1
|
Abdelmissih S, Hosny SA, Elwi HM, Sayed WM, Eshra MA, Shaker OG, Samir NF. Chronic Caffeine Consumption, Alone or Combined with Agomelatine or Quetiapine, Reduces the Maximum EEG Peak, As Linked to Cortical Neurodegeneration, Ovarian Estrogen Receptor Alpha, and Melatonin Receptor 2. Psychopharmacology (Berl) 2024; 241:2073-2101. [PMID: 38842700 PMCID: PMC11442587 DOI: 10.1007/s00213-024-06619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
RATIONALE Evidence of the effects of chronic caffeine (CAFF)-containing beverages, alone or in combination with agomelatine (AGO) or quetiapine (QUET), on electroencephalography (EEG), which is relevant to cognition, epileptogenesis, and ovarian function, remains lacking. Estrogenic, adenosinergic, and melatonergic signaling is possibly linked to the dynamics of these substances. OBJECTIVES The brain and ovarian effects of CAFF were compared with those of AGO + CAFF and QUET + CAFF. The implications of estrogenic, adenosinergic, and melatonergic signaling and the brain-ovarian crosstalk were investigated. METHODS Adult female rats were administered AGO (10 mg/kg), QUET (10 mg/kg), CAFF, AGO + CAFF, or QUET + CAFF, once daily for 8 weeks. EEG, estrous cycle progression, and microstructure of the brain and ovaries were examined. Brain and ovarian 17β-estradiol (E2), antimullerian hormone (AMH), estrogen receptor alpha (E2Rα), adenosine receptor 2A (A2AR), and melatonin receptor 2 (MT2R) were assessed. RESULTS CAFF, alone or combined with AGO or QUET, reduced the maximum EEG peak, which was positively linked to ovarian E2Rα, negatively correlated to cortical neurodegeneration and ovarian MT2R, and associated with cystic ovaries. A large corpus luteum emerged with AGO + CAFF and QUET + CAFF, antagonizing the CAFF-mediated increased ovarian A2AR and reduced cortical E2Rα. AGO + CAFF provoked TTP delay and increased ovarian AMH, while QUET + CAFF slowed source EEG frequency to δ range and increased brain E2. CONCLUSIONS CAFF treatment triggered brain and ovarian derangements partially antagonized with concurrent AGO or QUET administration but with no overt affection of estrus cycle progression. Estrogenic, adenosinergic, and melatonergic signaling and brain-ovarian crosstalk may explain these effects.
Collapse
Affiliation(s)
- Sherine Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt.
| | - Sara Adel Hosny
- Department of Medical Histology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Heba M Elwi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Walaa Mohamed Sayed
- Department of Anatomy and Embryology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mohamed Ali Eshra
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Olfat Gamil Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Nancy F Samir
- Department of Medical Physiology, Faculty of Medicine Kasr Al-Ainy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Zheng Y, Cheng G, Lin X, Wang J. Effects of prenatal cocaine exposure on estrous cycle, and behavior and expression of estrogen receptor alpha and oxytocin during estrus and diestrus in mice offspring. Behav Pharmacol 2024; 35:386-398. [PMID: 39230562 DOI: 10.1097/fbp.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Increasing evidence indicates that prenatal cocaine exposure may result in many developmental and long-lasting neurological and behavioral effects. The behaviors of female animals are strongly associated with the estrous cycle. Estrogen receptors and oxytocin are important neuroendocrine factors that regulate social behavior and are of special relevance to females. However, whether prenatal cocaine exposure induces estrous cycle changes in offspring and whether neurobehavioral changes in estrus and diestrus offspring differ remains unclear. On gestational day 12, mice were administered cocaine once daily for seven consecutive days, then the estrous cycle was examined in adult female offspring, as well as locomotion, anxiety level, and social behaviors, and the expression of estrogen receptor alpha-immunoreactive and oxytocin-immunoreactive neurons were compared between estrus and diestrus offspring. Prenatal cocaine exposure resulted in the shortening of proestrus and estrus in the offspring. During estrus and diestrus, prenatally cocaine-exposed offspring showed increased anxiety levels and changed partial social behaviors; their motility showed no significant differences in estrus, but declined in diestrus. Prenatal cocaine exposure reduced estrogen receptor alpha-immunoreactive expression in the medial preoptic area, ventromedial hypothalamic nucleus, and arcuate nucleus and oxytocin-immunoreactive expression in the paraventricular nucleus in estrus and diestrus offspring. These results suggest that prenatal cocaine exposure induces changes in the offspring's estrous cycle and expression of estrogen receptor alpha and oxytocin in a brain region-specific manner and that prenatal cocaine exposure and the estrous cycle interactively change motility and partial social behavior. Estrogen receptor alpha and oxytocin signaling are likely to play important concerted roles in mediating the effects of prenatal cocaine exposure on the offspring.
Collapse
Affiliation(s)
- Yanghui Zheng
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | | | | | | |
Collapse
|
3
|
Ge F, Wang Z, Yu W, Yuan X, Cai Q, Wang G, Li X, Xu X, Yang P, Fan Y, Chang J, Guan X. Activating Lobule VI PC TH+-Med Pathway in Cerebellum Blocks the Acquisition of Methamphetamine Conditioned Place Preference in Mice. J Neurosci 2024; 44:e1312232024. [PMID: 38331582 PMCID: PMC10941241 DOI: 10.1523/jneurosci.1312-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zilin Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Yu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiya Yuan
- The first Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiang Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiasong Chang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
4
|
Rocks D, Jaric I, Bellia F, Cham H, Greally JM, Suzuki M, Kundakovic M. Early-life stress and ovarian hormones alter transcriptional regulation in the nucleus accumbens resulting in sex-specific responses to cocaine. Cell Rep 2023; 42:113187. [PMID: 37777968 PMCID: PMC10753961 DOI: 10.1016/j.celrep.2023.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Early-life stress and ovarian hormones contribute to increased female vulnerability to cocaine addiction. Here, we reveal molecular substrates in the reward area, the nucleus accumbens, through which these female-specific factors affect immediate and conditioning responses to cocaine. We find shared involvement of X chromosome inactivation-related and estrogen signaling-related gene regulation in enhanced conditioning responses following early-life stress and during the low-estrogenic state in females. Low-estrogenic females respond to acute cocaine by opening neuronal chromatin enriched for the sites of ΔFosB, a transcription factor implicated in chronic cocaine response and addiction. Conversely, high-estrogenic females respond to cocaine by preferential chromatin closing, providing a mechanism for limiting cocaine-driven chromatin and synaptic plasticity. We find that physiological estrogen withdrawal, early-life stress, and absence of one X chromosome all nullify the protective effect of a high-estrogenic state on cocaine conditioning in females. Our findings offer a molecular framework to enable understanding of sex-specific neuronal mechanisms underlying cocaine use disorder.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Ivana Jaric
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Fabio Bellia
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Heining Cham
- Department of Psychology, Fordham University, Bronx, NY, USA
| | - John M Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
5
|
Towers EB, Lynch WJ. The importance of examining sex differences in animal models validated to induce an addiction-like phenotype. Pharmacol Biochem Behav 2021; 209:173255. [PMID: 34416219 PMCID: PMC8456716 DOI: 10.1016/j.pbb.2021.173255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States of America.
| | - Wendy J Lynch
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States of America
| |
Collapse
|
6
|
Witt EA, Reissner KJ. The effects of nicotinamide on reinstatement to cocaine seeking in male and female Sprague Dawley rats. Psychopharmacology (Berl) 2020; 237:669-680. [PMID: 31811351 PMCID: PMC7039762 DOI: 10.1007/s00213-019-05404-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/15/2019] [Indexed: 02/03/2023]
Abstract
RATIONALE Interventions for psychostimulant use disorders are of significant need. Nicotinamide (NAM) is a small molecule that can oppose cellular adaptations observed following cocaine exposure in the rodent self-administration and reinstatement model of addiction. In addition, utility of NAM against symptoms of withdrawal and vulnerability to relapse to cocaine use has been suggested by case studies and anecdotal reports. However, the empirical effects of NAM on drug-seeking behaviors have not been examined. OBJECTIVE The objective of the current study was to investigate the effects of systemic NAM administration on reinstatement to cocaine seeking, using the rat self-administration/extinction/reinstatement model of cocaine addiction. METHODS Male and female Sprague Dawley rats were trained to self-administer i.v. cocaine or food pellets for 2 hrs per day for 12 days, followed by 14-17 days of extinction, during which i.p. NAM injections (0-120 mg/kg) were given 30 minutes prior to each extinction or reinstatement session. Rats were tested on cue-, cocaine-, or food-primed reinstatement, as well as locomotor activity. RESULTS Chronic NAM administered throughout extinction dose dependently attenuated cue-primed reinstatement in male rats, but not female rats. In contrast, acute NAM given once prior to reinstatement had no effect on reinstatement. Chronic NAM had no effect on locomotor activity or reinstatement to food seeking. CONCLUSIONS The specificity of NAM against cue-primed reinstatement indicates that NAM may influence responsiveness to drug-associated cues, specifically in males. Future studies will examine the mechanism(s) by which NAM may exert this effect.
Collapse
Affiliation(s)
- Emily A Witt
- Department of Psychology and Neuroscience, UNC Chapel Hill, CB 3270, 235 E. Cameron Ave., Chapel Hill, NC, 27599, USA.
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, UNC Chapel Hill, CB 3270, 235 E. Cameron Ave., Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
8
|
Polak K, Haug NA, Drachenberg HE, Svikis DS. Gender Considerations in Addiction: Implications for Treatment. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2015; 2:326-338. [PMID: 26413454 PMCID: PMC4578628 DOI: 10.1007/s40501-015-0054-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kathryn Polak
- Virginia Commonwealth University 806 W. Franklin St., P.O. Box 842018, Richmond, VA 23284 804-477-5091,
| | - Nancy A. Haug
- PGSP-Stanford Psy.D. Consortium, Palo Alto University, The Gronowski Center, 5150 El Camino Real, C-24, Los Altos, CA 94022, 650-961-9300, ext. 3616,
| | | | - Dace S. Svikis
- Professor, Department of Psychology, Deputy Director, Institute for Women’s Health, Virginia Commonwealth University, 806 W. Franklin St., P.O. Box 842018, Richmond, VA 23284
| |
Collapse
|