1
|
Kaspar F. Quality Data from Messy Spectra: How Isometric Points Increase Information Content in Highly Overlapping Spectra. Chembiochem 2023; 24:e202200744. [PMID: 36622253 DOI: 10.1002/cbic.202200744] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Spectroscopic techniques are immensely useful for obtaining information about chemical transformations while they are happening. However, such data are often messy, and it is challenging to extract reliable information from them without careful calibrations or internal standards. This short introductory review discusses how isometric points (points in a spectrum where the signal intensity remains constant throughout the progress of a chemical transformation) can be used to derive high-quality data from messy spectra. Such analyses are helpful in a variety of (bio-)chemical settings, as selected case studies demonstrate.
Collapse
Affiliation(s)
- Felix Kaspar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| |
Collapse
|
3
|
Lau PCK, Leisch H, Yachnin BJ, Mirza IA, Berghuis AM, Iwaki H, Hasegawa Y. Sustained Development in Baeyer-Villiger Biooxidation Technology. ACS SYMPOSIUM SERIES 2010. [DOI: 10.1021/bk-2010-1043.ch024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Brahm J. Yachnin
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - I. Ahmad Mirza
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Albert M. Berghuis
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Hiroaki Iwaki
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Yoshie Hasegawa
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
- Departments of Biochemistry and Microbiology & Immunology, McGill University, 3655 Prom Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Department of Life Science & Biotechnology and ORDIST, Kansai University, Suita, Osaka, 564-8680, Japan
| |
Collapse
|
5
|
Daugulis AJ. A survey of bioengineering research in Canada-2007. Biotechnol Prog 2009; 24:795-806. [PMID: 19194891 DOI: 10.1002/btpr.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Research activity in bioengineering at Canadian universities has been surveyed. Details were provided by chemical engineering departments in response to a common request for information on activities by individual researchers and for key publications. The information provided has been grouped by topics within the broad theme of "Bioengineering," and contributions from individual departments have been summarized within these topics. Although many aspects of bioengineering research are being pursued in Canada, it would appear as though environmental biotechnology, biomaterials, and tissue/cell culture are the most active areas under investigation.
Collapse
Affiliation(s)
- Andrew J Daugulis
- Dept. of Chemical Engineering, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
8
|
Snajdrova R, Braun I, Bach T, Mereiter K, Mihovilovic MD. Biooxidation of bridged cycloketones using Baeyer-Villiger monooxygenases of various bacterial origin. J Org Chem 2007; 72:9597-603. [PMID: 18001099 DOI: 10.1021/jo701704x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bridged cycloketones were synthesized and utilized as substrates to study biooxidations mediated by Baeyer-Villiger monooxygenases (BVMO) of various bacterial origin. The required enzymes were heterologously produced by recombinant overexpression systems based on Escherichia coli to enable facile recycling of the required nicotinamide cofactors during the whole-cell biotransformations. Ketone precursors of various structural demands were chosen to evaluate steric limitations and flexibility of the active site of BVMOs. By desymmetrization of the prochiral substrates, four to six stereogenic centers were generated within a single biooxidation step. The enzyme library investigated in this study allowed access to antipodal lactone products with excellent enantioselectivity in several cases. Together with a distinct substrate acceptance profile, the recently proposed classification into two groups of cycloketone converting BVMOs was supported by the biotransformation results obtained within this study.
Collapse
Affiliation(s)
- Radka Snajdrova
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, A-1060 Vienna, Austria
| | | | | | | | | |
Collapse
|