1
|
Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M, Nazemalhosseini Mojarad E. Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches. Dig Dis Sci 2025; 70:919-942. [PMID: 39869166 PMCID: PMC11919954 DOI: 10.1007/s10620-024-08774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes. This comprehensive review explores the latest clinical trials and advancements, encompassing targeted molecular therapies, immunomodulatory agents, and cell-based therapies. By evaluating the strengths, limitations, and potential synergies of these approaches, this research aims to reshape the treatment landscape and improve clinical outcomes for CRC patients, offering new found hope for those who have exhausted conventional options. The culmination of this work is anticipated to pave the way for transformative clinical trials, ushering in a new era of personalized and effective CRC therapy.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Shabnam Shahrivari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Mandana AmeliMojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Melika Amelimojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Meygol Mirzaei Rezaei
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Parsa Nobaveh
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
2
|
Li L, Zhang Z, Xu W, Wang J, Feng X. The diagnostic value of serum exosomal SNORD116 and SNORA21 for NSCLC patients. Clin Transl Oncol 2025; 27:650-659. [PMID: 39017954 DOI: 10.1007/s12094-024-03606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a widespread and serious global malignancy. This study aimed to examine the clinical relevance of serum exosomal SNORD116 and SNORA21 as novel diagnostic biomarkers for NSCLC. METHODS Serum exosomes from 226 healthy controls and 305 NSCLC patients were isolated by ultracentrifugation. Characterization of exosomes was conducted by qNano, transmission electron microscopy (TEM) and Western immunoblotting. RT-PCR revealed snoRNAs that were differentially expressed. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic performance. RESULTS In NSCLC patients, the levels of serum exosomal SNORD116 and SNORA21 were significantly reduced compared to those in healthy controls (P < 0.0001 for both). ROC curves showed AUC values of 0.738 and 0.761. By combining SNORD116 and SNORA21 with traditional blood biomarkers CYFRA21-1 and carcinoembryonic antigen (CEA), the AUC increased to 0.917. Moreover, these two exosomal snoRNAs distinguished between patients with metastatic NSCLC (n = 132) and those with non-metastatic NSCLC (n = 173) significantly (P < 0.0001 for both). The ROC curves gave AUC values of 0.743 and 0.694, respectively. The combined analysis raised the AUC to 0.751. The diagnostic power of these two exosomal snoRNAs combined with CYFRA21-1 and CEA increased to 0.784. CONCLUSION This study demonstrated that serum exosomal SNORD116 and SNORA21 can be used as potential promising non-invasive diagnostic biomarkers for NSCLC.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy Intravenous Admixture Services, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Zhijun Zhang
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
- Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant drug research, Taian City Central Hospital, Taian, 271000, China
| | - Wei Xu
- Department of Clinical Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Jun Wang
- Medical Research & Laboratory Diagnostic Center, Shandong Academy of Medical Sciences, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, China
| | - Xiaodong Feng
- Medical Research & Laboratory Diagnostic Center, Shandong Academy of Medical Sciences, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, China.
| |
Collapse
|
3
|
Bao B, Tian M, Wang X, Yang C, Qu J, Zhou S, Cheng Y, Tong Q, Zheng L. SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing. J Exp Clin Cancer Res 2025; 44:15. [PMID: 39815331 PMCID: PMC11737211 DOI: 10.1186/s13046-025-03278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive. METHODS High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events. Biotin-labeled RNA pull-down, mass spectrometry, cross-linking RNA immunoprecipitation, and in vitro binding assays were applied to explore interaction of snoRNAs with protein partners. Alternative splicing and gene expression was observed by real-time quantitative RT-PCR and western blot assays. In vitro and in vivo studies were performed to investigate biological effects of snoRNAs and their protein partners in gastric cancer. Survival analysis was undertaken by using Kaplan-Meier method and log-rank test. RESULTS SNORA37 was identified as an up-regulated snoRNA essential for tumorigenesis and aggressiveness of gastric cancer. Gain- and loss-of-function studies indicated that SNORA37 promoted the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, as an ELAV like RNA binding protein 1 (ELAVL1)-generated snoRNA, SNORA37 directly bound to cap methyltransferase 1 (CMTR1) to facilitate its interaction with ELAVL1, resulting in nuclear retention and activity of ELAVL1 in regulating alternative splicing of CD44. Rescue studies revealed that SNORA37 exerted oncogenic roles in gastric cancer progression via facilitating CMTR1-ELAVL1 interaction. In clinical gastric cancer cases, high levels of SNORA37, CMTR1, ELAVL1, or CD44 were associated with shorter survival and poor outcomes of patients. CONCLUSIONS These results indicated that SNORA37/CMTR1/ELAVL1 feedback loop drives gastric cancer progression via facilitating CD44 alternative splicing.
Collapse
Affiliation(s)
- Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Jiaying Qu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Shunchen Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
| |
Collapse
|
4
|
Gu Y, Yi Z, Zhou Z, Wang J, Li S, Zhu P, Liu N, Xu Y, He L, Wang Y, Fan Z. SNORD88B-mediated WRN nucleolar trafficking drives self-renewal in liver cancer initiating cells and hepatocarcinogenesis. Nat Commun 2024; 15:6730. [PMID: 39112443 PMCID: PMC11306581 DOI: 10.1038/s41467-024-50987-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Whether small nucleolar RNAs (snoRNAs) are involved in the regulation of liver cancer stem cells (CSCs) self-renewal and serve as therapeutic targets remains largely unclear. Here we show that a functional snoRNA (SNORD88B) is robustly expressed in Hepatocellular carcinoma (HCC) tumors and liver CSCs. SNORD88B deficiency abolishes the self-renewal of liver CSCs and hepatocarcinogenesis. Mechanistically, SNORD88B anchors WRN in the nucleolus, promoting XRCC5 interacts with STK4 promoter to suppress its transcription, leading to inactivation of Hippo signaling. Moreover, low expression of STK4 and high expression of XRCC5 are positively correlated with HCC poor prognosis. Additionally, snord88b knockout suppresses mouse liver tumorigenesis. Notably, co-administration of SNORD88B antisense oligonucleotides (ASOs) with MST1 agonist adapalene (ADA) exert synergistic antitumor effects and increase overall murine survival. Our findings delineate that SNORD88B drives self-renewal of liver CSCs and accelerates HCC tumorigenesis via non-canonical mechanism, providing potential targets for liver cancer therapy by eliminating liver CSCs.
Collapse
Affiliation(s)
- Yang Gu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Yi
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziheng Zhou
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianyi Wang
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan Li
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Nian Liu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Xu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China.
| | - Yanying Wang
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Zusen Fan
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Huo M, Rai SK, Nakatsu K, Deng Y, Jijiwa M. Subverting the Canon: Novel Cancer-Promoting Functions and Mechanisms for snoRNAs. Int J Mol Sci 2024; 25:2923. [PMID: 38474168 PMCID: PMC10932220 DOI: 10.3390/ijms25052923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.
Collapse
Affiliation(s)
- Matthew Huo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Sudhir Kumar Rai
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Ken Nakatsu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| |
Collapse
|
6
|
Lan YZ, Wu Z, Chen WJ, Fang ZX, Yu XN, Wu HT, Liu J. Small nucleolar RNA and its potential role in the oncogenesis and development of colorectal cancer. World J Gastroenterol 2024; 30:115-127. [PMID: 38312115 PMCID: PMC10835520 DOI: 10.3748/wjg.v30.i2.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) represent a class of non-coding RNAs that play pivotal roles in post-transcriptional RNA processing and modification, thereby contributing significantly to the maintenance of cellular functions related to protein synthesis. SnoRNAs have been discovered to possess the ability to influence cell fate and alter disease progression, holding immense potential in controlling human diseases. It is suggested that the dysregulation of snoRNAs in cancer exhibits differential expression across various cancer types, stages, metastasis, treatment response and/or prognosis in patients. On the other hand, colorectal cancer (CRC), a prevalent malignancy of the digestive system, is characterized by high incidence and mortality rates, ranking as the third most common cancer type. Recent research indicates that snoRNA dysregulation is associated with CRC, as snoRNA expression significantly differs between normal and cancerous conditions. Consequently, assessing snoRNA expression level and function holds promise for the prognosis and diagnosis of CRC. Nevertheless, current comprehension of the potential roles of snoRNAs in CRC remains limited. This review offers a comprehensive survey of the aberrant regulation of snoRNAs in CRC, providing valuable insights into the discovery of novel biomarkers, therapeutic targets, and potential tools for the diagnosis and treatment of CRC and furnishing critical cues for advancing research into CRC and the judicious selection of therapeutic targets.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
7
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
8
|
Zhang H, Liu X, Zhang W, Deng J, Lin C, Qi Z, Li Y, Gu Y, Wang Q, Shen L, Wang Z. Oncogene SCARNA12 as a potential diagnostic biomarker for colorectal cancer. MOLECULAR BIOMEDICINE 2023; 4:37. [PMID: 37907779 PMCID: PMC10618143 DOI: 10.1186/s43556-023-00147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive system, and represents a severe threat to the life and health of individuals. Increasing evidence supports the role of small nucleolar RNAs (snoRNAs) as critical regulatory gene in cancer development. Small Cajal body-specific RNAs (scaRNAs), a subtype of snoRNAs, are named for their subcellular localization within Cajal bodies. SCARNA12, which located at the intronic region of PHB2 in chromosome 12p13.31 with 270 nucleotides (nt) in length. It has been reported function as a diagnostic marker for cervical cancer. However, its biological functions and molecular mechanisms in CRC have yet to be elucidated. In this study, bioinformatics analysis revealed that SCARNA12 was highly expressed in CRC and positively correlated with poor prognosis in CRC patients. Additionally, SCARNA12 showed upregulated expression in CRC cell lines and clinical CRC tissue samples. Moreover, SCARNA12 overexpression in SW620 cells accelerated cell proliferation, suppressed the apoptosis rate, and enhanced tumorigenesis in vivo. The knockdown of SCARNA12 expression in HCT116 and HT29 cells resulted in contrasting effects. The functioning of SCARNA12 is mechanically independent of its host gene PHB2. Notably, the overexpression of SCARNA12 activated PI3K/AKT pathway in SW620 cells, and the malignancy degree of CRC cells was attenuated after treatment with MK2206 (a specific AKT inhibitor). Our findings demonstrated that SCARNA12 plays an oncogenic role in CRC progression and can be used as a potential diagnostic biomarker for CRC.
Collapse
Affiliation(s)
- Hong Zhang
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Xin Liu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Wencheng Zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Jiarong Deng
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Chuxian Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Yaqiong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Yongqing Gu
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China.
| | - Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China.
| | - Zhidong Wang
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100039, China.
| |
Collapse
|
9
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
10
|
Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int J Mol Sci 2022; 23:9272. [PMID: 36012529 PMCID: PMC9408889 DOI: 10.3390/ijms23169272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This review is devoted to changes in the post-transcriptional maturation of RNA in human glioblastoma cells, which leads to disruption of the normal course of apoptosis in them. The review thoroughly highlights the latest information on both post-transcriptional modifications of certain regulatory RNAs, associated with the process of apoptosis, presents data on the features of apoptosis in glioblastoma cells, and shows the relationship between regulatory RNAs and the apoptosis in tumor cells. In conclusion, potential target candidates are presented that are necessary for the development of new drugs for the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Maya Dymova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
11
|
Ren Y, Miao JM, Wang YY, Fan Z, Kong XB, Yang L, Cheng G. Oncolytic viruses combined with immune checkpoint therapy for colorectal cancer is a promising treatment option. Front Immunol 2022; 13:961796. [PMID: 35911673 PMCID: PMC9334725 DOI: 10.3389/fimmu.2022.961796] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy is one of the promising strategies in the treatment of oncology. Immune checkpoint inhibitors, as a type of immunotherapy, have no significant efficacy in the clinical treatment of patients with pMMR/MSS/MSI-L mCRC alone. Therefore, there is an urgent need to find combination therapies that can improve the response rate of immune checkpoint inhibitors. Oncolytic viruses are a new class of cancer drugs that, in addition to directly lysing tumor cells, can facilitate the action of immune checkpoint inhibitors by modulating the tumor microenvironment and transforming “cold” tumors into “hot” ones. The combination of oncolytic viruses and immune checkpoint inhibitors is currently being used in several primary and clinical studies to treat tumors with exciting results. The combination of genetically modified “armed” OV with ICIs is expected to be one of the treatment options for pMMR/MSS/MSI-L mCRC. In this paper, we will analyze the current status of oncolytic viruses and ICIs available for the treatment of CRC. The feasibility of OV in combination with ICI for CRC will be discussed in terms of the mechanism of action of OV in treating tumors.
Collapse
Affiliation(s)
- Yi Ren
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Meng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Yuan Wang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Fan
- Department of Critical Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Xian-Bin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| |
Collapse
|
12
|
SnoRNA in Cancer Progression, Metastasis and Immunotherapy Response. BIOLOGY 2021; 10:biology10080809. [PMID: 34440039 PMCID: PMC8389557 DOI: 10.3390/biology10080809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary A much larger number of small nucleolar RNA (snoRNA) have been found encoded within our genomes than we ever expected to see. The activities of the snoRNAs were thought restricted to the nucleolus, where they were first discovered. Now, however, their significant number suggests that their functions are more diverse. Studies in cancers have shown snoRNA levels to associate with different stages of disease progression, including with metastasis. In addition, relationships between snoRNA levels and response to immunotherapies, have been reported. Emerging technologies now allow snoRNA to be targeted directly in cancers, and the therapeutic value of this is being explored. Abstract Small nucleolar RNA (snoRNA) were one of our earliest recognised classes of non-coding RNA, but were largely ignored by cancer investigators due to an assumption that their activities were confined to the nucleolus. However, as full genome sequences have become available, many new snoRNA genes have been identified, and multiple studies have shown their functions to be diverse. The consensus now is that many snoRNA are dysregulated in cancers, are differentially expressed between cancer types, stages and metastases, and they can actively modify disease progression. In addition, the regulation of the snoRNA class is dominated by the cancer-supporting mTOR signalling pathway, and they may have particular significance to immune cell function and anti-tumour immune responses. Given the recent advent of therapeutics that can target RNA molecules, snoRNA have robust potential as drug targets, either solely or in the context of immunotherapies.
Collapse
|
13
|
Shang X, Song X, Wang K, Yu M, Ding S, Dong X, Xie L, Song X. SNORD63 and SNORD96A as the non-invasive diagnostic biomarkers for clear cell renal cell carcinoma. Cancer Cell Int 2021; 21:56. [PMID: 33461545 PMCID: PMC7812721 DOI: 10.1186/s12935-020-01744-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Increasing evidence has demonstrated that snoRNAs play crucial roles in tumorigenesis of various cancer types. However, researches on snoRNAs in ccRCC were very little. This study mainly aimed to validate the differential expression and the potential diagnostic value of SNORD63 and SNORD96A in ccRCC. Methods SnoRNAs expression was downloaded from the SNORic and TCGA database including 516 patients with ccRCC and 71 control cases. SNORD63 and SNORD96A expression were further detected in 54 tumor and adjacent FFPE ccRCC tissues, 55 plasma and 75 urinary sediment of ccRCC patients. Then, differential expression and diagnostic value of SNORD63 and SNORD96A were further calculated. Results SNORD63 and SNORD96A expression were significantly increased in ccRCC tissues compared with normal tissues from the TCGA database (both, P < 0.0001). In addition, we found that SNORD63 and SNORD96A localized in plasma and US stably after treating with RNase A. Meanwhile, SNORD63 and SNORD96A in FFPE and US were elevated in ccRCC patients (all, P < 0.0001). However, plasma SNORD63 expression had no significance while SNORD96A significantly increased in plasma of ccRCC patients. Notably, the AUC of SNORD63 in US was 0.7055, by comparison the AUC of plasma SNORD63 was only 0.5161. However, the AUC of plasma SNORD96A was up to 0.8909, by comparison the AUC of SNORD96A in US was 0.6788. Interestingly, the AUC of plasma SNORD96A in early stage ccRCC was highly up to 0.9359. Conclusions Our findings revealed that SNORD63 in US and SNORD96A in plasma could act as the promising non-invasive diagnostic biomarkers for ccRCC patients.
Collapse
Affiliation(s)
- Xiaoling Shang
- Department of Clinical Laboratory, Cheeloo College of Medicine, Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250012, Shandong, China.,Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Kangyu Wang
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Miao Yu
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China.,Department of Clinical Laboratory, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250031, China
| | - Shanshan Ding
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xiaohan Dong
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Li Xie
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, 440 Ji-Yan Road, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Salimimoghadam S, Taefehshokr S, Loveless R, Teng Y, Bertoli G, Taefehshokr N, Musaviaroo F, Hajiasgharzadeh K, Baradaran B. The role of tumor suppressor short non-coding RNAs on breast cancer. Crit Rev Oncol Hematol 2020; 158:103210. [PMID: 33385514 DOI: 10.1016/j.critrevonc.2020.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Characterized by remarkable levels of aggression and malignancy, BC remains one of the leading causes of death in females world wide. Accordingly, significant efforts have been made to develop early diagnostic tools, increase treatment efficacy, and improve patient prognosis. Hopefully, many of the molecular mechanisms underlying BC have been detected and show promising targeting potential. In particular, short and long non-coding RNAs (ncRNAs) are a class of endogenous BC controllers and include a number of different species including microRNAs, Piwi-interacting RNAs, small nucleolar RNA, short interfering RNAs, and tRNA-derivatives. In this review, we discuss the tumor suppressing roles of ncRNAs in the context of BC, and the mechanisms by which ncRNAs target tumor hallmarks, including apoptosis, proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, and cell cycle progression, in addition to their diagnostic and prognostic significance in cancer treatment.
Collapse
Affiliation(s)
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
SNORA71A Promotes Colorectal Cancer Cell Proliferation, Migration, and Invasion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8284576. [PMID: 33083486 PMCID: PMC7559222 DOI: 10.1155/2020/8284576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Small nucleolar RNAs (snoRNAs) play a crucial role during colorectal cancer (CRC) development. The study of SNORA71A is few, and its role in CRC is unknown. This study focused on screening abnormal snoRNAs in CRC and exploring the role of key snoRNA in CRC. The expression pattern of snoRNAs in 3 CRC and 3 normal colon tissues was detected via small RNA sequencing. The six candidate snoRNAs were identified by quantitative PCR (qPCR). Subsequently, the expression level of SNORA71A was further verified through the Cancer Genome Atlas (TCGA) data analysis and qPCR. The CCK8 and transwell assays were used to detect the functional role of SNORA71A in CRC cells. The integrated analysis of snoRNA expression profile indicated that a total 107 snoRNAs were significantly differentially expressed (DE) in CRC tissues compared with normal tissues, including 45 upregulated and 62 downregulated snoRNAs. Bioinformatics analysis revealed that the DE snoRNAs were mainly implicated in "detection of chemical stimulus involved in sensory perception of smell" and "sensory perception of smell" in the biological process. The DE snoRNAs were preferentially enriched in "olfactory transduction" and "glycosphingolipid biosynthesis-ganglio series pathway." The expression of SNORA71A was upregulated in CRC tissues and cells. SNORA71A expression showed statistically significant correlations with TNM stage (P = 0.0196) and lymph node metastasis (P = 0.0189) and can serve as biomarkers for CRC. Importantly, SNORA71A significantly facilitated the CRC cell proliferation, migration, and invasion. Our findings indicate that SNORA71A screened by sequencing acted as an oncogene and promoted proliferation, migration, and invasion ability of CRC cells.
Collapse
|
16
|
Janin M, Coll-SanMartin L, Esteller M. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol Cancer 2020; 19:70. [PMID: 32241281 PMCID: PMC7114786 DOI: 10.1186/s12943-020-01192-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic changes deregulate RNA and protein expression in cancer cells. In this regard, tumors exhibit an abnormal proteome in comparison to the corresponding normal tissues. Translation control is a crucial step in the regulation of gene expression regulation under normal and pathological conditions that ultimately determines cellular fate. In this context, evidence shows that transfer and ribosomal RNA (tRNA and rRNA) modifications affect the efficacy and fidelity of translation. The number of RNA modifications increases with the complexity of organisms, suggesting an evolutionary diversification of the possibilities for fine-tuning the functions of coding and non-coding RNAs. In this review, we focus on alterations of modifications of transfer and ribosomal RNA that affect translation in human cancer. This variation in the RNA modification status can be the result of altered modifier expression (writers, readers or erasers), but also due to components of the machineries (C/D or H/ACA boxes) or alterations of proteins involved in modifier expression. Broadening our understanding of the mechanisms by which site-specific modifications modulate ribosome activity in the context of tumorigenesis will enable us to enrich our knowledge about how ribosomes can influence cell fate and form the basis of new therapeutic opportunities.
Collapse
Affiliation(s)
- Maxime Janin
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Laia Coll-SanMartin
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
17
|
Xia XR, Li WC, Yu ZT, Li J, Peng CY, Jin L, Yuan GL. Effects of small nucleolar RNA SNORD44 on the proliferation, apoptosis and invasion of glioma cells. Histochem Cell Biol 2020; 153:257-269. [PMID: 32062699 DOI: 10.1007/s00418-020-01848-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
To master the effect of small nucleolar RNA, SNORD44, on the proliferation, apoptosis and invasion of glioma cells and its relevant mechanism. SNORD44 and GAS5 expression in glioma tissues and cells was detected through qRT-PCR. Then, the glioma cell lines (U87 and U251) were divided into different groups with different treatments. Cell proliferation was determined by MTT assay, while the abilities of the cell migration and invasion were measured by wound-healing test and Transwell assay, respectively. Cell apoptosis were detected by flow cytometry and TUNEL assay. The expression of apoptosis proteins was quantified through Western blotting. Finally, the xenograft models were established on nude mice to investigate the effects of SNORD44 on the growth of glioma and the expressions of Ki67, MMP2 and MMP9 in vivo. SNORD44 and GAS5 were down-regulated in glioma tissues and cells in a positive correlation. Either SNORD44 or GAS5 overexpression decreased the proliferation, invasion and migration of U87 and U251 cells with the up-regulation of apoptosis rates, as well as the expressions of cleaved PARP, caspase 3, caspase 8 and caspase 9. Moreover, the in vivo experiment showed that overexpression of SNORD44 blocked the growth of glioma xenograft in nude mice accompanying with the inhibition of Ki67, MMP2 and MMP9 expressions. The combination overexpression of SNORD44 and GAS5 gained better inhibitory effects on glioma cells. Overexpression of SNORD44 and GAS5 activate the caspase-dependent apoptosis pathway to facilitate the apoptosis with the inhibited proliferation, invasion and migration of glioma cells.
Collapse
Affiliation(s)
- Xian-Ru Xia
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, Hubei, China
| | - Wen-Cui Li
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, Hubei, China
| | - Zong-Tao Yu
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, Hubei, China
| | - Jie Li
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, Hubei, China
| | - Chun-Yan Peng
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, Hubei, China
| | - Li Jin
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, Hubei, China
| | - Guo-Lin Yuan
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, Hubei, China.
| |
Collapse
|
18
|
Abstract
Despite advanced clinical treatments, mortality in patients with metastatic colorectal cancer (CRC) remains high. Three critical determinants in CRC progression include the epithelial proliferation checkpoints, epithelial-to-mesenchymal transition (EMT) and inflammatory cytokines in the tumour microenvironment. Genes involved in these three processes are regulated at the transcriptional and post-transcriptional level. Recent studies revealed previously unappreciated roles of non-coding ribonucleic acids (ncRNAs) in modulating the proliferation checkpoints, EMT, and inflammatory gene expression in CRC. In this review, we will discuss the mechanisms underlying the roles of ncRNAs in CRC as well as examine future perspectives in this field. Better understanding of ncRNA biology will provide novel targets for future therapeutic development.
Collapse
Affiliation(s)
- Shengyun Ma
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | - Tianyun Long
- Cellular and Molecular Medicine, University of California , San Diego, USA
| | | |
Collapse
|
19
|
Yang H, Jiang Z, Wang S, Zhao Y, Song X, Xiao Y, Yang S. Long non-coding small nucleolar RNA host genes in digestive cancers. Cancer Med 2019; 8:7693-7704. [PMID: 31691514 PMCID: PMC6912041 DOI: 10.1002/cam4.2622] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/21/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Although long noncoding RNAs (lncRNAs) do not have protein coding capacities, they are involved in the pathogenesis of many types of cancers, including hepatocellular carcinoma, cervical cancer, and gastric cancer. Notably, the roles of lncRNAs are vital in nearly every aspect of tumor biology. Long non-coding small nucleolar RNA host genes (lnc-SNHGs) are abnormally expressed in multiple cancers, including urologic neoplasms, respiratory tumors, and digestive cancers, and play vital roles in these cancers. These host genes could participate in tumorigenesis by regulating proliferation, migration, invasion and apoptosis of tumor cells. This review focuses on the overview of the roles that lnc-SNHGs play in the formation and progression of digestive cancers.
Collapse
Affiliation(s)
- Huan Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Zheng Jiang
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shuang Wang
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Yongbing Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Xiaomei Song
- Department of GastroenterologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of GastroenterologyPeople's Hospital of Changshou ChongqingChongqingChina
| | - Yufeng Xiao
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
20
|
Yu Y, Hann SS. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) In Human Cancer. Onco Targets Ther 2019; 12:8421-8436. [PMID: 31632088 PMCID: PMC6794681 DOI: 10.2147/ott.s221305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial regulatory roles in fundamental biological processes, and deregulations of lncRNAs have been linked to numerous human diseases, especially cancers. Of particular interest in this regard is lncRNA GAS5, which is mainly identified as a tumor suppressor in several cancers. GAS5 was significantly low expressed in multiple cancers and was associated with clinic-pathological characteristics and patient survival, indicating a novel potential diagnostic and prognostic biomarker, and a therapeutic target for cancer. Functionally, GAS5 is involved in cell proliferation, metastasis, invasion, apoptosis, epithelial-mesenchymal transition (EMT), and drug resistance, among others, via multiple molecular mechanisms, such as binding to DNA sequences, forming RNA-DNA triplex complex, triggering or suppressing the expression of genes, binding proteins to form chromatin-modifying complex, which activates or represses gene expression, and acting as miRNA sponge to suppress miRNA expression, leading to regulation of miRNA target genes. This review provides an overview of the current state of knowledge and role of GAS5 in clinical relevance, biological functions and molecular mechanisms underlying the dysregulation of expression and function of GAS5 in cancer. Finally, the potential prospective role as diagnostic and prognostic biomarker and therapeutic target in cancer is discussed.
Collapse
Affiliation(s)
- Yaya Yu
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510120, People's Republic of China
| |
Collapse
|
21
|
Luo T, Chen M, Zhao Y, Wang D, Liu J, Chen J, Luo H, Li L. Macrophage-associated lncRNA ELMO1-AS1: a novel therapeutic target and prognostic biomarker for hepatocellular carcinoma. Onco Targets Ther 2019; 12:6203-6216. [PMID: 31498334 PMCID: PMC6689543 DOI: 10.2147/ott.s213833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a prevalent malignant tumor. Long non-coding RNAs (lncRNAs) have been demonstrated to be abnormally expressed in many tumors and act as crucial regulators in various biological processes. However, the expression and function of the recently identified macrophage-associated lncRNA ELMO1 antisense RNA 1 (ELMO1-AS1) in HCC are unclear. Methods The expression of ELMO1-AS1 was determined in HCC tissues and adjacent nontumorous tissues by quantitative real-time polymerase chain reaction (qRT-PCR). The Kaplan-Meier survival analysis and Cox regression analysis were performed to establish the correlation between the expression level and survival of HCC patients in a training set and a validation set, respectively. The overexpression experiments were also conducted to investigate the biological role of ELMO1-AS1 in HCC cells. Results We uncovered that ELMO1-AS1 was significantly downregulated in HCC tissues, and high expression of ELMO1-AS1 is correlated with optimistic treatment outcome suggesting its potential as an independent prognostic biomarker for HCC. It was also found that overexpression of ELMO1-AS1 in HCC cells suppressed cell proliferation, migration and invasion and engulfment and cell motility 1 (ELMO1) may be a target of ELMO1-AS1. Conclusion Our results suggested that macrophage-associated lncRNA ELMO1-AS1 could be a crucial regulator involved in HCC progression and considered as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Luo
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| | - Miao Chen
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province 530021, People's Republic of China
| | - Yuan Zhao
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| | - Duo Wang
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province 530021, People's Republic of China
| | - Junjie Liu
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province 530021, People's Republic of China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| | - Honglin Luo
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, People's Republic of China
| |
Collapse
|
22
|
Liang J, Wen J, Huang Z, Chen XP, Zhang BX, Chu L. Small Nucleolar RNAs: Insight Into Their Function in Cancer. Front Oncol 2019; 9:587. [PMID: 31338327 PMCID: PMC6629867 DOI: 10.3389/fonc.2019.00587] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/17/2019] [Indexed: 02/04/2023] Open
Abstract
Small nucleolar RNAs (SnoRNAs) are a class of non-coding RNAs divided into two classes: C/D box snoRNAs and H/ACA box snoRNAs. The canonical function of C/D box and H/ACA box snoRNAs are 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. Emerging evidence has demonstrated that snoRNAs are involved in various physiological and pathological cellular processes. Mutations and aberrant expression of snoRNAs have been reported in cell transformation, tumorigenesis, and metastasis, indicating that snoRNAs may serve as biomarkers and/or therapeutic targets of cancer. Hence, further study of the functions and underlying mechanism of snoRNAs is valuable. In this review, we summarize the biogenesis and functions of snoRNAs, as well as the association of snoRNAs in different types of cancers and their potential roles in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
lncRNA GAS5 Inhibits Cell Migration and Invasion and Promotes Autophagy by Targeting miR-222-3p via the GAS5/PTEN-Signaling Pathway in CRC. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:644-656. [PMID: 31400607 PMCID: PMC6698928 DOI: 10.1016/j.omtn.2019.06.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023]
Abstract
Colorectal cancer (CRC) is a frequently occurring lethal disorder with heterogeneous outcomes and drug responses. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) play a critical role in carcinogenesis. Hence, the aim of this study was to investigate the role of lncRNA growth arrest-specific 5 (GAS5) in CRC cells via mediation of the microRNA-222-3p (miR-222-3p)/GAS5/phosphatase and tensin homolog (PTEN)-signaling pathway. HCT116 and SW480 cells were collected and treated with small interfering (si)-lncRNA GAS5, overexpressing (oe)-lncRNA GAS5, miR-222-3p mimic, miR-222-3p inhibitor, or si-lncRNA GAS5 + miR-222-3p mimic. The miR-222-3p level and mRNA and protein levels of GAS5, Beclin1, light-chain 3B (LC3B), PTEN, and Akt were detected. Besides, cell migration, invasion, and apoptosis as well as acidic vesicular organelles (AVOs) were examined respectively. Xenografts in nude mice were also performed to detect tumorigenesis in vivo. Results suggested that the downregulation of lncRNA GAS5 decreased the expressions of Beclin1, LC3B, and PTEN. When treated with oe-lncRNA GAS5 or miR-222-3p inhibitor, HCT116 and SW480 cells exhibited suppressed invasion and migration abilities and increased apoptotic cells and autophagosome and AVO activities. Moreover, overexpression of GAS5 inhibited the tumorigenesis of CRC cells in vivo. Taken together, lncRNA GAS5 upregulated the expression of PTEN by functioning as a competing endogenous RNA (ceRNA) of miR-222-3p, thus inhibiting CRC cell migration and invasion and promoting cell autophagy.
Collapse
|
24
|
Association between polymorphism in the promoter region of lncRNA GAS5 and the risk of colorectal cancer. Biosci Rep 2019; 39:BSR20190091. [PMID: 30902880 PMCID: PMC6465203 DOI: 10.1042/bsr20190091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
The growth arrest special 5 (GAS5), as a research hotspot of long noncoding RNAs (lncRNAs), has been reported to be associated with colorectal cancer (CRC). However, the association between polymorphisms in GAS5 and the risk of CRC was not clear. In the present study, a case–control study in 1078 CRC patients and 1175 matched healthy controls was performed to evaluate the association between the potential functional genetic variants in GAS5 and the risk of CRC. PCR-TaqMan, qPCR, dual-luciferase assay, electrophoretic mobility shift assay (EMSA), flow cytometry, migration and invasion assays were performed to evaluate the function of polymorphism. Results showed that subjects carrying the rs55829688 CT/TT genotypes had a significantly higher risk of CRC when compared with the CC genotype. Further qPCR assay confirmed that the CRC tissues with rs55829688 CT/TT genotypes had a higher GAS5 mRNA expression level. The dual-luciferase assay, qPCR and EMSA assay revealed that rs55829688 T>C polymorphism could decrease the expression level of GAS5 by impacting the binding ability of the transcription factor Yin Yang-1 (YY1) to the GAS5 promoter region. The expression of apoptosis-related proteins were detected by Western blot. Further, flow cytometry, migration, and invasion experiments showed that GAS5 repressed apoptosis and increased invasion and migration capability of CRC cells. Taken together, our findings provided evidence that the rs55829688 variant in the GAS5 promoter was associated with the risk of CRC and decreased expression of GAS5 by affecting the binding affinity of the transcription factors YY1 to GAS5.
Collapse
|
25
|
Growth arrest specific transcript 5 in tumorigenesis process: An update on the expression pattern and genomic variants. Biomed Pharmacother 2019; 112:108723. [PMID: 30970522 DOI: 10.1016/j.biopha.2019.108723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Growth arrest-specific 5 (GAS5) is a long non-coding RNA (lncRNA) with diverse functions in regulation of gene expression. Most studies have reported a role for this lncRNA in induction of cell apoptosis and suppression of tumorigenesis process. Although few studies demonstrated up-regulation of this lncRNA in tumor tissues compared to non-tumor tissues of the same origin, the results of in vitro functional studies mostly support the tumor suppressor role for GAS5. A number of recent studies have also shown associations between genomic variants of this gene and risk of cancer in some populations. The role of this lncRNA in modulation of response to anti-cancer regimens has been verified through both in vitro and clinical studies. Taken together, this lncRNA is a putative biomarker and therapeutic target in human malignancies.
Collapse
|
26
|
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019; 18:26. [PMID: 30782187 PMCID: PMC6379961 DOI: 10.1186/s12943-019-0954-x] [Citation(s) in RCA: 1033] [Impact Index Per Article: 172.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling is one of the most important intracellular pathways, which can be considered as a master regulator for cancer. Enormous efforts have been dedicated to the development of drugs targeting PI3K signaling, many of which are currently employed in clinical trials evaluation, and it is becoming increasingly clear that PI3K inhibitors are effective in inhibiting tumor progression. PI3K inhibitors are subdivided into dual PI3K/mTOR inhibitors, pan-PI3K inhibitors and isoform-specific inhibitors. In this review, we performed a critical review to summarize the role of the PI3K pathway in tumor development, recent PI3K inhibitors development based on clinical trials, and the mechanisms of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|