1
|
Bauer KL, Afifi AM, Nazzal M. Updates in Arterial Ulcers. Nurs Clin North Am 2025; 60:57-75. [PMID: 39884796 DOI: 10.1016/j.cnur.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Arterial ulcers are a clinical symptom of a complex array of underlying comorbid factors, namely peripheral artery disease (PAD). Chronic limb-threatening ischemia is representative of end-stage PAD. Ulcers of other etiologies can carry an arterial component, mandating recognition of risk factors, a comprehensive history and physical examination, and appropriate diagnostic testing in lower extremity ulcers. The primary therapy for arterial ulcers is re-establishment of in-line arterial flow, achieved by endovascular therapy or open revascularization. Medical management is essential to slow disease progression, and topical therapies are crucial to promote rapid ulcer closure and reduce infection risk.
Collapse
Affiliation(s)
- Karen L Bauer
- Division of Vascular, Endovascular and Wound Surgery, University of Toledo, Mail Stop 1095, 3000 Arlington Avenue, Toledo, OH 43614-2598, USA
| | - Ahmed M Afifi
- Division of Vascular, Endovascular and Wound Surgery, University of Toledo, Mail Stop 1095, 3000 Arlington Avenue, Toledo, OH 43614-2598, USA
| | - Munier Nazzal
- Division of Vascular, Endovascular, and Wound Surgery, Department of Surgery and Medical Education, University of Toledo, Mail Stop 1095, 3000 Arlington Avenue, Toledo, OH 43614-2598, USA.
| |
Collapse
|
2
|
Li B, Li C, Zhong XJ, Xu XR. Depression and anxiety, peripheral blood inflammatory factors, and stress levels on therapeutic outcomes in patients with chronic wounds. World J Psychiatry 2024; 14:1836-1844. [PMID: 39704378 PMCID: PMC11622014 DOI: 10.5498/wjp.v14.i12.1836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The incidence of chronic wounds is rising due to an aging population and lifestyle changes in our country. In addition, as the disease spectrum evolves, chronic wounds have become common clinical issues that seriously threaten health and impose significant social and economic burdens. AIM To investigate how depression, anxiety, peripheral blood inflammatory factors, and stress levels affect therapeutic outcomes in patients with chronic wounds. METHODS Retrospectively collected clinical data from 110 patients with chronic wounds treated at Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City) between January 2021 and December 2023, categorizing them into effective and ineffective groups based on treatment effects. Differences between both groups were analyzed using univariate analysis, independent risk factors identified via logistic regression, and their predictive value assessed through receiver operating characteristic analysis. RESULTS Following treatment, 95 cases were classified as the effective group (cured or improved), while 15 cases with improvement formed the ineffective group. Significant differences between both groups were noted in wound area, infection status, daily bed time, Hamilton Anxiety Rating Scale (HAMA) scores, Hamilton Depression Rating Scale (HAMD) scores, and levels of interleukin-6, tumor necrosis factor-alpha, and superoxide dismutase (P < 0.05). Logistic regression analysis identified a wound area ≥ 7 cm2, HAMA ≥ 9 scores, and HAMD ≥ 8 scores were independent risk factors for ineffective treatment in patients with chronic wounds (P < 0.05). The receiver operating characteristic curve analysis revealed that the area under the curve for ineffective treatment based on wound area, HAMA, and HAMD was 0.767, 0.805, and 0.768 respectively. CONCLUSION Wound size, anxiety, and depression are significant factors influencing the therapeutic outcomes in patients with chronic wounds that require careful attention, alongside the development of appropriate strategies.
Collapse
Affiliation(s)
- Bo Li
- Department of Burns and Plastic Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Cha Li
- Department of Pediatric Intensive Care Unit, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Xian-Jiang Zhong
- Department of Psychiatry, The First People’s Hospital of Xiantao, Xiantao 433099, Hubei Province, China
| | - Xiang-Rong Xu
- Department of Burns and Plastic Surgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde 415000, Hunan Province, China
| |
Collapse
|
3
|
Jiao L, Nie J, Duan L, Qiao X, Sui Y. Umbilical cord mesenchymal stem cells combined with autologous platelet-rich plasma for lower extremity venous ulcers: A case report and literature review. Medicine (Baltimore) 2024; 103:e40433. [PMID: 39533589 PMCID: PMC11557112 DOI: 10.1097/md.0000000000040433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
RATIONALE Nonhealing ulcers are difficult to manage because they deviate from the normal wound healing process. Conventional therapy cannot achieve satisfactory therapeutic effects. To verify the effectiveness of combined treatment with human umbilical cord mesenchymal stem cells (hUMSCs) and platelet-rich plasma (PRP) for nonhealing ulcers, we studied a patient with left lower limb venous ulcer (LEVU) treated with combined injection therapy. PATIENT CONCERNS We present the case of a LEVU patient who has not healed for a long period of time (up to 1 year). DIAGNOSES LEVU was diagnosed with clinical symptoms. INTERVENTIONS The hUMSCs plus PRP were injected into the wound edge and base (1 µL of cells/cm2 of wound surface), 0.5 mL at each point, with a distance of approximately 1 to 3 cm between points. The injection point was determined according to the extent of wound involvement. OUTCOMES Seven days after hUMSC + PRP application, the wound area decreased by nearly 50%. The ulcers had almost completely healed by day 62, and no serious treatment-related toxic side effects were observed. LESSONS hUMSCs can improve wound healing through re-epithelialization, increased angiogenesis, and granulation tissue formation. PRP has also been suggested to promote wound healing through the secretion of various nutritional factors. The combination of hUMSCs and PRP has a mutually reinforcing effect, which may achieve a 1 + 1 > 2 effect. Therefore, the combination of hUMSCs and PRP may be a safe and effective treatment option for LEVU.
Collapse
Affiliation(s)
- Linlin Jiao
- Nursing Department, Liaocheng People’s Hospital, Liaocheng, Shandong Province, China
| | - Jing Nie
- Department of Geriatrics, Liaocheng People’s Hospital, Liaocheng, Shandong Province, China
| | - Limei Duan
- Department of Critical Care Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong Province, China
| | - Xiaoping Qiao
- Department of Traditional Chinese Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong Province, China
| | - Yuanda Sui
- Department of Critical Care Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong Province, China
| |
Collapse
|
4
|
Zhang Y, Xiao YW, Ma JX, Wang AX. Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443. Chin J Integr Med 2024; 30:213-221. [PMID: 37688744 DOI: 10.1007/s11655-023-3607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration. METHODS HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR. RESULTS HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05). CONCLUSION HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Yan-Wei Xiao
- Department of Dermatology, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jing-Xin Ma
- Department of Cell Biology, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Ao-Xue Wang
- Department of Dermatology, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China.
| |
Collapse
|
5
|
Ozhava D, Bektas C, Lee K, Jackson A, Mao Y. Human Mesenchymal Stem Cells on Size-Sorted Gelatin Hydrogel Microparticles Show Enhanced In Vitro Wound Healing Activities. Gels 2024; 10:97. [PMID: 38391427 PMCID: PMC10887759 DOI: 10.3390/gels10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The demand for innovative therapeutic interventions to expedite wound healing, particularly in vulnerable populations such as aging and diabetic patients, has prompted the exploration of novel strategies. Mesenchymal stem cell (MSC)-based therapy emerges as a promising avenue for treating acute and chronic wounds. However, its clinical application faces persistent challenges, notably the low survivability and limited retention time of engraftment in wound environments. Addressing this, a strategy to sustain the viability and functionality of human MSCs (hMSCs) in a graft-able format has been identified as crucial for advanced wound care. Hydrogel microparticles (HMPs) emerge as promising entities in the field of wound healing, showcasing versatile capabilities in delivering both cells and bioactive molecules/drugs. In this study, gelatin HMPs (GelMPs) were synthesized via an optimized mild processing method. GelMPs with distinct diameter sizes were sorted and characterized. The growth of hMSCs on GelMPs with various sizes was evaluated. The release of wound healing promoting factors from hMSCs cultured on different GelMPs were assessed using scratch wound assays and gene expression analysis. GelMPs with a size smaller than 100 microns supported better cell growth and cell migration compared to larger sizes (100 microns or 200 microns). While encapsulation of hMSCs in hydrogels has been a common route for delivering viable hMSCs, we hypothesized that hMSCs cultured on GelMPs are more robust than those encapsulated in hydrogels. To test this hypothesis, hMSCs were cultured on GelMPs or in the cross-linked methacrylated gelatin hydrogel (GelMA). Comparative analysis of growth and wound healing effects revealed that hMSCs cultured on GelMPs exhibited higher viability and released more wound healing activities in vitro. This observation highlights the potential of GelMPs, especially those with a size smaller than 100 microns, as a promising carrier for delivering hMSCs in wound healing applications, providing valuable insights for the optimization of advanced therapeutic strategies.
Collapse
Affiliation(s)
- Derya Ozhava
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Processing Technologies, Cumra Vocational School, Selcuk University, 42130 Konya, Turkey
| | - Cemile Bektas
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Fang Q, Zhang Y, Tang L, Li X, Zhang X, Gang JJ, Xu G. Clinical Study of Platelet-Rich Plasma (PRP) for Lower Extremity Venous Ulcers: A Meta-Analysis and Systematic Review. INT J LOW EXTR WOUND 2023; 22:641-653. [PMID: 34665051 DOI: 10.1177/15347346211046203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To systematically evaluate the clinical effects of platelet-rich plasma in the treatment of lower limb venous ulcers by applying a meta-analysis method. The Pubmed, Cochrance Library, Embase, and OVID EBM Reviews databases were searched for the search terms'platelet-rich plasma" or "Plasma, Platelet-Rich" or "Platelet Rich Plasma" and "lower extremity venous ulcers' or "Leg Ulcers' or "Ulcer, Leg", and a meta-analysis was performed on the published research literature on platelet-rich plasma for lower extremity venous ulcers from January 1900 to April 2021. The outcome indicators were: post-treatment trauma area and healing rate. Revman 5.3 statistical software was applied for meta-analysis. A total of 294 patients with lower extremity venous ulcers were included in six publications, including 148 patients in the experimental group treated with PRP versus 146 patients in the control group treated with conventional therapy. There was a statistically significant difference in the Formula of an ellipse at the end of treatment (CM²) between the experimental group and the control group, with a mean difference of -1.19 (95% CI -1.80 to -0.58, P = .0001; 6 studies, 294 participants moderate quality of evidence). The difference between the healing rate of the experimental group and the control group was statistically significant, with a risk ratio (RR) of 5.73 (95% CI 3.29 - 9.99, P < .00001; 5 studies, 248 participants moderate quality of evidence).There may be publication bias for both Formula of an ellipse at the end of treatment and healing rate. This comprehensive meta-analysis of available evidence suggests that the application of PRP for lower extremity venous ulcers accelerates the wound healing process and improves wound healing rates.
Collapse
Affiliation(s)
| | | | - Lijun Tang
- Dalian Medical University, Dalian, China
| | - Xiaomei Li
- Dalian Medical University, Dalian, China
| | - Xiaowei Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University
| | - Junjun Jin Gang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University
| | - Gang Xu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University
| |
Collapse
|
7
|
Huerta CT, Ortiz YY, Li Y, Ribieras AJ, Voza F, Le N, Dodson C, Wang G, Vazquez-Padron RI, Liu ZJ, Velazquez OC. Novel Gene-Modified Mesenchymal Stem Cell Therapy Reverses Impaired Wound Healing in Ischemic Limbs. Ann Surg 2023; 278:383-395. [PMID: 37334717 PMCID: PMC10414148 DOI: 10.1097/sla.0000000000005949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Here, we report a new method to increase the therapeutic potential of mesenchymal stem/stromal cells (MSCs) for ischemic wound healing. We tested biological effects of MSCs modified with E-selectin, a cell adhesion molecule capable of inducing postnatal neovascularization, on a translational murine model. BACKGROUND Tissue loss significantly worsens the risk of extremity amputation for patients with chronic limb-threatening ischemia. MSC-based therapeutics hold major promise for wound healing and therapeutic angiogenesis, but unmodified MSCs demonstrate only modest benefits. METHODS Bone marrow cells harvested from FVB/ROSA26Sor mTmG donor mice were transduced with E-selectin-green fluorescent protein (GFP)/AAV-DJ or GFP/AAV-DJ (control). Ischemic wounds were created via a 4 mm punch biopsy in the ipsilateral limb after femoral artery ligation in recipient FVB mice and subsequently injected with phosphate-buffered saline or 1×10 6 donor MSC GFP or MSC E-selectin-GFP . Wound closure was monitored daily for 7 postoperative days, and tissues were harvested for molecular and histologic analysis and immunofluorescence. Whole-body DiI perfusion and confocal microscopy were utilized to evaluate wound angiogenesis. RESULTS Unmodified MSCs do not express E-selectin, and MSC E-selectin-GFP gain stronger MSC phenotype yet maintain trilineage differentiation and colony-forming capability. MSC E-selectin-GFP therapy accelerates wound healing compared with MSC GFP and phosphate-buffered saline treatment. Engrafted MSC E-selectin-GFP manifest stronger survival and viability in wounds at postoperative day 7. Ischemic wounds treated with MSC E-selectin-GFP exhibit more abundant collagen deposition and enhanced angiogenic response. CONCLUSIONS We establish a novel method to potentiate regenerative and proangiogenic capability of MSCs by modification with E-selectin/adeno-associated virus. This innovative therapy carries the potential as a platform worthy of future clinical studies.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Yan Li
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Antoine J. Ribieras
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Francesca Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Nga Le
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Caroline Dodson
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
8
|
Protzman NM, Mao Y, Long D, Sivalenka R, Gosiewska A, Hariri RJ, Brigido SA. Placental-Derived Biomaterials and Their Application to Wound Healing: A Review. Bioengineering (Basel) 2023; 10:829. [PMID: 37508856 PMCID: PMC10376312 DOI: 10.3390/bioengineering10070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic wounds are associated with considerable patient morbidity and present a significant economic burden to the healthcare system. Often, chronic wounds are in a state of persistent inflammation and unable to progress to the next phase of wound healing. Placental-derived biomaterials are recognized for their biocompatibility, biodegradability, angiogenic, anti-inflammatory, antimicrobial, antifibrotic, immunomodulatory, and immune privileged properties. As such, placental-derived biomaterials have been used in wound management for more than a century. Placental-derived scaffolds are composed of extracellular matrix (ECM) that can mimic the native tissue, creating a reparative environment to promote ECM remodeling, cell migration, proliferation, and differentiation. Reliable evidence exists throughout the literature to support the safety and effectiveness of placental-derived biomaterials in wound healing. However, differences in source (i.e., anatomical regions of the placenta), preservation techniques, decellularization status, design, and clinical application have not been fully evaluated. This review provides an overview of wound healing and placental-derived biomaterials, summarizes the clinical results of placental-derived scaffolds in wound healing, and suggests directions for future work.
Collapse
Affiliation(s)
- Nicole M Protzman
- Healthcare Analytics, LLC, 78 Morningside Dr., Easton, PA 18045, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Desiree Long
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| | - Raja Sivalenka
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| | - Anna Gosiewska
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| | - Robert J Hariri
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| | - Stephen A Brigido
- Research & Development, Degenerative Diseases, Celularity Inc., 170 Park Ave., Florham Park, NJ 07932, USA
| |
Collapse
|
9
|
Mo R, Zhang H, Xu Y, Wu X, Wang S, Dong Z, Xia Y, Zheng D, Tan Q. Transdermal drug delivery via microneedles to mediate wound microenvironment. Adv Drug Deliv Rev 2023; 195:114753. [PMID: 36828300 DOI: 10.1016/j.addr.2023.114753] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Cutaneous wound healing is a complex process, while modulating the wound microenvironment has become an essential therapeutic goal. In clinics, advanced dressings or dermal templates can promote wound healing but their ability in mediating wound microenvironment is limited. In the last decade, microneedle (MN) array patches have emerged as a new class of wound dressings. These dressings enable non-invasive transdermal and precise medication delivery. Combined with smart materials, MN additionally allows real-time monitoring of wound site markers such as inflammatory factors, oxygen levels, vascularization, pH and temperature, etc., while releasing therapeutic molecules responsively to the wound site. In this review, the MN-based strategies were reviewed for modulating wound microenvironment via introducing the main characteristics of the wound microenvironment and various types of MN-based delivery systems. Additionally, the progress and future trends in the application of MNs in mediating wound microenvironments are also discussed.
Collapse
Affiliation(s)
- Ran Mo
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Ye Xu
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Xiangyi Wu
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Shuqin Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Zheng Dong
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Yangmin Xia
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Dongfeng Zheng
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China; Department of Burns and Plastic Surgery, Anqing Shihua Hospital, Nanjing Drum Tower Hospital Group, Anqing 246002, China.
| |
Collapse
|
10
|
Huerta CT, Voza FA, Ortiz YY, Liu ZJ, Velazquez OC. Mesenchymal stem cell-based therapy for non-healing wounds due to chronic limb-threatening ischemia: A review of preclinical and clinical studies. Front Cardiovasc Med 2023; 10:1113982. [PMID: 36818343 PMCID: PMC9930203 DOI: 10.3389/fcvm.2023.1113982] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Progressive peripheral arterial disease (PAD) can result in chronic limb-threatening ischemia (CLTI) characterized by clinical complications including rest pain, gangrene and tissue loss. These complications can propagate even more precipitously in the setting of common concomitant diseases in patients with CLTI such as diabetes mellitus (DM). CLTI ulcers are cutaneous, non-healing wounds that persist due to the reduced perfusion and dysfunctional neovascularization associated with severe PAD. Existing therapies for CLTI are primarily limited to anatomic revascularization and medical management of contributing factors such as atherosclerosis and glycemic control. However, many patients fail these treatment strategies and are considered "no-option," thereby requiring extremity amputation, particularly if non-healing wounds become infected or fulminant gangrene develops. Given the high economic burden imposed on patients, decreased quality of life, and poor survival of no-option CLTI patients, regenerative therapies aimed at neovascularization to improve wound healing and limb salvage hold significant promise. Cell-based therapy, specifically utilizing mesenchymal stem/stromal cells (MSCs), is one such regenerative strategy to stimulate therapeutic angiogenesis and tissue regeneration. Although previous reviews have focused primarily on revascularization outcomes after MSC treatments of CLTI with less attention given to their effects on wound healing, here we review advances in pre-clinical and clinical studies related to specific effects of MSC-based therapeutics upon ischemic non-healing wounds associated with CLTI.
Collapse
Affiliation(s)
- Carlos Theodore Huerta
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francesca A. Voza
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yulexi Y. Ortiz
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhao-Jun Liu
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States,Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States,*Correspondence: Omaida C. Velazquez, ; Zhao-Jun Liu,
| | - Omaida C. Velazquez
- DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States,Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, United States,*Correspondence: Omaida C. Velazquez, ; Zhao-Jun Liu,
| |
Collapse
|
11
|
Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848. [PMID: 37529248 PMCID: PMC10388637 DOI: 10.1177/20417314231185848] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
12
|
Hosseini M, Dalley AJ, Shafiee A. Convergence of Biofabrication Technologies and Cell Therapies for Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14122749. [PMID: 36559242 PMCID: PMC9785239 DOI: 10.3390/pharmaceutics14122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cell therapy holds great promise for cutaneous wound treatment but presents practical and clinical challenges, mainly related to the lack of a supportive and inductive microenvironment for cells after transplantation. Main: This review delineates the challenges and opportunities in cell therapies for acute and chronic wounds and highlights the contribution of biofabricated matrices to skin reconstruction. The complexity of the wound healing process necessitates the development of matrices with properties comparable to the extracellular matrix in the skin for their structure and composition. Over recent years, emerging biofabrication technologies have shown a capacity for creating complex matrices. In cell therapy, multifunctional material-based matrices have benefits in enhancing cell retention and survival, reducing healing time, and preventing infection and cell transplant rejection. Additionally, they can improve the efficacy of cell therapy, owing to their potential to modulate cell behaviors and regulate spatiotemporal patterns of wound healing. CONCLUSION The ongoing development of biofabrication technologies promises to deliver material-based matrices that are rich in supportive, phenotype patterning cell niches and are robust enough to provide physical protection for the cells during implantation.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D), Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Andrew J. Dalley
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Royal Brisbane and Women’s Hospital, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
- Frazer Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
- Correspondence: or
| |
Collapse
|
13
|
Muire PJ, Thompson MA, Christy RJ, Natesan S. Advances in Immunomodulation and Immune Engineering Approaches to Improve Healing of Extremity Wounds. Int J Mol Sci 2022; 23:4074. [PMID: 35456892 PMCID: PMC9032453 DOI: 10.3390/ijms23084074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/04/2022] Open
Abstract
Delayed healing of traumatic wounds often stems from a dysregulated immune response initiated or exacerbated by existing comorbidities, multiple tissue injury or wound contamination. Over decades, approaches towards alleviating wound inflammation have been centered on interventions capable of a collective dampening of various inflammatory factors and/or cells. However, a progressive understanding of immune physiology has rendered deeper knowledge on the dynamic interplay of secreted factors and effector cells following an acute injury. There is a wide body of literature, both in vitro and in vivo, abstracted on the immunomodulatory approaches to control inflammation. Recently, targeted modulation of the immune response via biotechnological approaches and biomaterials has gained attention as a means to restore the pro-healing phenotype and promote tissue regeneration. In order to fully realize the potential of these approaches in traumatic wounds, a critical and nuanced understanding of the relationships between immune dysregulation and healing outcomes is needed. This review provides an insight on paradigm shift towards interventional approaches to control exacerbated immune response following a traumatic injury from an agonistic to a targeted path. We address such a need by (1) providing a targeted discussion of the wound healing processes to assist in the identification of novel therapeutic targets and (2) highlighting emerging technologies and interventions that utilize an immunoengineering-based approach. In addition, we have underscored the importance of immune engineering as an emerging tool to provide precision medicine as an option to modulate acute immune response following a traumatic injury. Finally, an overview is provided on how an intervention can follow through a successful clinical application and regulatory pathway following laboratory and animal model evaluation.
Collapse
Affiliation(s)
- Preeti J. Muire
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| | | | | | - Shanmugasundaram Natesan
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| |
Collapse
|
14
|
Kraskiewicz H, Hinc P, Krawczenko A, Bielawska-Pohl A, Paprocka M, Witkowska D, Mohd Isa IL, Pandit A, Klimczak A. HATMSC Secreted Factors in the Hydrogel as a Potential Treatment for Chronic Wounds-In Vitro Study. Int J Mol Sci 2021; 22:ijms222212241. [PMID: 34830121 PMCID: PMC8618182 DOI: 10.3390/ijms222212241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can improve chronic wound healing; however, recent studies suggest that the therapeutic effect of MSCs is mediated mainly through the growth factors and cytokines secreted by these cells, referred to as the MSC secretome. To overcome difficulties related to the translation of cell therapy into clinical use such as efficacy, safety and cost, we propose a hydrogel loaded with a secretome from the recently established human adipose tissue mesenchymal stem cell line (HATMSC2) as a potential treatment for chronic wounds. Biocompatibility and biological activity of hydrogel-released HATMSC2 supernatant were investigated in vitro by assessing the proliferation and metabolic activity of human fibroblast, endothelial cells and keratinocytes. Hydrogel degradation was measured using hydroxyproline assay while protein released from the hydrogel was assessed by interleukin-8 (IL-8) and macrophage chemoattractant protein-1 (MCP-1) ELISAs. Pro-angiogenic activity of the developed treatment was assessed by tube formation assay while the presence of pro-angiogenic miRNAs in the HATMSC2 supernatant was investigated using real-time RT-PCR. The results demonstrated that the therapeutic effect of the HATMSC2-produced factors is maintained following incorporation into collagen hydrogel as confirmed by increased proliferation of skin-origin cells and improved angiogenic properties of endothelial cells. In addition, HATMSC2 supernatant revealed antimicrobial activity, and which therefore, in combination with the hydrogel has a potential to be used as advanced wound-healing dressing.
Collapse
Affiliation(s)
- Honorata Kraskiewicz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
- Correspondence: (H.K.); (A.K.)
| | - Piotr Hinc
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
| | - Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
| | - Danuta Witkowska
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Isma Liza Mohd Isa
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland; (I.L.M.I.); (A.P.)
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland; (I.L.M.I.); (A.P.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53–114 Wroclaw, Poland; (P.H.); (A.K.); (A.B.-P.); (M.P.)
- Correspondence: (H.K.); (A.K.)
| |
Collapse
|