1
|
Siora A, Vontetsianos A, Chynkiamis N, Anagnostopoulou C, Bartziokas K, Anagnostopoulos N, Rovina N, Bakakos P, Papaioannou AI. Small airways in asthma: From inflammation and pathophysiology to treatment response. Respir Med 2024; 222:107532. [PMID: 38228215 DOI: 10.1016/j.rmed.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Small airways are characterized as those with an inner diameter less than 2 mm and constitute a major site of pathology and inflammation in asthma disease. It is estimated that small airways dysfunction may occur before the emergence of noticeable symptoms, spirometric abnormalities and imaging findings, thus characterizing them as "the quiet or silent zone" of the lungs. Despite their importance, measuring and quantifying small airways dysfunction presents a considerable challenge due to their inaccessibility in usual functional measurements, primarily due to their size and peripheral localization. Several pulmonary function tests have been proposed for the assessment of the small airways, including impulse oscillometry, nitrogen washout, body plethysmography, as well as imaging methods. Nevertheless, none of these methods has been established as the definitive "gold standard," thus, a combination of them should be used for an effective assessment of the small airways. Widely used asthma treatments seem to also affect several parameters of the small airways. Emerging biologic treatments show promising results in reducing small airways inflammation and remodelling, providing evidence for potential alterations in the disease's progression and outcomes. These novel therapies have implications not only in the clinical aspects of asthma but also in its inflammatory and functional aspects.
Collapse
Affiliation(s)
- Anastasia Siora
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece.
| | - Angelos Vontetsianos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Nikolaos Chynkiamis
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Christina Anagnostopoulou
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | | | - Nektarios Anagnostopoulos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Petros Bakakos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Andriana I Papaioannou
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| |
Collapse
|
2
|
Cherrez-Ojeda I, Robles-Velasco K, Osorio MF, Calderon JC, Bernstein JA. Current Needs Assessment for Using Lung Clearance Index for Asthma in Clinical Practice. Curr Allergy Asthma Rep 2022; 22:13-20. [DOI: 10.1007/s11882-022-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/03/2022]
|
3
|
Liu T, Yang D, Liu C. Extrafine HFA-beclomethasone-formoterol vs. nonextrafine combination of an inhaled corticosteroid and a long acting β2-agonist in patients with persistent asthma: A systematic review and meta-analysis. PLoS One 2021; 16:e0257075. [PMID: 34478483 PMCID: PMC8415610 DOI: 10.1371/journal.pone.0257075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Objective Airway inflammation in asthma involves not only the central airways but extends to peripheral airways. Lung deposition may be key for an appropriate treatment of asthma. We compared the clinical effects of extrafine hydrofluoroalkane (HFA)-beclomethasone-formoterol (BDP-F) versus equipotent doses of nonextrafine combination of an inhaled corticosteroid and a long acting β2-agonist (ICS-LABA) in asthma. Methods We identified eligible studies by a comprehensive literature search of PubMed, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). Data analysis was performed with the Review Manager 5.3.5 software (Cochrane IMS, 2014). Results A total of 2326 patients with asthma from ten published randomized controlled trials (RCTs) were enrolled for analysis. Change from baseline in morning pre-dose peak expiratory flow (PEF), evening pre-dose PEF and forced expiratory volume in one second (FEV1) were detected no significant differences between extrafine HFA-BDP-F and nonextrafine ICS-LABAs (p = 0.23, p = 0.99 and p = 0.23, respectively). Extrafine HFA-BDP-F did not show any greater benefit in forced expiratory flow between 25% and 75% of forced vital capacity (FEF25-75%), the parameter concerning peripheral airways (MD 0.03L/s, p = 0.65; n = 877). There were no substantial differences between interventions in fractional exhaled nitric oxide (FeNO) levels or in its alveolar fraction. The overall analysis showed no significant benefit of extrafine HFA-BDP-F over nonextrafine ICS-LABA in improving Asthma Control Test (ACT) score (p = 0.30) or decreasing the number of puffs of rescue medication use (p = 0.16). Extrafine HFA-BDP-F did not lead to less exacerbations than nonextrafine ICS-LABA (RR 0.61, 95% CI: 0.31 to 1.20; I2 = 0; p = 0.15). Conclusion Enrolled RCTs of extrafine HFA-BDP-F have demonstrated no significant advantages over the equivalent combination of nonextrafine ICS-LABA in improving pulmonary function concerning central airways or peripheral airways, improving asthma symptom control or reducing exacerbation rate.
Collapse
Affiliation(s)
- Ting Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu Province, China
| | - Dan Yang
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu Province, China
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu Province, China
- * E-mail:
| |
Collapse
|
4
|
Calzetta L, Aiello M, Frizzelli A, Bertorelli G, Chetta A. Small airways in asthma: from bench-to-bedside. Minerva Med 2021; 113:79-93. [PMID: 33496163 DOI: 10.23736/s0026-4806.21.07268-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Historically, asthma was considered a disease predominantly of the large airways, but gradually small airways have been recognized as the major site of airflow obstruction. Small airway dysfunction (SAD) significantly contributes to the pathophysiology of asthma and it is present across all asthma severities. Promising pre-clinical findings documented enhanced beneficial effects of combination therapies on small airways compared to monocomponents, thus it was questioned whether this could translate into further clinical implications from bench-to-bedside. The aim of this review was to systematically assess the state of the art of small airway involvement in asthma, especially in response to different pharmacological treatments acting on the respiratory system. EVIDENCE ACQUISITION A comprehensive literature search was performed in MEDLINE for randomized controlled trials (RCTs) characterizing the impact on small airways of different pharmacological treatments acting on the respiratory system. The results were extracted and reported via qualitative synthesis. EVIDENCE SYNTHESIS Overall, 63 studies were identified from the literature search, whereas 23 RCTs met the inclusion criteria. Evidence confirms that both drug particle size and the type of inhalation devices represent two of the most important variables for an effective peripheral lung distribution. CONCLUSIONS Despite the numerous methodological tools to detect SAD, there is still no gold standard diagnostic method to assess small airways, especially in severe asthma. Further research should be directed to improve primary and secondary prevention strategies by supporting the combined approach of different non-invasive techniques for an early detection of peripheral abnormalities and optimization of asthma therapy.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy -
| | - Marina Aiello
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Annalisa Frizzelli
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Giuseppina Bertorelli
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Alfredo Chetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Kobayashi T, Soma T, Nakagome K, Nakamoto H, Nagata M. Comparison of extra-fine-particle inhalational corticosteroid add-on therapy with dose-escalation of large-particle inhalational corticosteroid therapy in patients with incompletely controlled asthma. Allergol Int 2019; 68S:S17-S19. [PMID: 31277957 DOI: 10.1016/j.alit.2019.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/05/2019] [Accepted: 05/19/2019] [Indexed: 11/24/2022] Open
|
6
|
Zinellu E, Piras B, Ruzittu GGM, Fois SS, Fois AG, Pirina P. Recent Advances in Inflammation and Treatment of Small Airways in Asthma. Int J Mol Sci 2019; 20:ijms20112617. [PMID: 31141956 PMCID: PMC6601314 DOI: 10.3390/ijms20112617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
Small airways were historically considered to be almost irrelevant in the development and control of pulmonary chronic diseases but, as a matter of fact, in the past few years we have learned that they are not so "silent". Asthma is still a worldwide health issue due to the great share of patients being far from optimal management. Several studies have shown that the deeper lung inflammation plays a critical role in asthma pathogenesis, mostly in these not well-controlled subjects. Therefore, assessing the degree of small airways inflammation and impairment appears to be a pivotal step in the asthmatic patient's management. It is now possible to evaluate them through direct and indirect measurements, even if some obstacles still affect their clinical application. The success of any treatment obviously depends on several factors but reaching the deeper lung has become a priority and, for inhaled drugs, this is strictly connected to the molecule's size. The aim of the present review is to summarize the recent evidence concerning the small airway involvement in asthma, its physiopathological characteristics and how it can be evaluated in order to undertake a personalized pharmacological treatment and achieve a better disease control.
Collapse
Affiliation(s)
- Elisabetta Zinellu
- Respiratory Unit, Azienda Ospedaliero Universitaria (AOU), V.le San Pietro, 07100 Sassari, Italy.
| | - Barbara Piras
- Respiratory Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, V.le San Pietro, 07100 Sassari, Italy.
| | - Giulia G M Ruzittu
- Respiratory Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, V.le San Pietro, 07100 Sassari, Italy.
| | - Sara S Fois
- Respiratory Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, V.le San Pietro, 07100 Sassari, Italy.
| | - Alessandro G Fois
- Respiratory Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, V.le San Pietro, 07100 Sassari, Italy.
| | - Pietro Pirina
- Respiratory Unit, Azienda Ospedaliero Universitaria (AOU), V.le San Pietro, 07100 Sassari, Italy.
- Respiratory Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, V.le San Pietro, 07100 Sassari, Italy.
| |
Collapse
|
7
|
Cianchetti S, Cardini C, Corti A, Menegazzi M, Darra E, Ingrassia E, Pompella A, Paggiaro P. The beclomethasone anti-inflammatory effect occurs in cell/mediator-dependent manner and is additively enhanced by formoterol: NFkB, p38, PKA analysis. Life Sci 2018; 203:27-38. [PMID: 29660434 DOI: 10.1016/j.lfs.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
AIMS Beclomethasone/formoterol (BDP/FOR) has been reported to be more effective than its separate components in airway disease control and in airway inflammation improvement. However, BDP/FOR effects on cytokine-induced inflammation in structural cells have not been described and whether these effects occur in a cell- and mediator-dependent manner has not been fully elucidated. We sought to evaluate BDP and/or FOR effects on endothelial ICAM-1, E-selectin, IL-8 and on bronchial epithelial ICAM-1 and IL-8. Specific intracellular signaling pathways were also investigated. MATERIALS AND METHODS Surface adhesion molecule expression and IL-8 release induced by TNF-alpha were measured by ELISA. Intracellular signaling pathways were investigated by a) EMSA and Western blot analysis to evaluate NF-κB DNA-binding and MAPK-p38 phosphorylation; b) PDTC/SB203580 as NF-κB/p38 inhibitors; c) forskolin/H-89 as PKA activator/inhibitor. KEY FINDINGS BDP/FOR additively reduced endothelial E-selectin and IL-8 as well as bronchial epithelial ICAM-1 and IL-8. BDP/FOR and SB203580 showed the highest inhibitory effect on epithelial IL-8, whereas endothelial ICAM-1 was never affected by BDP/FOR and PDTC. TNF-alpha-induced NF-κB DNA-binding and MAPK-p38 phosphorylation were not influenced by BDP/FOR. Forskolin mimicked FOR effects; H-89 partially reversed the BDP/FOR inhibition in a mediator-dependent manner. SIGNIFICANCE The BDP/FOR inhibition degree was related to the inflammatory mediator- and cell-type considered. FOR additively enhanced BDP effects by partially involving both dependent- and independent-PKA mechanisms. Our results might contribute to highlight the strong relationship between specific molecular pathways and different sensitivity to the corticosteroid/β2-agonist effects and to clarify the molecular mechanisms underlying the BDP/FOR anti-inflammatory activity in vivo.
Collapse
Affiliation(s)
- Silvana Cianchetti
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy.
| | - Cristina Cardini
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy
| | - Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
| | - Marta Menegazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elena Darra
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alfonso Pompella
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
| | - Pierluigi Paggiaro
- Department of Surgery and Medical, Molecular, and Critical Area Pathology, Medical School, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Braido F, Scichilone N, Lavorini F, Usmani OS, Dubuske L, Boulet LP, Mosges R, Nunes C, Sánchez-Borges M, Ansotegui IJ, Ebisawa M, Levi-Schaffer F, Rosenwasser LJ, Bousquet J, Zuberbier T, Canonica GW. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA 2LEN). Asthma Res Pract 2016; 2:12. [PMID: 27965780 PMCID: PMC5142416 DOI: 10.1186/s40733-016-0027-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD) has led INTERASMA (Global Asthma Association) and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm) are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules) have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled formulations must reflect the physician’s considerations of disease features, phenotype, and response to previous therapy. This article is being co-published in Asthma Research and Practice and the World Allergy Organization Journal.
Collapse
Affiliation(s)
- F Braido
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - N Scichilone
- Dipartimento Biomedico di Medicina Interna e Specialistica, University of Palermo, Palermo, Italy
| | - F Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - O S Usmani
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | - L Dubuske
- Immunology Research Institute of New England, Harvard, USA
| | - L P Boulet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - R Mosges
- Institute of Medical Statistics, Informatics and Epidemiology, University Hospital of Cologne, Cologne, Germany
| | - C Nunes
- Centro de ImmunoAlergologia de Algarve, Porto, Portugal
| | - M Sánchez-Borges
- Centro Medico Docente La Trinidad, Caracas, Venezuela ; Clinica El Avila, Caracas, Venezuela
| | - I J Ansotegui
- Department of Allergy and Immunology, Hospital Quirón Bizkaia, Carretera Leioa-Inbe, Erandio, Bilbao, Spain
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergy & Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa Japan
| | - F Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L J Rosenwasser
- University of Missouri - Kansas City, School of Medicine, Kansas City, Missouri USA
| | - J Bousquet
- Service des Maladies Respiratoires, Hopital Arnaud de Villeneuve, Montpellier, France
| | - T Zuberbier
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - G Walter Canonica
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | | | | | | |
Collapse
|
9
|
Braido F, Scichilone N, Lavorini F, Usmani OS, Dubuske L, Boulet LP, Mosges R, Nunes C, Sanchez-Borges M, Ansotegui IJ, Ebisawa M, Levi-Schaffer F, Rosenwasser LJ, Bousquet J, Zuberbier T, Canonica GW, Cruz A, Yanez A, Yorgancioglu A, Deleanu D, Rodrigo G, Berstein J, Ohta K, Vichyanond P, Pawankar R, Gonzalez-Diaz SN, Nakajima S, Slavyanskaya T, Fink-Wagner A, Loyola CB, Ryan D, Passalacqua G, Celedon J, Ivancevich JC, Dobashi K, Zernotti M, Akdis M, Benjaponpitak S, Bonini S, Burks W, Caraballo L, El-Sayed ZA, Fineman S, Greenberger P, Hossny E, Ortega-Martell JA, Saito H, Tang M, Zhang L. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA 2LEN). World Allergy Organ J 2016; 9:37. [PMID: 27800118 PMCID: PMC5084415 DOI: 10.1186/s40413-016-0123-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD) has led INTERASMA (Global Asthma Association) and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm) are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules) have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled formulations must reflect the physician’s considerations of disease features, phenotype, and response to previous therapy. This article is being co-published in Asthma Research and Practice and the World Allergy Organization Journal.
Collapse
Affiliation(s)
- F Braido
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - N Scichilone
- Dipartimento Biomedico di Medicina Interna e Specialistica, University of Palermo, Palermo, Italy
| | - F Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - O S Usmani
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | - L Dubuske
- Immunology Research Institute of New England, Harvard, USA
| | - L P Boulet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - R Mosges
- Institute of Medical Statistics, Informatics and Epidemiology, University Hospital of Cologne, Cologne, Germany
| | - C Nunes
- Centro de ImmunoAlergologia de Algarve, Porto, Portugal
| | - M Sanchez-Borges
- Centro Medico Docente La Trinidad, Caracas, Venezuela ; Clinica El Avila, Caracas, Venezuela
| | - I J Ansotegui
- Department of Allergy and Immunology, Hospital Quirón Bizkaia, Carretera Leioa-Inbe, Erandio, Bilbao Spain
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergy & Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa Japan
| | - F Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L J Rosenwasser
- University of Missouri - Kansas City, School of Medicine, Kansas City, Missouri USA
| | - J Bousquet
- Service des Maladies Respiratoires, Hopital Arnaud de Villeneuve, Montpellier, France
| | - T Zuberbier
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - G Walter Canonica
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A Cruz
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A Yanez
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A Yorgancioglu
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - D Deleanu
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - G Rodrigo
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J Berstein
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - K Ohta
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - P Vichyanond
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - R Pawankar
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S N Gonzalez-Diaz
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S Nakajima
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - T Slavyanskaya
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A Fink-Wagner
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - C Baez Loyola
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - D Ryan
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - G Passalacqua
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J Celedon
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J C Ivancevich
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - K Dobashi
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - M Zernotti
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - M Akdis
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S Benjaponpitak
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S Bonini
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - W Burks
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - L Caraballo
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Z Awad El-Sayed
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S Fineman
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - P Greenberger
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - E Hossny
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J A Ortega-Martell
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - H Saito
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - M Tang
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - L Zhang
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | | | | |
Collapse
|
10
|
Walenga RL, Longest PW. Current Inhalers Deliver Very Small Doses to the Lower Tracheobronchial Airways: Assessment of Healthy and Constricted Lungs. J Pharm Sci 2016; 105:147-59. [PMID: 26852850 DOI: 10.1016/j.xphs.2015.11.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
To evaluate the regional delivery of conventional aerosol medications, a new whole-lung computational fluid dynamics modeling approach was applied for metered dose inhaler (MDI) and dry powder inhaler (DPI) aerosols delivered to healthy and constricted airways. The computational fluid dynamics approach included complete airways through the third respiratory bifurcation (B3) and applied the new stochastic individual pathway modeling technique beyond B3 through the remainder of the conducting airways together with a new model of deposition in the alveolar region. Bronchiolar (B8-B15) deposition fraction values were low (∼1%) for both MDI and DPI aerosols with the healthy geometry, whereas delivery to the constricted model was even lower, with deposition fraction values of 0.89% and 0.81% for the MDI and DPI, respectively. Calculating dose per unit surface area for the commercial MDI and DPI products resulted in approximately 10(-3) μg/cm(2) in the lower tracheobronchial region of B8-B15 and 10(-4) μg/cm(2) in the alveolar region. Across the lung, dose per unit surface area varied by 2 orders of magnitude, which increased to 4 orders of magnitude when the mouth-throat region was included. The MDI and DPI both provided very low drug dose per unit surface area to the small tracheobronchial and alveolar airways.
Collapse
Affiliation(s)
- Ross L Walenga
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284
| | - P Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23284.
| |
Collapse
|
11
|
Cottini M, Lombardi C, Micheletto C. Small airway dysfunction and bronchial asthma control : the state of the art. Asthma Res Pract 2015; 1:13. [PMID: 27965766 PMCID: PMC5142439 DOI: 10.1186/s40733-015-0013-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/17/2015] [Indexed: 11/10/2022] Open
Abstract
According to national and international guidelines, achieving and maintaining asthma control is a major goal of disease management. In closely controlled clinical trials, good asthma control can be achieved , with the medical treatments currently available, in the majority of patients , but large population-based studies suggest that a significant proportion of patients in real-life setting experience suboptimal levels of asthma control and report lifestyle limitations with a considerable burden on quality of life. Poor treatment adherence and persistence, failure to use inhalers correctly, heterogeneity of asthma phenotypes and associated co-morbidities are the main contributing factors to poor disease control. Now, it is widely accepted that peripheral airway dysfunction , already present in patients with mild asthma, is a key contributor of worse control. The aim of this paper is to investigate the association between small-airways dysfunction and asthma symptoms/control. We therefore performed a PubMed search using keywords : small airways; asthma (limits applied: Humans, English language) and selected papers with a study population of asthmatic patients, reporting measurement of small-airways parameters and clinical symptoms/control.
Collapse
Affiliation(s)
| | - Carlo Lombardi
- Departmental Unit of Allergology, Immunology & Pulmonary Diseases, Fondazione Poliambulanza, Via Bissolati, 57, Brescia, 25124 Italy
| | | |
Collapse
|