1
|
Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers (Basel) 2020; 12:E1889. [PMID: 32674264 PMCID: PMC7409174 DOI: 10.3390/cancers12071889] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have gained tremendous attention as in vivo delivery systems in gene therapy for inherited monogenetic diseases. First market approvals, excellent safety data, availability of large-scale production protocols, and the possibility to tailor the vector towards optimized and cell-type specific gene transfer offers to move from (ultra) rare to common diseases. Cancer, a major health burden for which novel therapeutic options are urgently needed, represents such a target. We here provide an up-to-date overview of the strategies which are currently developed for the use of AAV vectors in cancer gene therapy and discuss the perspectives for the future translation of these pre-clinical approaches into the clinic.
Collapse
Affiliation(s)
- Ulrich T. Hacker
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Dorota Kaniowska
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
2
|
Kim SH, Lee M, Cho M, Kim IS, Park KI, Lee H, Jang JH. Inverted Quasi-Spherical Droplets on Polydopamine-TiO2
Substrates for Enhancing Gene Delivery. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/18/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Mihyun Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
- Department of Health Sciences and Technology; ETH Zürich Otto-Stern-Weg 7 8093 Zürich Switzerland
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Il-Sun Kim
- Department of Pediatric; Yonsei University College of Medicine; 50-1 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Kook In Park
- Department of Pediatric; Yonsei University College of Medicine; 50-1 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Haeshin Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
3
|
Xu B, Jin Q, Zeng J, Yu T, Chen Y, Li S, Gong D, He L, Tan X, Yang L, He G, Wu J, Song X. Combined Tumor- and Neovascular-“Dual Targeting” Gene/Chemo-Therapy Suppresses Tumor Growth and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25753-25769. [PMID: 27615739 DOI: 10.1021/acsami.6b08603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bei Xu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Quansheng Jin
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jun Zeng
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ting Yu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yan Chen
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Shuangzhi Li
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Daoqiong Gong
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lili He
- College
of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Xiaoyue Tan
- Department
of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin 300071, China
| | - Li Yang
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Gu He
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiangrong Song
- State
Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China
Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Yu T, Xu B, He L, Xia S, Chen Y, Zeng J, Liu Y, Li S, Tan X, Ren K, Yao S, Song X. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration. Int J Nanomedicine 2016; 11:743-59. [PMID: 26955272 PMCID: PMC4772918 DOI: 10.2147/ijn.s97223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely used as systemic gene vectors.
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Bei Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Lili He
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu, Sichuan, People's Republic of China
| | - Shan Xia
- Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Yongmei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Shuangzhi Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Xiaoyue Tan
- Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, People's Republic of China
| | - Ke Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Yang L, Zhang Y, Cheng L, Yue D, Ma J, Zhao D, Hou X, Xiang R, Cheng P. Mesenchymal Stem Cells Engineered to Secrete Pigment Epithelium-Derived Factor Inhibit Tumor Metastasis and the Formation of Malignant Ascites in a Murine Colorectal Peritoneal Carcinomatosis Model. Hum Gene Ther 2016; 27:267-77. [PMID: 26756933 DOI: 10.1089/hum.2015.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The therapeutic effects of conventional treatments for advanced colorectal cancer with colorectal peritoneal carcinomatosis (CRPC) and malignant ascites are not very encouraging. Vascular endothelial growth factor-A/vascular permeability factors (VEGF-A/VPF) play key roles in the formation of malignant ascites. In previous work, we demonstrated that pigment epithelium-derived factor (PEDF) antagonized VEGF-A and could repress tumor growth and suppress metastasis in several cancer types. Thus, PEDF may be a therapeutic candidate for treating malignant ascites. Mesenchymal stem cells (MSCs) are promising tools for delivering therapeutic agents in cancer treatment. In the study, MSCs derived from bone marrow were efficiently engineered to secrete human PEDF by adenoviral transduction. Then, intraperitoneal Ad-PEDF-transduced MSCs were analyzed with respect to CRPC and malignant ascites in a CT26 CRPC model. MSCs engineered to secrete PEDF through adenoviral transduction significantly inhibited tumor metastasis and malignant ascites formation in CT26 CRPC mice. Antitumor mechanisms of MSCs-PEDF (MSCs transduced with Ad-PEDF: MOI 500) were associated with inhibiting tumor angiogenesis, inducing apoptosis, and restoring the VEGF-A/sFLT-1 ratio in ascites. Moreover, MSC-mediated Ad-PEDF delivery reduced production of adenovirus-neutralizing antibodies, prolonged PEDF expression, and induced MSCs-PEDF migration toward tumor cells. As a conclusion, MSCs engineered to secrete PEDF by adenoviral transduction may be a therapeutic approach for suppressing tumor metastasis and inhibiting malignant ascites production in CRPC.
Collapse
Affiliation(s)
- Liping Yang
- 1 Tumor Biotherapy Center/Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Gansu Province, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuwei Zhang
- 2 Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Liuliu Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Dan Yue
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jinhu Ma
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Da Zhao
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaoming Hou
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Rong Xiang
- 5 School of Medicine/Collaborative Innovation Center for Biotherapy, Nankai University , Tianjin, People's Republic of China
| | - Ping Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Xu B, Xia S, Wang F, Jin Q, Yu T, He L, Chen Y, Liu Y, Li S, Tan X, Ren K, Yao S, Zeng J, Song X. Polymeric Nanomedicine for Combined Gene/Chemotherapy Elicits Enhanced Tumor Suppression. Mol Pharm 2016; 13:663-76. [PMID: 26695934 DOI: 10.1021/acs.molpharmaceut.5b00922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bei Xu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shan Xia
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan 610041, China
| | - Fazhan Wang
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Quansheng Jin
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Ting Yu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Lili He
- College of Chemistry and Environment Protection
Engineering, Southwest University for Nationalities, Chengdu, Sichuan 610041, China
| | - Yan Chen
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Yongmei Liu
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shuangzhi Li
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiaoyue Tan
- Department
of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin 300071, China
| | - Ke Ren
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Shaohua Yao
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jun Zeng
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xiangrong Song
- State Key
Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| |
Collapse
|