1
|
Mboko WP, Chhabra P, Valcarce MD, Costantini V, Vinjé J. Advances in understanding of the innate immune response to human norovirus infection using organoid models. J Gen Virol 2022; 103:10.1099/jgv.0.001720. [PMID: 35077345 PMCID: PMC8984994 DOI: 10.1099/jgv.0.001720] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Norovirus is the leading cause of epidemic and endemic acute gastroenteritis worldwide and the most frequent cause of foodborne illness in the United States. There is no specific treatment for norovirus infections and therapeutic interventions are based on alleviating symptoms and limiting viral transmission. The immune response to norovirus is not completely understood and mechanistic studies have been hindered by lack of a robust cell culture system. In recent years, the human intestinal enteroid/human intestinal organoid system (HIE/HIO) has enabled successful human norovirus replication. Cells derived from HIE have also successfully been subjected to genetic manipulation using viral vectors as well as CRISPR/Cas9 technology, thereby allowing studies to identify antiviral signaling pathways important in controlling norovirus infection. RNA sequencing using HIE cells has been used to investigate the transcriptional landscape during norovirus infection and to identify antiviral genes important in infection. Other cell culture platforms such as the microfluidics-based gut-on-chip technology in combination with the HIE/HIO system also have the potential to address fundamental questions on innate immunity to human norovirus. In this review, we highlight the recent advances in understanding the innate immune response to human norovirus infections in the HIE system, including the application of advanced molecular technologies that have become available in recent years such as the CRISPR/Cas9 and RNA sequencing, as well as the potential application of single cell transcriptomics, viral proteomics, and gut-on-a-chip technology to further elucidate innate immunity to norovirus.
Collapse
Affiliation(s)
- Wadzanai P. Mboko
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Preeti Chhabra
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Marta Diez Valcarce
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Veronica Costantini
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jan Vinjé
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
2
|
Abstract
Human noroviruses (HuNoVs) are increasingly becoming the main cause of transmissible gastroenteritis worldwide, with hundreds of thousands of deaths recorded annually. Yet, decades after their discovery, there is still no effective treatment or vaccine. Efforts aimed at developing vaccines or treatment will benefit from a greater understanding of norovirus-host interactions, including the host response to infection. In this review, we provide a concise overview of the evidence establishing the significance of type I and type III interferon (IFN) responses in the restriction of noroviruses. We also critically examine our current understanding of the molecular mechanisms of IFN induction in norovirus-infected cells, and outline the diverse strategies deployed by noroviruses to supress and/or avoid host IFN responses. It is our hope that this review will facilitate further discussion and increase interest in this area.
Collapse
Affiliation(s)
- Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- *Correspondence: Aminu S. Jahun,
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
3
|
Identification and Characterization of Human Norovirus NTPase Regions Required for Lipid Droplet Localization, Cellular Apoptosis, and Interaction with the Viral P22 Protein. Microbiol Spectr 2021; 9:e0042221. [PMID: 34431704 PMCID: PMC8552650 DOI: 10.1128/spectrum.00422-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human norovirus (HuNV)-encoded nucleoside-triphosphatase (NTPase) is a multifunctional protein critically involved in viral replication and pathogenesis. Previously, we have shown that the viral NTPase is capable of forming vesicle clusters in cells, interacting with other viral proteins such as P22, and promoting cellular apoptosis. Herein, we demonstrate that NTPase-associated vesicle clusters correspond to lipid droplets (LDs) wrapped by the viral protein and show that NTPase-induced apoptosis is mediated through both caspase-8- and caspase-9-dependent pathways. Deletion analysis revealed that the N-terminal 179-amino-acid (aa) region of NTPase encompasses two LD-targeting motifs (designated LTM-1 and LTM-2), two apoptosis-inducing motifs, and multiple regulatory regions. Interestingly, the identified LTM-1 and LTM-2, which are located from aa 1 to 50 and from aa 51 to 90, respectively, overlap with the two apoptosis-inducing motifs. Although there was no positive correlation between the extent of LD localization and the degree of cellular apoptosis for NTPase mutants, we noticed that mutant proteins defective in LD-targeting ability could not induce cellular apoptosis. In addition to LD targeting, the amphipathic LTM-1 and LTM-2 motifs could have the potential to direct fusion proteins to the endoplasmic reticulum (ER). Furthermore, we found that the LTM-1 motif is a P22-interacting motif. However, P22 functionally augmented the proapoptotic activity of the LTM-2 fusion protein but not the LTM-1 fusion protein. Overall, our findings propose that NTPase may participate in multiple cellular processes through binding to LDs or to the ER via its N-terminal amphipathic helix motifs. IMPORTANCE Human noroviruses (HuNVs) are the major agent of global gastroenteritis outbreaks. However, due to the lack of an efficient cell culture system for HuNV propagation, functions of the viral-encoded proteins in host cells are still poorly understood. In the current study, we present that the viral NTPase is a lipid droplet (LD)-associated protein, and we identify two LD-targeting motifs, LTM-1 and LTM-2, in its N-terminal domain. In particular, the identified LTM-1 and LTM-2 motifs, which contain a hydrophobic region and an amphipathic helix, are also capable of delivering the fusion protein to the endoplasmic reticulum (ER), promoting cellular apoptosis, and physically or functionally associating with another viral protein P22. Since LDs and the ER have been linked to several biological functions in cells, our study therefore proposes that the norovirus NTPase may utilize LDs or the ER as replication platforms to benefit viral replication and pathogenesis.
Collapse
|
4
|
Rathnayake AD, Kim Y, Dampalla CS, Nguyen HN, Jesri ARM, Kashipathy MM, Lushington GH, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. J Med Chem 2020; 63:11945-11963. [PMID: 32945669 DOI: 10.1021/acs.jmedchem.0c01252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute gastroenteritis caused by noroviruses has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The disease impacts most severely immunocompromised patients, the elderly, and children. The current lack of approved vaccines and small-molecule therapeutics for the treatment and prophylaxis of norovirus infections underscores the need for the development of norovirus-specific drugs. The studies described herein entail the use of the gem-dimethyl moiety as a means of improving the pharmacological activity and physicochemical properties of a dipeptidyl series of transition state inhibitors of norovirus 3CL protease, an enzyme essential for viral replication. Several compounds were found to be potent inhibitors of the enzyme in biochemical and cell-based assays. The pharmacological activity and cellular permeability of the inhibitors were found to be sensitive to the location of the gem-dimethyl group.
Collapse
Affiliation(s)
- Athri D Rathnayake
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chamandi S Dampalla
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Abdul-Rahman M Jesri
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Maithri M Kashipathy
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
5
|
Ghosh S, Malik YS, Kobayashi N. Therapeutics and Immunoprophylaxis Against Noroviruses and Rotaviruses: The Past, Present, and Future. Curr Drug Metab 2018; 19:170-191. [PMID: 28901254 PMCID: PMC5971199 DOI: 10.2174/1389200218666170912161449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/25/2016] [Accepted: 03/19/2017] [Indexed: 12/20/2022]
Abstract
Background: Noroviruses and rotaviruses are important viral etiologies of severe gastroenteritis. Noroviruses are the primary cause of nonbacterial diarrheal outbreaks in humans, whilst rotaviruses are a major cause of childhood diarrhea. Although both enteric pathogens substantially impact human health and economies, there are no approved drugs against noroviruses and rotaviruses so far. On the other hand, whilst the currently licensed rotavirus vaccines have been successfully implemented in over 100 countries, the most advanced norovirus vaccine has recently completed phase-I and II trials. Methods: We performed a structured search of bibliographic databases for peer-reviewed research litera-ture on advances in the fields of norovirus and rotavirus therapeutics and immunoprophylaxis. Results: Technological advances coupled with a proper understanding of viral morphology and replication over the past decade has facilitated pioneering research on therapeutics and immunoprophylaxis against noroviruses and rotaviruses, with promising outcomes in human clinical trials of some of the drugs and vaccines. This review focuses on the various developments in the fields of norovirus and rotavirus thera-peutics and immunoprophylaxis, such as potential antiviral drug molecules, passive immunotherapies (oral human immunoglobulins, egg yolk and bovine colostral antibodies, llama-derived nanobodies, and anti-bodies expressed in probiotics, plants, rice grains and insect larvae), immune system modulators, probiot-ics, phytochemicals and other biological substances such as bovine milk proteins, therapeutic nanoparti-cles, hydrogels and viscogens, conventional viral vaccines (live and inactivated whole virus vaccines), and genetically engineered viral vaccines (reassortant viral particles, virus-like particles (VLPs) and other sub-unit recombinant vaccines including multi-valent viral vaccines, edible plant vaccines, and encapsulated viral particles). Conclusions: This review provides important insights into the various approaches to therapeutics and im-munoprophylaxis against noroviruses and rotaviruses..
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies.,Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yashpal Singh Malik
- Indian Veterinary Research Institute, Izatnagar 243 122, Uttar Pradesh, India
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Lee W, Kim M, Lee SH, Jung HG, Oh JW. Prophylactic efficacy of orally administered Bacillus poly-γ-glutamic acid, a non-LPS TLR4 ligand, against norovirus infection in mice. Sci Rep 2018; 8:8667. [PMID: 29875467 PMCID: PMC5989232 DOI: 10.1038/s41598-018-26935-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022] Open
Abstract
Poly-gamma-glutamic acid (γ-PGA), an extracellular biopolymer produced by Bacillus sp., is a non-canonical toll-like receptor 4 (TLR4) agonist. Here we show its antiviral efficacy against noroviruses. γ-PGA with a molecular mass of 2,000-kDa limited murine norovirus (MNV) replication in the macrophage cell line RAW264.7 by inducing interferon (IFN)-β and conferred resistance to viral infection-induced cell death. Additionally, γ-PGA interfered with viral entry into cells. The potent antiviral state mounted by γ-PGA was not attributed to the upregulation of TLR4 or TLR3, a sensor known to recognize norovirus RNA. γ-PGA sensing by TLR4 required the two TLR4-associated accessory factors MD2 and CD14. In ex vivo cultures of mouse ileum, γ-PGA selectively increased the expression of IFN-β in villi. In contrast, IFN-β induction was negligible in the ileal Peyer’s patches (PPs) where its expression was primarily induced by the replication of MNV. Oral administration of γ-PGA, which increased serum IFN-β levels without inducing proinflammatory cytokines, reduced MNV loads in the ileum with PPs and mesenteric lymph nodes in mice. Our results disclose a γ-PGA-mediated non-conventional TLR4 signaling in the ileum, highlighting the potential use of γ-PGA as a prophylactic antiviral agent against noroviruses.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seung-Hoon Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
7
|
Levenson EA, Martens C, Kanakabandi K, Turner CV, Virtaneva K, Paneru M, Ricklefs S, Sosnovtsev SV, Johnson JA, Porcella SF, Green KY. Comparative Transcriptomic Response of Primary and Immortalized Macrophages to Murine Norovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:4157-4169. [PMID: 29735480 DOI: 10.4049/jimmunol.1700384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-β expression were not coupled in that a significant delay in the detection of secreted INF-β was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-β that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.
Collapse
Affiliation(s)
- Eric A Levenson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Craig Martens
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kishore Kanakabandi
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Charles V Turner
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kimmo Virtaneva
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Monica Paneru
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stacy Ricklefs
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Stanislav V Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jordan A Johnson
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Stephen F Porcella
- Rocky Mountain Laboratories Genomics Unit, Research Technologies Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
8
|
Subcellular Localization and Functional Characterization of GII.4 Norovirus-Encoded NTPase. J Virol 2018; 92:JVI.01824-17. [PMID: 29212938 PMCID: PMC5809722 DOI: 10.1128/jvi.01824-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
The genotype II.4 (GII.4) variants of human noroviruses (HuNVs) are recognized as the major agent of global gastroenteritis outbreaks. Due to the lack of an efficient cell culture system for HuNV propagation, the exact roles of HuNV-encoded nonstructural proteins (including Nterm, NTPase, P22, VPg, Pro, and RdRp) in viral replication or pathogenesis have not yet been fully understood. Here, we report the molecular characterization of the GII.4 HuNV-encoded NTPase (designated GII-NTPase). Results from our studies showed that GII-NTPase forms vesicular or nonvesicular textures in the cell cytoplasm, and the nonvesicular fraction of GII-NTPase significantly localizes to the endoplasmic reticulum (ER) or mitochondria. Deletion analysis revealed that the N-terminal 179-amino-acid (aa) region of GII-NTPase is required for vesicle formation and for ER colocalization, whereas the C-terminal region is involved in mitochondrial colocalization. In particular, two mitochondrion-targeting domains were identified in the C-terminal region of GII-NTPase which perfectly colocalized with mitochondria when the N-terminal region of GII-NTPase was deleted. However, the corresponding C-terminal portions of NTPase derived from the GI HuNV did not show mitochondrial colocalization. We also found that GII-NTPase physically interacts with itself as well as with Nterm and P22, but not VPg, Pro, and RdRp, in cells. The Nterm- and P22-interacting region was mapped to the N-terminal 179-aa region of GII-NTPase, whereas the self-assembly of GII-NTPase could be achieved via a head-to-head, tail-to-tail, or head-to-tail configuration. More importantly, we demonstrate that GII-NTPase possesses a proapoptotic activity, which can be further enhanced by coexpression with Nterm or P22. IMPORTANCE Despite the importance of human norovirus GII.4 variants in global gastroenteritis outbreaks, the basic biological functions of the viral nonstructural proteins in cells remain rarely investigated. In this report, we focus our studies on characteristics of the GII.4 norovirus-encoded NTPase (GII-NTPase). We unexpectedly find that GII-NTPase can perfectly colocalize with mitochondria after its N-terminal region is deleted. However, such a phenomenon is not observed for NTPase encoded by a GI strain. We further reveal that the N-terminal 179-aa region of GII-NTPase is sufficient to mediate (i) vesicle formation, (ii) ER colocalization, (iii) the interaction with two other nonstructural proteins, including Nterm and P22, (iv) the formation of homodimers or homo-oligomers, and (v) the induction of cell apoptosis. Taken together, our findings emphasize that the virus-encoded NTPase must have multiple activities during viral replication or pathogenesis; however, these activities may vary somewhat among different genogroups.
Collapse
|
9
|
Nasheri N, Petronella N, Ronholm J, Bidawid S, Corneau N. Characterization of the Genomic Diversity of Norovirus in Linked Patients Using a Metagenomic Deep Sequencing Approach. Front Microbiol 2017; 8:73. [PMID: 28197136 PMCID: PMC5282449 DOI: 10.3389/fmicb.2017.00073] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
Norovirus (NoV) is the leading cause of gastroenteritis worldwide. A robust cell culture system does not exist for NoV and therefore detailed characterization of outbreak and sporadic strains relies on molecular techniques. In this study, we employed a metagenomic approach that uses non-specific amplification followed by next-generation sequencing to whole genome sequence NoV genomes directly from clinical samples obtained from 8 linked patients. Enough sequencing depth was obtained for each sample to use a de novo assembly of near-complete genome sequences. The resultant consensus sequences were then used to identify inter-host nucleotide variations that occur after direct transmission, analyze amino acid variations in the major capsid protein, and provide evidence of recombination events. The analysis of intra-host quasispecies diversity was possible due to high coverage-depth. We also observed a linear relationship between NoV viral load in the clinical sample and the number of sequence reads that could be attributed to NoV. The method demonstrated here has the potential for future use in whole genome sequence analyses of other RNA viruses isolated from clinical, environmental, and food specimens.
Collapse
Affiliation(s)
- Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Nicholas Petronella
- Biostatistics and Modeling Division, Bureau of Food Surveillance and Science Integration, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill UniversityMontreal, QC, Canada; Department of Animal Science, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill UniversityMontreal, QC, Canada
| | - Sabah Bidawid
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| | - Nathalie Corneau
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada Ottawa, ON, Canada
| |
Collapse
|
10
|
The Norovirus NS3 Protein Is a Dynamic Lipid- and Microtubule-Associated Protein Involved in Viral RNA Replication. J Virol 2017; 91:JVI.02138-16. [PMID: 27881660 DOI: 10.1128/jvi.02138-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023] Open
Abstract
Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker β-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups. IMPORTANCE Many mechanisms involved in the replication of norovirus still remain unclear, including the role for the NS3 protein, one of seven nonstructural viral proteins, which remains to be elucidated. This study reveals that murine norovirus (MNV) NS3 is intimately associated with the viral replication complex and dsRNA. We observed that the NS3 proteins of both MNV and Norwalk virus (NV) induce prominent vesicular structures and that this formation is dependent on microtubules and cellular cholesterol. Thus, this study contributes to our understanding of protein function within different Norovirus genogroups and expands a growing knowledge base on the interaction between positive-strand RNA [(+)RNA] viruses and cellular membranes that contribute to the biogenesis of virus-induced membrane organelles. This study contributes to our understanding of viral protein function and the ability of a viral protein to recruit specific cellular organelles and lipids that enable replication.
Collapse
|