory failure, and compromised cardiac function is the inevitable outcome. Recent developments in genetically mediated therapies have allowed for personalized treatments that strategically target individual muscular dystrophy subtypes based on disease pathomechanism and phenotype. In this review, we highlight the therapeutic progress with emphasis on evolving preclinical data and our own experience in completed clinical trials and others currently underway. We also discuss the lessons we have learned along the way and the strategies developed to overcome limitations and obstacles in this field.
Collapse
Affiliation(s)
| | | | - Jerry R Mendell
- Department of Pediatrics, Center for Gene Therapy, The Research Institute of Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
17
|
Yasuzaki Y, Yamada Y, Fukuda Y, Harashima H. Condensation of plasmid DNA enhances mitochondrial association in skeletal muscle following hydrodynamic limb vein injection. Pharmaceuticals (Basel) 2014; 7:881-93. [PMID: 25195732 PMCID: PMC4167204 DOI: 10.3390/ph7080881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/15/2014] [Accepted: 08/15/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial gene therapy and diagnosis have the potential to provide substantial medical benefits. However, the utility of this approach has not yet been realized because the technology available for mitochondrial gene delivery continues to be a bottleneck. We previously reported on mitochondrial gene delivery in skeletal muscle using hydrodynamic limb vein (HLV) injection. HLV injection, a useful method for nuclear transgene expression, involves the rapid injection of a large volume of naked plasmid DNA (pDNA). Moreover, the use of a condensed form of pDNA enhances the nuclear transgene expression by the HLV injection. The purpose of this study was to compare naked pDNA and condensed pDNA for mitochondrial association in skeletal muscle, when used in conjunction with HLV injection. PCR analysis showed that the use of condensed pDNA rather than naked pDNA resulted in a more effective mitochondrial association with pDNA, suggesting that the physicochemical state of pDNA plays a key role. Moreover, no mitochondrial toxicities in skeletal muscle following the HLV injection of condensed pDNA were confirmed, as evidenced by cytochrome c oxidase activity and mitochondrial membrane potential. These findings have the potential to contribute to the development for in vivo mitochondrial gene delivery system.
Collapse
Affiliation(s)
- Yukari Yasuzaki
- Laboratory for molecular design of pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Yuma Yamada
- Laboratory for molecular design of pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Yutaka Fukuda
- Laboratory for molecular design of pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Hideyoshi Harashima
- Laboratory for molecular design of pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
18
|
Yasuzaki Y, Yamada Y, Kanefuji T, Harashima H. Localization of exogenous DNA to mitochondria in skeletal muscle following hydrodynamic limb vein injection. J Control Release 2013; 172:805-11. [PMID: 24100263 DOI: 10.1016/j.jconrel.2013.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 01/16/2023]
Abstract
Mitochondrial genetic disorders are a major cause of mitochondrial diseases. It is therefore likely that mitochondrial gene therapy will be useful for the treatment of such diseases. Here, we report on the possibility of mitochondrial gene delivery in skeletal muscle using hydrodynamic limb vein (HLV) injection. The HLV injection procedure, a useful method for transgene expression in skeletal muscle, involves the rapid injection of a large volume of naked plasmid DNA (pDNA) into the distal vein of a limb. We hypothesized that the technique could be used to deliver pDNA not only to nuclei but also to mitochondria, since cytosolic pDNA that is internalized by the method may be able to overcome mitochondrial membrane. We determined if pDNA could be delivered to myofibrillar mitochondria by HLV injection by PCR analysis. Mitochondrial toxicity assays showed that the HLV injection had no influence on mitochondrial function. These findings indicate that HLV injection promises to be a useful technique for in vivo mitochondrial gene delivery.
Collapse
Affiliation(s)
- Yukari Yasuzaki
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Duchenne muscular dystrophy is a severe neuromuscular disorder for which there is currently no cure. Years of research have come to fruition during the past 18 months with publications on clinical trials for several gene therapy approaches for Duchenne muscular dystrophy. This review covers the present status of these approaches. RECENT FINDINGS The exon skipping approach is most advanced in the process of clinical application. Encouraging results have been obtained in two systemic clinical trials and further optimization has increased delivery to the heart in animal models. Limitations of the approach are the mutation-specificity and the anticipated requirement for lifelong treatment. Gene therapy by means of gene transfer holds the promise of more long-lasting effects. Results of a first, early-stage gene therapy trial, using viral vectors to deliver a minidystrophin gene, were reported. Animal studies suggest that it may be possible to overcome the main challenges currently facing gene therapy (immunogenicity of the vector and systemic body-wide delivery). SUMMARY Significant steps have been made in the development of gene therapy approaches for Duchenne muscular dystrophy. These approaches aim to slow down disease progression, requiring robust outcome measures to assess efficacy.
Collapse
|
20
|
Abstract
A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a model of the disease, with accumulation of damaged organelles. The defect in autophagy was accompanied by persistent activation via phosphorylation of Akt, mammalian target of rapamycin (mTOR) and of the autophagy-inhibiting pathways dependent on them, including the translation-initiation factor 4E-binding protein 1 and the ribosomal protein S6, and downregulation of the autophagy-inducing genes LC3, Atg12, Gabarapl1 and Bnip3. The defective autophagy was rescued in mdx mice by long-term exposure to a low-protein diet. The treatment led to normalisation of Akt and mTOR signalling; it also reduced significantly muscle inflammation, fibrosis and myofibre damage, leading to recovery of muscle function. This study highlights novel pathogenic aspects of DMD and suggests autophagy as a new effective therapeutic target. The treatment we propose can be safely applied and immediately tested for efficacy in humans.
Collapse
|
21
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
22
|
Herson S, Hentati F, Rigolet A, Behin A, Romero NB, Leturcq F, Laforêt P, Maisonobe T, Amouri R, Haddad H, Audit M, Montus M, Masurier C, Gjata B, Georger C, Cheraï M, Carlier P, Hogrel JY, Herson A, Allenbach Y, Lemoine FM, Klatzmann D, Sweeney HL, Mulligan RC, Eymard B, Caizergues D, Voït T, Benveniste O. A phase I trial of adeno-associated virus serotype 1-γ-sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. ACTA ACUST UNITED AC 2012; 135:483-92. [PMID: 22240777 DOI: 10.1093/brain/awr342] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
γ-Sarcoglycanopathy or limb girdle muscular dystrophy type 2C is an untreatable disease caused by autosomal recessively inherited mutations of the γ-sarcoglycan gene. Nine non-ambulatory patients (two males, seven females, mean age 27 years; range 16-38 years) with del525T homozygous mutation of the γ-sarcoglycan gene and no γ-sarcoglycan immunostaining on muscle biopsy were divided into three equal groups to receive three escalating doses of an adeno-associated virus serotype 1 vector expressing the human γ-sarcoglycan gene under the control of the desmin promoter, by local injection into the extensor carpi radialis muscle. The first group received a single injection of 3 × 10(9) viral genomes in 100 µl, the second group received a single injection of 1.5 × 10(10) viral genomes in 100 µl, and the third group received three simultaneous 100-µl injections at the same site, delivering a total dose of 4.5 × 10(10) viral genomes. No serious adverse effects occurred during 6 months of follow-up. All nine patients became adeno-associated virus serotype 1 seropositive and one developed a cytotoxic response to the adeno-associated virus serotype 1 capsid. Thirty days later, immunohistochemical analysis of injected-muscle biopsy specimens showed γ-sarcoglycan expression in all three patients who received the highest dose (4.7-10.5% positively stained fibres), while real-time polymerase chain reaction detected γ-sarcoglycan messenger RNA. In one patient, γ-sarcoglycan protein was detected by western blot. For two other patients who received the low and intermediate doses, discrete levels of γ-sarcoglycan expression (<1% positively stained fibres) were also detectable. Expression of γ-sarcoglycan protein can be induced in patients with limb girdle muscular dystrophy type 2C by adeno-associated virus serotype 1 gene transfer, with no serious adverse effects.
Collapse
Affiliation(s)
- Serge Herson
- Service de Médecine Interne 1, Groupe Hospitalier Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fan Z, Kocis K, Valley R, Howard JF, Chopra M, An H, Lin W, Muenzer J, Powers W. Safety and feasibility of high-pressure transvenous limb perfusion with 0.9% saline in human muscular dystrophy. Mol Ther 2011; 20:456-61. [PMID: 21772257 DOI: 10.1038/mt.2011.137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We evaluated safety and feasibility of the transvenous limb perfusion gene delivery method in muscular dystrophy. A dose escalation study of single limb perfusion with 0.9% saline starting with 5% of limb volume was carried out in adults with muscular dystrophies under intravenous analgesia/anesthesia. Cardiac, vascular, renal, muscle, and nerve functions were monitored. A tourniquet was placed above the knee with inflated pressure of 310 mm Hg. Infusion was carried out with a clinically approved infuser via an intravenous catheter inserted in the saphenous vein with a goal infusion rate of 80 ml/minute. Infusion volume was escalated stepwise to 20% limb volume in seven subjects. No subject complained of any post procedure pain other than due to needle punctures. Safety warning boundaries were exceeded only for transient depression of limb tissue oximetry and transient elevation of muscle compartment pressures; these were not associated with nerve, muscle, or vascular damage. Muscle magnetic resonant imaging (MRI) demonstrated fluid accumulation in muscles of the perfused lower extremity. High-pressure retrograde transvenous limb perfusion with saline up to 20% of limb volume at above infusion parameters is safe and feasible in adult human muscular dystrophy. This study will serve as a basis for future gene transfer clinical trials.
Collapse
Affiliation(s)
- Zheng Fan
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schleef M, Schmeer M. Minicircle - Die nächste Generation nicht-viraler Gentherapie-Vektoren. Zirkuläre, superspiralisierte Expressionskassetten ersetzen Plasmid-DNA. ACTA ACUST UNITED AC 2011; 40:220-4. [DOI: 10.1002/pauz.201100417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Wooddell CI, Hegge JO, Zhang G, Sebestyén MG, Noble M, Griffin JB, Pfannes LV, Herweijer H, Hagstrom JE, Braun S, Huss T, Wolff JA. Dose response in rodents and nonhuman primates after hydrodynamic limb vein delivery of naked plasmid DNA. Hum Gene Ther 2011; 22:889-903. [PMID: 21338336 DOI: 10.1089/hum.2010.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The efficacy of gene therapy mediated by plasmid DNA (pDNA) depends on the selection of suitable vectors and doses. Using hydrodynamic limb vein (HLV) injection to deliver naked pDNA to skeletal muscles of the limbs, we evaluated key parameters that affect expression in muscle from genes encoded in pDNA. Short-term and long-term promoter comparisons demonstrated that kinetics of expression differed between cytomegalovirus (CMV), muscle creatine kinase, and desmin promoters, but all gave stable expression from 2 to 49 weeks after delivery to mouse muscle. Expression from the CMV promoter was highest. For mice, rats, and rhesus monkeys, the linear range for pDNA dose response could be defined by the mass of pDNA relative to the mass of target muscle. Correlation between pDNA dose and expression was linear between a threshold dose of 75 μg/g and maximal expression at approximately 400 μg/g. One HLV injection into rats of a dose of CMV-LacZ yielding maximal expression resulted in an average transfection of 28% of all hind leg muscle and 40% of the gastrocnemius and soleus. Despite an immune reaction to the reporter gene in monkeys, a single injection transfected an average of 10% of all myofibers in the targeted muscle of the arms and legs and an average of 15% of myofibers in the gastrocnemius and soleus.
Collapse
|
26
|
Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 2011; 19:830-40. [PMID: 21468001 DOI: 10.1038/mt.2011.59] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease affecting about one in every 3,500 boys. This X-linked pathology is due to the absence of dystrophin in muscle fibers. This lack of dystrophin leads to the progressive muscle degeneration that is often responsible for the death of the DMD patients during the third decade of their life. There are currently no curative treatments for this disease but different therapeutic approaches are being studied. Gene therapy consists of introducing a transgene coding for full-length or a truncated version of dystrophin complementary DNA (cDNA) in muscles, whereas pharmaceutical therapy includes the use of chemical/biochemical substances to restore dystrophin expression or alleviate the DMD phenotype. Over the past years, many potential drugs were explored. This led to several clinical trials for gentamicin and ataluren (PTC124) allowing stop codon read-through. An alternative approach is to induce the expression of an internally deleted, partially functional dystrophin protein through exon skipping. The vectors and the methods used in gene therapy have been continually improving in order to obtain greater encapsidation capacity and better transduction efficiency. The most promising experimental approaches using pharmaceutical and gene therapies are reviewed in this article.
Collapse
|
27
|
Wooddell CI, Subbotin VM, Sebestyén MG, Griffin JB, Zhang G, Schleef M, Braun S, Huss T, Wolff JA. Muscle Damage After Delivery of Naked Plasmid DNA into Skeletal Muscles Is Batch Dependent. Hum Gene Ther 2011; 22:225-35. [DOI: 10.1089/hum.2010.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | | | | | - Guofeng Zhang
- Department of Pediatrics and Department of Medical Genetics, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705
- Present affiliation: Roche Madison, Madison, WI 53711
| | | | - Serge Braun
- Association Française contre les Myopathies, 91002 Evry, France
| | | | - Jon A. Wolff
- Department of Pediatrics and Department of Medical Genetics, Waisman Center, University of Wisconsin-Madison, Madison, WI 53705
- Present affiliation: Roche Madison, Madison, WI 53711
| |
Collapse
|
28
|
Sun B, Li S, Bird A, Koeberl DD. Hydrostatic isolated limb perfusion with adeno-associated virus vectors enhances correction of skeletal muscle in Pompe disease. Gene Ther 2010; 17:1500-5. [PMID: 20686508 PMCID: PMC2988075 DOI: 10.1038/gt.2010.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) stems from the inherited deficiency of acid-α-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. We hypothesized that hydrostatic isolated limb perfusion (ILP) administration of an adeno-associated virus (AAV) vector containing a muscle specific promoter could achieve relatively higher transgene expression in the hindlimb muscles of GAA-knockout (GAA-KO) mice, in comparison with intravenous (IV) administration. ILP adminstration of AAV2/8 vectors encoding alkaline phosphatase or human GAA transduced skeletal muscles of the hindlimb widely, despite the relatively low number of vector particles administered (1×1011), and IV administration of an equivalent vector dose failed to transduce skeletal muscle detectably. Similarly, ILP administration of fewer vector particles of the AAV2/9 vector encoding human GAA (3×1010) transduced skeletal muscles of the hindlimb widely and significantly reduced glycogen content to, in comparison with IV administration. The only advantage for IV administration was moderately high level transduction of cardiac muscle, which demonstrated compellingly that ILP administration sequestered vector particles within the perfused limb. Reduction of glycogen storage in the extensor digitorum longus demonstrated the potential advantage of ILP-mediated delivery of AAV vectors in Pompe disease, because type II myofibers are resistant to enzyme replacement therapy. Thus, ILP will enhance AAV transduction of multiple skeletal muscles while reducing the required dosages in terms of vector particle numbers.
Collapse
Affiliation(s)
- B Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|