1
|
Markovic M, Ranin J, Bukumiric Z, Jerotic D, Savic-Radojevic A, Pljesa-Ercegovac M, Djukic T, Ercegovac M, Asanin M, Milosevic I, Stevanovic G, Simic T, Coric V, Matic M. GPX3 Variant Genotype Affects the Risk of Developing Severe Forms of COVID-19. Int J Mol Sci 2023; 24:16151. [PMID: 38003341 PMCID: PMC10671662 DOI: 10.3390/ijms242216151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
In SARS-CoV-2 infection, excessive activation of the immune system intensively increases reactive oxygen species levels, causing harmful hyperinflammatory and oxidative state cumulative effects which may contribute to COVID-19 severity. Therefore, we assumed that antioxidant genetic profile, independently and complemented with laboratory markers, modulates COVID-19 severity. The study included 265 COVID-19 patients. Polymorphism of GSTM1, GSTT1, Nrf2 rs6721961, GSTM3 rs1332018, GPX3 rs8177412, GSTP1 rs1695, GSTO1 rs4925, GSTO2 rs156697, SOD2 rs4880 and GPX1 rs1050450 genes was determined with appropriate PCR-based methods. Inflammation (interleukin-6, CRP, fibrinogen, ferritin) and organ damage (urea, creatinine, transaminases and LDH) markers, complete blood count and coagulation status (d-dimer, fibrinogen) were measured. We found significant association for COVID-19 progression for patients with lymphocytes below 1.0 × 109/L (OR = 2.97, p = 0.002). Increased IL-6 and CRP were also associated with disease progression (OR = 8.52, p = 0.001, and OR = 10.97, p < 0.001, respectively), as well as elevated plasma AST and LDH (OR = 2.25, p = 0.021, and OR = 4.76, p < 0.001, respectively). Of all the examined polymorphisms, we found significant association with the risk of developing severe forms of COVID-19 for GPX3 rs8177412 variant genotype (OR = 2.42, p = 0.032). This finding could be of particular importance in the future, complementing other diagnostic tools for prediction of COVID-19 disease course.
Collapse
Affiliation(s)
- Marko Markovic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Jovan Ranin
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Zoran Bukumiric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical Statistics and Informatics, 11000 Belgrade, Serbia
| | - Djurdja Jerotic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Ana Savic-Radojevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marija Pljesa-Ercegovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Tatjana Djukic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marko Ercegovac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Clinic of Neurology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Milika Asanin
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Clinic of Cardiology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Ivana Milosevic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Goran Stevanovic
- Clinic of Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.M.); (J.R.); (I.M.); (G.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
- Department of Medical Sciences, Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Vesna Coric
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| | - Marija Matic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.B.); (D.J.); (A.S.-R.); (M.P.-E.); (T.D.); (M.E.); (M.A.); (T.S.)
- Institute of Medical and Clinical Biochemistry, 11000 Belgrade, Serbia
- Centre for Excellence for Redox Medicine, Pasterova 2, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Calle-Ciborro B, Espin-Jaime T, Santos FJ, Gomez-Martin A, Jardin I, Pozo MJ, Rosado JA, Camello PJ, Camello-Almaraz C. Secretion of Interleukin 6 in Human Skeletal Muscle Cultures Depends on Ca 2+ Signalling. BIOLOGY 2023; 12:968. [PMID: 37508398 PMCID: PMC10376320 DOI: 10.3390/biology12070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The systemic effects of physical activity are mediated by the release of IL-6 and other myokines from contracting muscle. Although the release of IL-6 from muscle has been extensively studied, the information on the cellular mechanisms is fragmentary and scarce, especially regarding the role of Ca2+ signals. The aim of this study was to characterize the role of the main components of Ca2+ signals in human skeletal muscle cells during IL-6 secretion stimulated by the Ca2+ mobilizing agonist ATP. Primary cultures were prepared from surgical samples, fluorescence microscopy was used to evaluate the Ca2+ signals and the stimulated release of IL-6 into the medium was determined using ELISA. Intracellular calcium chelator Bapta, low extracellular calcium and the Ca2+ channels blocker La3+ reduced the ATP-stimulated, but not the basal secretion. Secretion was inhibited by blockers of L-type (nifedipine, verapamil), T-type (NNC55-0396) and Orai1 (Synta66) Ca2+ channels and by silencing Orai1 expression. The same effect was achieved with inhibitors of ryanodine receptors (ryanodine, dantrolene) and IP3 receptors (xestospongin C, 2-APB, caffeine). Inhibitors of calmodulin (calmidazolium) and calcineurin (FK506) also decreased secretion. IL-6 transcription in response to ATP was not affected by Bapta or by the T channel blocker. Our results prove that ATP-stimulated IL-6 secretion is mediated at the post-transcriptional level by Ca2+ signals, including the mobilization of calcium stores, the activation of store-operated Ca2+ entry, and the subsequent activation of voltage-operated Ca2+ channels and calmodulin/calcineurin pathways.
Collapse
Affiliation(s)
- Blanca Calle-Ciborro
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Teresa Espin-Jaime
- Faculty of Medicine, Hospital Universitario, Universidad de Extremadura, 06006 Badajoz, Spain
| | | | - Ana Gomez-Martin
- Department of Nursing, Faculty of Nursing and Occupational Therapy, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Isaac Jardin
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Maria J Pozo
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Pedro J Camello
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Cristina Camello-Almaraz
- Department of Physiology, Instituto de Biomarcadores Patológicos Moleculares y Metabólicos, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
3
|
Mosqueira M, Scheid LM, Kiemel D, Richardt T, Rheinberger M, Ollech D, Lutge A, Heißenberg T, Pfitzer L, Engelskircher L, Yildiz U, Porth I. nNOS-derived NO modulates force production and iNO-derived NO the excitability in C2C12-derived 3D tissue engineering skeletal muscle via different NO signaling pathways. Front Physiol 2022; 13:946682. [PMID: 36045747 PMCID: PMC9421439 DOI: 10.3389/fphys.2022.946682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide (NO) is a bioactive gas produced by one of the three NO synthases: neuronal NOS (nNOS), inducible (iNOS), and endothelial NOS (eNOS). NO has a relevant modulatory role in muscle contraction; this takes place through two major signaling pathways: (i) activation of soluble guanylate cyclase and, thus, protein kinase G or (ii) nitrosylation of sulfur groups of cysteine. Although it has been suggested that nNOS-derived NO is the responsible isoform in muscle contraction, the roles of eNOS and iNOS and their signaling pathways have not yet been clarified. To elucidate the action of each pathway, we optimized the generation of myooids, an engineered skeletal muscle tissue based on the C2C12 cell line. In comparison with diaphragm strips from wild-type mice, 180 myooids were analyzed, which expressed all relevant excitation–contraction coupling proteins and both nNOS and iNOS isoforms. Along with the biochemical results, myooids treated with NO donor (SNAP) and unspecific NOS blocker (L-NAME) revealed a comparable NO modulatory effect on force production as was observed in the diaphragm strips. Under the effects of pharmacological tools, we analyzed the myooids in response to electrical stimulation of two possible signaling pathways and NO sources. The nNOS-derived NO exerted its negative effect on force production via the sGG-PKG pathway, while iNOS-derived NO increased the excitability in response to sub-threshold electrical stimulation. These results strengthen the hypotheses of previous reports on the mechanism of action of NO during force production, showed a novel function of iNOS-derived NO, and establish the myooid as a novel and robust alternative model for pathophysiological skeletal muscle research.
Collapse
Affiliation(s)
- Matias Mosqueira
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Matias Mosqueira,
| | - Lisa-Mareike Scheid
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- PromoCell GmbH, Heidelberg, Germany
| | - Dominik Kiemel
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Talisa Richardt
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Mona Rheinberger
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Centre for Integrative Infectious Disease Research (CIID), Heidelberg University, Heidelberg, Germany
| | - Dirk Ollech
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Applied Physics Department, Science for Life Laboratory and KTH Royal Technical University, Solna, Sweden
| | - Almut Lutge
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Life Science at the University of Zürich, Zürich, Switzerland
| | - Tim Heißenberg
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Göttingen, Germany
| | - Lena Pfitzer
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- myNEO NV, Ghent, Belgium
| | - Lisa Engelskircher
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Immatics Biotechnology GmbH, Tübingen, Germany
| | - Umut Yildiz
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Isabel Porth
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
Haroon M, Bloks NGC, Deldicque L, Koppo K, Seddiqi H, Bakker AD, Klein-Nulend J, Jaspers RT. Fluid shear stress-induced mechanotransduction in myoblasts: Does it depend on the glycocalyx? Exp Cell Res 2022; 417:113204. [PMID: 35588795 DOI: 10.1016/j.yexcr.2022.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/17/2022]
Abstract
Muscle stem cells (MuSCs) are involved in muscle maintenance and regeneration. Mechanically loaded MuSCs within their native niche undergo tensile and shear deformations, but how MuSCs sense mechanical stimuli and translate these into biochemical signals regulating function and fate is still poorly understood. We aimed to investigate whether the glycocalyx is involved in the MuSC mechanoresponse, and whether MuSC morphology affects mechanical loading-induced pressure, shear stress, and fluid velocity distribution. FSS-induced deformation of active proliferating MuSCs (myoblasts) with intact or degraded glycocalyx was assessed by live-cell imaging. Glycocalyx-degradation did not significantly affect nitric oxide production, but reduced FSS-induced myoblast deformation and modulated gene expression. Finite-element analysis revealed that the distribution of FSS-induced pressure, shear stress, and fluid velocity on myoblasts was non-uniform, and the magnitude depended on myoblast morphology and apex-height. In conclusion, our results suggest that the glycocalyx does not play a role in NO production in myoblasts but might impact mechanotransduction and gene expression, which needs further investigation. Future studies will unravel the underlying mechanism by which the glycocalyx affects FSS-induced myoblast deformation, which might be related to increased drag forces. Moreover, MuSCs with varying apex-height experience different levels of FSS-induced pressure, shear stress, and fluid velocity, suggesting differential responsiveness to fluid shear forces.
Collapse
Affiliation(s)
- Mohammad Haroon
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - Niek G C Bloks
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
| | - Hadi Seddiqi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | - Richard T Jaspers
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5589089. [PMID: 35281470 PMCID: PMC8906126 DOI: 10.1155/2022/5589089] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes, hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.
Collapse
|
6
|
Zhao X, Huang C, Su M, Ran Y, Wang Y, Yin Z. Reactive Oxygen Species-Responsive Celastrol-Loaded : Bilirubin Nanoparticles for the Treatment of Rheumatoid Arthritis. AAPS J 2021; 24:14. [PMID: 34907482 DOI: 10.1208/s12248-021-00636-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Celastrol (CLT) has shown anti-rheumatic activity against rheumatoid arthritis, while its poor water solubility and high organ toxicity restrict its further therapeutic applications. To mitigate these challenges, a reactive oxygen species (ROS)-responsive nanoparticle was developed for celastrol delivery based on the excessive ROS at the pathologic sites, which was synthesized by conjugating bilirubin to a polyethylene glycol (PEG) chain. The PEGylated bilirubin self-assembled into nanoparticle (BRNP) in aqueous solution had a hydrodynamic diameter of around 68.6 nm, and celastrol was loaded into BRNP (CLT/BRNP) with a drug encapsulation efficiency of 72.6% and a loading capacity of 6.6%. In vitro study revealed that CLT/BRNP exhibited the capacity of scavenging intracellular ROS and down-regulating the level of nitric oxide after it was effectively internalized by activated macrophages. Furthermore, in adjuvant-induced arthritis rats, BRNP was accumulated preferentially at inflamed joints, alleviating the joint swelling and bone erosion, which significantly decreased the secretion of pro-inflammatory cytokines to suppress the RA progression. Importantly, CLT/BRNP markedly enhanced its anti-arthritic effect and attenuated the toxic effect compared with free celastrol. Taken together, our results suggested that CLT/BRNP could be used for targeted drug delivery in rheumatoid arthritis.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Chengyuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Meiling Su
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Yu Ran
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Ying Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
7
|
Summers JA, Martinez E. Visually induced changes in cytokine production in the chick choroid. eLife 2021; 10:70608. [PMID: 34608867 PMCID: PMC8612705 DOI: 10.7554/elife.70608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Postnatal ocular growth is regulated by a vision-dependent mechanism that acts to minimize refractive error through coordinated growth of the ocular tissues. Of great interest is the identification of the chemical signals that control visually guided ocular growth. Here, we provide evidence that the pro-inflammatory cytokine, interleukin-6 (IL-6), may play a pivotal role in the control of ocular growth using a chicken model of myopia. Microarray, real-time RT-qPCR, and ELISA analyses identified IL-6 upregulation in the choroids of chick eyes under two visual conditions that introduce myopic defocus and slow the rate of ocular elongation (recovery from induced myopia and compensation for positive lenses). Intraocular administration of atropine, an agent known to slow ocular elongation, also resulted in an increase in choroidal IL-6 gene expression. Nitric oxide appears to directly or indirectly upregulate choroidal IL-6 gene expression, as administration of the non-specific nitric oxide synthase inhibitor, L-NAME, inhibited choroidal IL-6 gene expression, and application of a nitric oxide donor stimulated IL-6 gene and protein expression in isolated chick choroids. Considering the pleiotropic nature of IL-6 and its involvement in many biological processes, these results suggest that IL-6 may mediate many aspects of the choroidal response in the control of ocular growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| | - Elizabeth Martinez
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
| |
Collapse
|
8
|
Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophys J 2021; 120:2665-2678. [PMID: 34087215 PMCID: PMC8390894 DOI: 10.1016/j.bpj.2021.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle stem cells (MuSCs) are requisite for skeletal muscle regeneration and homeostasis. Proper functioning of MuSCs, including activation, proliferation, and fate decision, is determined by an orchestrated series of events and communication between MuSCs and their niche. A multitude of biochemical stimuli are known to regulate MuSC fate and function. However, in addition to biochemical factors, it is conceivable that MuSCs are subjected to mechanical forces during muscle stretch-shortening cycles because of myofascial connections between MuSCs and myofibers. MuSCs respond to mechanical forces in vitro, but it remains to be proven whether physical forces are also exerted on MuSCs in their native niche and whether they contribute to the functioning and fate of MuSCs. MuSC deformation in their native niche resulting from mechanical loading of ex vivo myofiber bundles was visualized utilizing mT/mG double-fluorescent Cre-reporter mouse and multiphoton microscopy. MuSCs were subjected to 1 h pulsating fluid shear stress (PFSS) with a peak shear stress rate of 6.5 Pa/s. After PFSS treatment, nitric oxide, messenger RNA (mRNA) expression levels of genes involved in regulation of MuSC proliferation and differentiation, ERK 1/2, p38, and AKT activation were determined. Ex vivo stretching of extensor digitorum longus and soleus myofiber bundles caused compression as well as tensile and shear deformation of MuSCs in their niche. MuSCs responded to PFSS in vitro with increased nitric oxide production and an upward trend in iNOS mRNA levels. PFSS enhanced gene expression of c-Fos, Cdk4, and IL-6, whereas expression of Wnt1, MyoD, Myog, Wnt5a, COX2, Rspo1, Vangl2, Wnt10b, and MGF remained unchanged. ERK 1/2 and p38 MAPK signaling were also upregulated after PFSS treatment. We conclude that MuSCs in their native niche are subjected to force-induced deformations due to myofiber stretch-shortening. Moreover, MuSCs are mechanoresponsive, as evidenced by PFSS-mediated expression of factors by MuSCs known to promote proliferation.
Collapse
|
9
|
Is NO the Answer? The Nitric Oxide Pathway Can Support Bone Morphogenetic Protein 2 Mediated Signaling. Cells 2019; 8:cells8101273. [PMID: 31635347 PMCID: PMC6830101 DOI: 10.3390/cells8101273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
The growth factor bone morphogenetic protein 2 (BMP2) plays an important role in bone development and repair. Despite the positive effects of BMP2 in fracture healing, its use is associated with negative side effects and poor cost effectiveness, partly due to the large amounts of BMP2 applied. Therefore, reduction of BMP2 amounts while maintaining efficacy is of clinical importance. As nitric oxide (NO) signaling plays a role in bone fracture healing and an association with the BMP2 pathway has been indicated, this study aimed to investigate the relationship of BMP2 and NO pathways and whether NO can enhance BMP2-induced signaling and osteogenic abilities in vitro. To achieve this, the stable BMP reporter cell line C2C12BRELuc was used to quantify BMP signaling, and alkaline phosphatase (ALP) activity and gene expression were used to quantify osteogenic potency. C2C12BRELuc cells were treated with recombinant BMP2 in combination with NO donors and substrate (Deta NONOate, SNAP & L-Arginine), NOS inhibitor (LNAME), soluble guanylyl cyclase (sGC) inhibitor (LY83583) and activator (YC-1), BMP type-I receptor inhibitor (LDN-193189), or protein kinase A (PKA) inhibitor (H89). It was found that the NOS enzyme, direct NO application, and sGC enhanced BMP2 signaling and improved BMP2 induced osteogenic activity. The application of a PKA inhibitor demonstrated that BMP2 signaling is enhanced by the NO pathway via PKA, underlining the capability of BMP2 in activating the NO pathway. Collectively, this study proves the ability of the NO pathway to enhance BMP2 signaling.
Collapse
|
10
|
Yeo J, Lee YM, Lee J, Park D, Kim K, Kim J, Park J, Kim WJ. Nitric Oxide-Scavenging Nanogel for Treating Rheumatoid Arthritis. NANO LETTERS 2019; 19:6716-6724. [PMID: 31082252 DOI: 10.1021/acs.nanolett.9b00496] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO), a radical gas molecule produced by nitric oxide synthase, plays a key role in the human body. However, when endogenous NO is overproduced by physiological disorders, severe inflammatory diseases such as rheumatoid arthritis (RA) can occur. Therefore, scavenging NO may be an alternative strategy for treating inflammatory disorders. In our previous study, we developed a NO-responsive macrosized hydrogel by incorporating a NO-cleavable cross-linker (NOCCL); here, we further evaluate the effectiveness of the NO-scavenging nanosized hydrogel (NO-Scv gel) for treating RA. NO-Scv gel is simply prepared by solution polymerization between acrylamide and NOCCL. When the NO-Scv gel is exposed to NO, NOCCL is readily cleaved by consuming the NO molecule, as demonstrated in a Griess assay. As expected, the NO-Scv gel reduces inflammation levels by scavenging NO in vitro and shows excellent biocompatibility. Furthermore, the more promising therapeutic effect of the NO-Scv gel in suppressing the onset of RA is observed in vivo in a mouse RA model when compared to the effects of dexamethasone, a commercial drug. Therefore, our findings suggest the potential of the NO-Scv gel for biomedical applications and further clinical translation.
Collapse
Affiliation(s)
- Jiwon Yeo
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Yeong Mi Lee
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Junseok Lee
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Dongsik Park
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Kunho Kim
- School of Interdisciplinary Bioscience and Bioengineering , Pohang University of Science and Technology (POSTECH) , Jigok-ro 64 , Nam-gu, Pohang 37666 , Republic of Korea
| | - Jihoon Kim
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Junghong Park
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Won Jong Kim
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering , Pohang University of Science and Technology (POSTECH) , Jigok-ro 64 , Nam-gu, Pohang 37666 , Republic of Korea
| |
Collapse
|
11
|
Douguet L, Bod L, Labarthe L, Lengagne R, Kato M, Couillin I, Prévost-Blondel A. Inflammation drives nitric oxide synthase 2 expression by γδ T cells and affects the balance between melanoma and vitiligo associated melanoma. Oncoimmunology 2018; 7:e1484979. [PMID: 30228955 DOI: 10.1080/2162402x.2018.1484979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023] Open
Abstract
The high expression of inducible nitric oxide synthase (NOS2) by myeloid-derived suppressor cells (MDSCs) is a key mechanism of immune evasion in cancer. Recently we reported that NOS2 is also expressed by γδ T cells in melanoma, contributing to their polarization towards a pro-tumor phenotype. The molecular mechanisms underlying regulation of NOS2 expression in tumor-induced γδ T cells remain unexplored. By using the model of mice transgenic for the ret oncogene (Ret mice) that develops a spontaneous metastatic melanoma, we evidence that interleukin (IL)-1β and IL-6 drive NOS2 expression in γδ T cells. Indeed, their in vivo neutralization lessens the γδ T cell capacity to produce not only NOS2, but also IL-17 involved in the recruitment of MDSCs at the primary tumor site. The treatment also delayed tumor cell dissemination and induced vitiligo in a significant proportion of Ret mice. Interestingly, Ret mice developing a less aggressive melanoma, characterized by the spontaneous development of a concomitant autoimmune vitiligo, exhibit a weaker concentration of inflammatory cytokines and a reduction of tumor infiltrating γδ T cells expressing NOS2, when compared to Ret mice without any signs of vitiligo. Overall our results support that the level of inflammation at the tumor site regulates NOS2 expression by γδ T cells and the development of vitiligo associated melanoma.
Collapse
Affiliation(s)
- Laetitia Douguet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lloyd Bod
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laura Labarthe
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Renée Lengagne
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Masashi Kato
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | - Armelle Prévost-Blondel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Negi VS, Mariaselvam CM, Misra DP, Muralidharan N, Fortier C, Charron D, Krishnamoorthy R, Tamouza R. Polymorphisms in the promoter region of iNOS
predispose to rheumatoid arthritis in south Indian Tamils. Int J Immunogenet 2017; 44:114-121. [DOI: 10.1111/iji.12315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Affiliation(s)
- V. S. Negi
- Department of Clinical Immunology; Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER); Puducherry India
| | - C. M. Mariaselvam
- Department of Clinical Immunology; Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER); Puducherry India
- INSERM, UMRS, U1160; Saint Louis Hospital; Paris France
| | - D. P. Misra
- Department of Clinical Immunology; Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER); Puducherry India
| | - N. Muralidharan
- Department of Clinical Immunology; Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER); Puducherry India
| | - C. Fortier
- Jean Dausset laboratory of Immunology and Immunogenetics and LabExTransplantex; Saint Louis Hospital; Paris France
| | - D. Charron
- INSERM, UMRS, U1160; Saint Louis Hospital; Paris France
- Jean Dausset laboratory of Immunology and Immunogenetics and LabExTransplantex; Saint Louis Hospital; Paris France
| | | | - R. Tamouza
- INSERM, UMRS, U1160; Saint Louis Hospital; Paris France
- Jean Dausset laboratory of Immunology and Immunogenetics and LabExTransplantex; Saint Louis Hospital; Paris France
| |
Collapse
|
13
|
Periasamy R, Kalal IG, Krishnaswamy R, Viswanadha V. Quercetin protects human peripheral blood mononuclear cells from OTA-induced oxidative stress, genotoxicity, and inflammation. ENVIRONMENTAL TOXICOLOGY 2016; 31:855-865. [PMID: 25532488 DOI: 10.1002/tox.22096] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 12/03/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins world wide, and is detrimental to human and animal health. This study evaluated the protective effect of quercetin against OTA-induced cytotoxicity, genotoxicity, and inflammatory response in lymphocytes. Cytotoxicity determined by MTT assay revealed IC20 value of OTA to be 20 µM, which was restored to near control values by pretreatment with quercetin. Oxidative stress parameters such as antioxidant enzymes, LPO and PCC levels indicated that quercetin exerted a protective effect on OTA-induced oxidative stress. Quercetin exerted an antigenotoxic effect on OTA-induced genotoxicity, by significantly reducing the number of structural aberrations in chromosomes and comet parameters like, % olive tail moment from 2.76 ± 0.02 to 0.56 ± 0.02 and % tail DNA from 56.23 ± 2.56 to 12.36 ± 0.56 as determined by comet assay. OTA-induced NO, TNF-α, IL-6, and IL-8 were significantly reduced in the quercetin pretreated samples indicating its anti-inflammatory role. Our results demonstrate for the first time that quercetin exerts a cytoprotective effect against OTA-induced oxidative stress, genotoxicity, and inflammation in lymphocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 855-865, 2016.
Collapse
Affiliation(s)
- Ramyaa Periasamy
- Animal Tissue Culture and Molecular Genetics Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - Iravathy Goud Kalal
- Molecular Biology and Cytogenetics Laboratory, Apollo Hospitals, Hyderabad, Telangana, India
| | - Rajashree Krishnaswamy
- Animal Tissue Culture and Molecular Genetics Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| | - VijayaPadma Viswanadha
- Animal Tissue Culture and Molecular Genetics Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamilnadu, India
| |
Collapse
|
14
|
Krzemiński K, Buraczewska M, Miśkiewicz Z, Dąbrowski J, Steczkowska M, Kozacz A, Ziemba A. Effect of ultra-endurance exercise on left ventricular performance and plasma cytokines in healthy trained men. Biol Sport 2015; 33:63-9. [PMID: 26985136 PMCID: PMC4786588 DOI: 10.5604/20831862.1189767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/11/2015] [Accepted: 11/14/2015] [Indexed: 01/19/2023] Open
Abstract
The purpose of this study was to investigate the effect of ultra-endurance exercise on left ventricular (LV) performance and plasma concentration of interleukin (IL)-6, IL-10, IL-18 and tumour necrosis factor alpha (TNF-α) as well as to examine the relationships between exercise-induced changes in plasma cytokines and those in echocardiographic indices of LV function in ultra-marathon runners. Nine healthy trained men (mean age 30±1.0 years) participated in a 100-km ultra-marathon. Heart rate, blood pressure, ejection fraction (EF), fractional shortening (FS), ratio of early (E) to late (A) mitral inflow peak velocities (E/A), ratio of early (E’) to late (A’) diastolic mitral annulus peak velocities (E’/A’) and E-wave deceleration time (DT) were obtained by echocardiography before, immediately after and in the 90th minute of the recovery period. Blood samples were taken before each echocardiographic evaluation. The ultra-endurance exercise caused significant increases in plasma IL-6, IL-10, IL-18 and TNF-α. Echocardiography revealed significant decreases in both E and the E/A ratio immediately after exercise, without any significant changes in EF, FS, DT or the E/E’ ratio. At the 90th minute of the recovery period, plasma TNF-α and the E/A ratio did not differ significantly from the pre-exercise values, whereas FS was significantly lower than before and immediately after exercise. The increases in plasma TNF-α correlated with changes in FS (r=0.73) and DT (r=-0.73). It is concluded that ultra-endurance exercise causes alterations in LV diastolic function. The present data suggest that TNF-α might be involved in this effect.
Collapse
Affiliation(s)
- K Krzemiński
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - M Buraczewska
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Z Miśkiewicz
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - J Dąbrowski
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - M Steczkowska
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - A Kozacz
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - A Ziemba
- Department of Applied Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Demirel I, Vumma R, Mohlin C, Svensson L, Säve S, Persson K. Nitric oxide activates IL-6 production and expression in human renal epithelial cells. Am J Nephrol 2012. [PMID: 23183248 DOI: 10.1159/000345351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS Increased nitric oxide (NO) production or inducible form of NO synthase activity have been documented in patients suffering from urinary tract infection (UTI), but the role of NO in this infection is unclear. We investigated whether NO can affect the host response in human renal epithelial cells by modulating IL-6 production and mRNA expression. METHODS The human renal epithelial cell line A498 was infected with a uropathogenic Escherichia coli (UPEC) strain and/or the NO donor DETA/NO. The IL-6 production and mRNA expression were evaluated by ELISA and real-time RT-PCR. IL-6 mRNA stability was evaluated by analyzing mRNA degradation by real-time RT-PCR. RESULTS DETA/NO caused a significant (p < 0.05) increase in IL-6 production. Inhibitors of p38 MAPK and ERK1/2 signaling, but not JNK, were shown to significantly suppress DETA/NO-induced IL-6 production. UPEC-induced IL-6 production was further increased (by 73 ± 23%, p < 0.05) in the presence of DETA/NO. The IL-6 mRNA expression increased 2.1 ± 0.17-fold in response to DETA/NO, while the UPEC-evoked increase was pronounced (20 ± 4.5-fold). A synergistic effect of DETA/NO on UPEC-induced IL-6 expression was found (33 ± 7.2-fold increase). The IL-6 mRNA stability studies showed that DETA/NO partially attenuated UPEC-induced degradation of IL-6 mRNA. CONCLUSIONS NO was found to stimulate IL-6 in renal epithelial cells through p38 MAPK and ERK1/2 signaling pathways and also to increase IL-6 mRNA stability in UPEC-infected cells. This study proposes a new role for NO in the host response during UTI by modulating the transcription and production of the cytokine IL-6.
Collapse
Affiliation(s)
- Isak Demirel
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Welc SS, Phillips NA, Oca-Cossio J, Wallet SM, Chen DL, Clanton TL. Hyperthermia increases interleukin-6 in mouse skeletal muscle. Am J Physiol Cell Physiol 2012; 303:C455-66. [PMID: 22673618 DOI: 10.1152/ajpcell.00028.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.
Collapse
Affiliation(s)
- Steven S Welc
- Department of Applied Physiology & Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
17
|
Zhang Q, Chen N, Qiu W, Xu X, Wang D, Tsao PS, Jin H. Asymmetric dimethylarginine impairs fibrinolytic activity in human umbilical vein endothelial cells via p38 MAPK and NF-κB pathways. Thromb Res 2011; 128:42-6. [PMID: 21429569 DOI: 10.1016/j.thromres.2011.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Asymmetric dimethylarginine (ADMA) is a potent endogenous inhibitor of nitric oxide (NO) synthase. An increased synthesis and/or a reduced catabolism of ADMA might contribute to the onset and progression of thrombosis. The present study was designed to evaluate the effect of ADMA on fibrinolytic factors in endothelial cells, and to investigate the cellular mechanisms. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of ADMA for various periods; Then HUVECs were preincubated with NO precursor (L-arginine), MAPK inhibitors, or NF-κB inhibitor (PDTC) before ADMA treatment to repeat the experiment. Protein levels of tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1), and NF-κB activity were measured by ELISA; mRNA levels of tPA and PAI-1 were assayed by qRT-PCR; The activation of MAPK was characterized by western blot analysis. RESULTS (1) ADMA decreased tPA antigen levels in time- and concentration-dependent manners, with the maximum effect of 30 μmol/L ADMA for 48h (control 109.01 ± 4.15 ng/ml vs ADMA 86.76 ± 5.95 ng/ml, p<0.01); (2) 30 μmol/L ADMA elevated antigen levels of PAI-1 in a time-dependent manner, with the maximum effect of 30 μmol/L ADMA for 48 h (control 2721.12 ± 278.02 ng/ml vs. ADMA 3435.78 ± 22.33ng/ml, p<0.05); (3) ADMA reduced tPA mRNA levels and increased PAI-1 mRNA levels; (4) L-arginine, SB203580 (p38 MAPK inhibitor) and PDTC attenuated the effects of ADMA on tPA and PAI-1 significantly. (5) ADMA induced a rapid phosphorylation of p38 MAPK, and stimulated NF-κB activity greatly. CONCLUSIONS ADMA may accelerate thrombosis development by impairing fibrinolytic activity in vascular via inhibiting nitric oxide production and then activating its downstream p38 MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Qin Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Nitric oxide affects IL-6 expression in human peripheral blood mononuclear cells involving cGMP-dependent modulation of NF-κB activity. Cytokine 2011; 54:282-8. [PMID: 21414799 DOI: 10.1016/j.cyto.2011.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 01/08/2023]
Abstract
Interleukin 6 (IL-6) and nitric oxide (NO) are important mediators of the inflammatory response. We report that in human peripheral blood mononuclear cells (PBMCs), NO exerts a biphasic effect on the expression of IL-6. Using sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) as NO-donating compounds, we observed that both mRNA and protein levels of IL-6 increased at lower (≤10μM) and decreased at higher (>100μM) concentrations of NO donors. Changes in the expression of IL-6 correlated with changes in the activity of NF-κB, which increased at lower and decreased at higher concentrations of both NO donors as shown by the electrophoretic mobility shift assay (EMSA). The effects of NO on NF-κB activity were cGMP-dependent because they were reversed in the presence of ODQ, the inhibitor of soluble guanylyl cyclase (sGC), and KT5823, the inhibitor of cGMP-dependent protein kinase (PKG). Moreover, the membrane permeable analog of cGMP (8-Br-cGMP) mimicked the effect of the NO donors. These observations show that NO, depending on its concentration, may act in human PBMCs as a stimulator of IL-6 expression involving the sGC/cGMP/PKG pathway.
Collapse
|