1
|
Viker KB, Steele MB, Iankov ID, Concilio SC, Ammayappan A, Bolon B, Jenks NJ, Goetz MP, Panagioti E, Federspiel MJ, Liu MC, Peng KW, Galanis E. Preclinical safety assessment of MV-s-NAP, a novel oncolytic measles virus strain armed with an H . pylori immunostimulatory bacterial transgene. Mol Ther Methods Clin Dev 2022; 26:532-546. [PMID: 36092362 PMCID: PMC9437807 DOI: 10.1016/j.omtm.2022.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Despite recent therapeutic advances, metastatic breast cancer (MBC) remains incurable. Engineered measles virus (MV) constructs based on the attenuated MV Edmonston vaccine platform have demonstrated significant oncolytic activity against solid tumors. The Helicobacter pylori neutrophil-activating protein (NAP) is responsible for the robust inflammatory reaction in gastroduodenal mucosa during bacterial infection. NAP attracts and activates immune cells at the site of infection, inducing expression of pro-inflammatory mediators. We engineered an MV strain to express the secretory form of NAP (MV-s-NAP) and showed that it exhibits anti-tumor and immunostimulatory activity in human breast cancer xenograft models. In this study, we utilized a measles-infection-permissive mouse model (transgenic IFNAR KO-CD46Ge) to evaluate the biodistribution and safety of MV-s-NAP. The primary objective was to identify potential toxic side effects and confirm the safety of the proposed clinical doses of MV-s-NAP prior to a phase I clinical trial of intratumoral administration of MV-s-NAP in patients with MBC. Both subcutaneous delivery (corresponding to the clinical trial intratumoral administration route) and intravenous (worst case scenario) delivery of MV-s-NAP were well tolerated: no significant clinical, laboratory or histologic toxicity was observed. This outcome supports the safety of MV-s-NAP for oncolytic virotherapy of MBC. The first-in-human clinical trial of MV-s-NAP in patients with MBC (ClinicalTrials.gov: NCT04521764) was subsequently activated.
Collapse
Affiliation(s)
- Kimberly B. Viker
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael B. Steele
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ianko D. Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Nathan J. Jenks
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Eleni Panagioti
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Minetta C. Liu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
2
|
Zhang J, Wang T. Immune cell landscape and immunotherapy of medulloblastoma. Pediatr Investig 2021; 5:299-309. [PMID: 34938973 PMCID: PMC8666938 DOI: 10.1002/ped4.12261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/17/2020] [Indexed: 12/26/2022] Open
Abstract
Medulloblastoma is the most common primary pediatric malignancy of the central nervous system. Recurrent and refractory patients account for approximately 30% of them. Immune cells are an important component of the brain tumor microenvironment, including tumor-associated macrophages, T lymphocytes, natural killer cells, dendritic cells, neutrophils and B lymphocytes. Understanding how they behave and interact is important in the investigation of the onset and progression of medulloblastoma. Here, we overview the features and recent advances of each component of immune cells in medulloblastoma. Meanwhile, immunotherapy is a promising but also challenging treatment strategy for medulloblastoma. At present, there are a growing number of immunotherapeutic approaches under investigation including immune checkpoint inhibitors, oncolytic viruses, cancer vaccines, chimeric antigen receptor T cell therapies, and natural killer cells in recurrent and refractory medulloblastoma patients.
Collapse
Affiliation(s)
- Jin Zhang
- Department of PediatricsBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Hematology Oncology CenterBeijing Children’s HospitalCapital Medical UniversityBeijingChina
| | - Tianyou Wang
- Hematology Oncology CenterBeijing Children’s HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
3
|
Measles Virus as an Oncolytic Immunotherapy. Cancers (Basel) 2021; 13:cancers13030544. [PMID: 33535479 PMCID: PMC7867054 DOI: 10.3390/cancers13030544] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy.
Collapse
|
4
|
Mühlebach MD. Measles virus in cancer therapy. Curr Opin Virol 2020; 41:85-97. [PMID: 32861945 DOI: 10.1016/j.coviro.2020.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Over the last years, the development of viruses to treat cancer patients has re-gained considerable attention. A genetically modified herpesvirus, Talimogene laherparepvec, has already been authorized for the treatment of melanoma patients. Also recombinant measles virus (MeV) is developed as an oncolytic virus. Because of its high genetic flexibility, a number of different MeV strains have been the basis for the generation of targeted, armed, or shielded viruses that are highly specific for a given tumor target, more effective, or protected against serum neutralization. Such MeV have been extensively tested in vitro and in vivo, whereby remarkable oncolytic potency is accompanied by safety also in non-human primates. Therefore, MeV has been introduced into 19 different clinical trials and has reached phase II against two different tumor entities, multiple myeloma and ovarian carcinoma. Remarkably, one patient with advanced stage myeloma experienced long-term remission after treatment, visualizing the potency of this approach.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany.
| |
Collapse
|
5
|
Li L, Liu S, Han D, Tang B, Ma J. Delivery and Biosafety of Oncolytic Virotherapy. Front Oncol 2020; 10:475. [PMID: 32373515 PMCID: PMC7176816 DOI: 10.3389/fonc.2020.00475] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, oncolytic virotherapy has emerged as a promising anticancer therapy. Oncolytic viruses destroy cancer cells, without damaging normal tissues, through virus self-replication and antitumor immunity responses, showing great potential for cancer treatment. However, the clinical guidelines for administering oncolytic virotherapy remain unclear. Delivery routes for oncolytic virotherapy to patients vary in existing studies, depending on the tumor sites and the objective of studies. Moreover, the biosafety of oncolytic virotherapy, including mainly uncontrolled adverse events and long-term complications, remains a serious concern that needs to be accurately measured. This review provides a comprehensive and detailed overview of the delivery and biosafety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Lizhi Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shixin Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Duoduo Han
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, National Health Commission Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
6
|
Lal S, Carrera D, Phillips JJ, Weiss WA, Raffel C. An oncolytic measles virus-sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro Oncol 2019; 20:1606-1615. [PMID: 29912438 DOI: 10.1093/neuonc/noy089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Oncolytic measles virus (MV) is effective in xenograft models of many tumor types in immune-compromised mice. However, no murine cell line exists that is tumorigenic, grows in immune-competent mice, and is killed by MV. The lack of such a model prevents an examination of the effect of the immune system on MV oncotherapy. Methods Cerebellar stem cells from human CD46-transgenic immunocompetent mice were transduced to express Sendai virus C-protein, murine C-Myc, and Gfi1b proteins. The resultant cells were injected into the brain of NSG mice, and a cell line, called CSCG, was prepared from the resulting tumor. Results CSCG cells are highly proliferative, and express stem cell markers. These cells are permissive for replication of MV and are killed by the virus in a dose- and time-dependent manner. CSCG cells form aggressive tumors that morphologically resemble medulloblastoma when injected into the brains of immune-competent mice. On the molecular level, CSCG tumors overexpress natriuretic peptide receptor 3 and gamma-aminobutyric acid type A receptor alpha 5, markers of Group 3 medulloblastoma. A single intratumoral injection of MV‒green fluorescent protein resulted in complete tumor regression and prolonged survival of animals compared with treatments with phosphate buffered saline (P = 0.0018) or heat-inactivated MV (P = 0.0027). Conclusions This immune-competent model provides the first platform to test therapeutic regimens of oncolytic MV for Group 3 medulloblastoma in the presence of anti-measles immunity. The strategy presented here can be used to make MV-sensitive murine models of any human tumor for which the driving mutations are known.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - Diego Carrera
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| | - William A Weiss
- Department of Neurology, Pediatrics, and Neurological Surgery and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Corey Raffel
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, California
| |
Collapse
|
7
|
Lal S, Raffel C. Using Cystine Knot Proteins as a Novel Approach to Retarget Oncolytic Measles Virus. MOLECULAR THERAPY-ONCOLYTICS 2017; 7:57-66. [PMID: 29367943 PMCID: PMC5771132 DOI: 10.1016/j.omto.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Modified measles virus (MV) has effective oncolytic activity preclinically and is currently being investigated in clinical trials for various types of cancer. We investigated the use of cystine knot proteins (CKPs) to direct MV activity. CKPs are short polypeptides that bind their targets with high affinity. We used a CKP that binds αvβ3, αvβ5, and α5β1 integrins with single-digit nanomolar affinity to retarget MV to the integrins (MV-CKPint). MV-CKPint infected, replicated in, and killed human glioblastoma, medulloblastoma, diffuse intrinsic pontine glioma (DIPG), and melanoma cancer cells in vitro, all of which express the target integrins. MV-CKPint activity was competitively blocked by echistatin, an integrin binding peptide. When the CKP was cleaved from the viral H protein at an included protease site, virus activity was abrogated. When delivered intravenously (i.v.), the retargeted virus reached a subcutaneous glioblastoma tumor bed and produced cytopathic effects similar to that shown by intratumoral injection of the virus. Because these target integrins are overexpressed by tumor vascular endothelium, MV-CKPint may allow for effective therapy with i.v. injection. These results indicate for the first time that CKPs can be used to retarget MV for a receptor of choice. In addition, MV-CKPint provides proof of principle for the use of a CKP of interest to retarget any enveloped virus for both oncolytic and gene therapy purposes.
Collapse
Affiliation(s)
- Sangeet Lal
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Corey Raffel
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|