1
|
Di Giorgio C, Bellini R, Lupia A, Massa C, Urbani G, Bordoni M, Marchianò S, Rosselli R, De Gregorio R, Rapacciuolo P, Sepe V, Morretta E, Monti MC, Moraca F, Cari L, Ullah KRS, Natalizi N, Graziosi L, Distrutti E, Biagioli M, Catalanotti B, Donini A, Zampella A, Fiorucci S. The leukemia inhibitory factor regulates fibroblast growth factor receptor 4 transcription in gastric cancer. Cell Oncol (Dordr) 2024; 47:695-710. [PMID: 37945798 PMCID: PMC11090936 DOI: 10.1007/s13402-023-00893-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE The gastric adenocarcinoma (GC) represents the third cause of cancer-related mortality worldwide, and available therapeutic options remain sub-optimal. The Fibroblast growth factor receptors (FGFRs) are oncogenic transmembrane tyrosine kinase receptors. FGFR inhibitors have been approved for the treatment of various cancers and a STAT3-dependent regulation of FGFR4 has been documented in the H.pylori infected intestinal GC. Therefore, the modulation of FGFR4 might be useful for the treatment of GC. METHODS To investigate wich factors could modulate FGFR4 signalling in GC, we employed RNA-seq analysis on GC patients biopsies, human patients derived organoids (PDOs) and cancer cell lines. RESULTS We report that FGFR4 expression/function is regulated by the leukemia inhibitory factor (LIF) an IL-6 related oncogenic cytokine, in JAK1/STAT3 dependent manner. The transcriptomic analysis revealed a direct correlation between the expression of LIFR and FGFR4 in the tissue of an exploratory cohort of 31 GC and confirmed these findings by two external validation cohorts of GC. A LIFR inhibitor (LIR-201) abrogates STAT3 phosphorylation induced by LIF as well as recruitment of pSTAT3 to the promoter of FGFR4. Furthermore, inhibition of FGFR4 by roblitinib or siRNA abrogates STAT3 phosphorylation and oncogentic effects of LIF in GC cells, indicating that FGFR4 is a downstream target of LIF/LIFR complex. Treating cells with LIR-201 abrogates oncogenic potential of FGF19, the physiological ligand of FGFR4. CONCLUSIONS Together these data unreveal a previously unregnized regulatory mechanism of FGFR4 by LIF/LIFR and demonstrate that LIF and FGF19 converge on the regulation of oncogenic STAT3 in GC cells.
Collapse
Affiliation(s)
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Lupia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Net4Science Srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Carmen Massa
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Rosa De Gregorio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | | | - Federica Moraca
- Net4Science Srl, University "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | | | | | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
- Department Surgical and Biomedical Sciences, University of Perugia Medical School, Perugia, Italy.
| |
Collapse
|
2
|
Zaporowska-Stachowiak I, Springer M, Stachowiak K, Oduah M, Sopata M, Wieczorowska-Tobis K, Bryl W. Interleukin-6 Family of Cytokines in Cancers. J Interferon Cytokine Res 2024; 44:45-59. [PMID: 38232478 DOI: 10.1089/jir.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Nine soluble ligands [interleukin-6 (IL-6), interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine, interleukin-27 (IL-27), and interleukin-31] share the ubiquitously expressed transmembrane protein-glycoprotein-130 beta-subunit (gp130) and thus form IL-6 family cytokines. Proteins that may be important for cancerogenesis, CT-1, IL-11, IL-27, LIF, OSM, and CNTF, belong to the superfamily of IL-6. Cytokines such as IL-6, IL-11, and IL-27 are better investigated in comparison with other members of the same family of cytokines, eg, CT-1. Gp130 is one of the main receptors through which these cytokines exert their effects. The clinical implication of understanding the pathways of these cytokines in oncology is that targeted therapy to inhibit or potentiate cytokine activity may lead to remission in some cases.
Collapse
Affiliation(s)
- Iwona Zaporowska-Stachowiak
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Springer
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Mary Oduah
- English Students' Research Association, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Sopata
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Wieczorowska-Tobis
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesław Bryl
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Occurrences and phenotypes of RIPK3-positive gastric cells in Helicobacter pylori infected gastritis and atrophic lesions. Dig Liver Dis 2022; 54:1342-1349. [PMID: 35514018 DOI: 10.1016/j.dld.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Research evidences suggest that diverse forms of programmed cell death (PCD) are involved in the helicobacter pylori (H. pylori)-induced gastric inflammation and disorders. AIMS To characterize occurrences and phenotypes of necroptosis in gastric cells in H. pylori infected gastritis and atrophic specimens. METHODS Occurrences and phenotypes of necroptosis in gastric cells were immunohistochemically characterized with receptor-interacting protein kinase 3 (RIPK3) antibody in both human H. pylori infected gastric gastritis, atrophic specimens, and transgenic mice. RESULTS Increased populations of RIPK3-positive cells were observed in both gastric glands and lamina propria in H. pylori infected human oxyntic gastritis and atrophic specimens. Phenotypic analysis revealed that many RIPK3-positive cells were H + K+ ATPase-positive parietal cells in the gastric glands and were predominantly CD3-positive T lymphocytes, CD68-positive macrophages, and SMA-alpha-positive stromal cells in the lamina propria. Furthermore, we found an increased expression of RIPK3-positive gastric glandular cells along with the histological process of hyperplasia-atrophy-dysplasia progression in hypergastrinemic INS-GAS mice. CONCLUSIONS An increased population of RIPK3-positive cells was observed in several types of gastric cells, future studies that define the effects and mechanisms of PCD implicated in the development of H. pylori induced gastric disorders are needed.
Collapse
|
4
|
Finjan NM, Mahmood AS. Gene characterization of extended-spectrum-β-lactamase producing Klebsiella pneumoniae isolates and analysis of interleukin-11 in patients with urinary tract infection. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
He J, Hu W, Ouyang Q, Zhang S, He L, Chen W, Li X, Hu C. Helicobacter pylori infection induces stem cell-like properties in Correa cascade of gastric cancer. Cancer Lett 2022; 542:215764. [PMID: 35654291 DOI: 10.1016/j.canlet.2022.215764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 02/09/2023]
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. Its poor prognosis is attributed to unclear pathogenesis. Currently, the most widely accepted model for elucidating the mechanism of GC is the Correa cascade, which covers several histological lesions of the gastric mucosa. GC stem cells (CSCs) are crucial for oncogenesis in the Correa cascade and GC progression. As Helicobacter pylori (H. pylori) is the etiological factor in the Correa cascade, growing evidence suggests that enhancement of gastric stem cell-like properties and increase in CSCs correlate with H. pylori infection. In this paper, we review recent studies that present pathogenic mechanisms by which H. pylori induces gastric stem cell-like properties and CSCs, which may supplement the existing Correa model of GC. First, the dysfunction of developmental signaling pathways associated with H. pylori infection leads to the enhancement of gastric stemness. Second, H. pylori infection promotes alteration of the gastric mucosal microenvironment. In addition, epithelial-mesenchymal transition (EMT) may contribute to H. pylori-induced gastric stemness. Taken together, understanding these pathogeneses will provide potential therapeutic targets for the treatment of CSCs and malignant GC in H. pylori induced-Correa cascade of GC.
Collapse
Affiliation(s)
- JunJian He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiChao Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - ShengWei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - LiJiao He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - WeiYan Chen
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - XinZhe Li
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - ChangJiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
6
|
Jiang W, Bai W, Li J, Liu J, Zhao K, Ren L. Leukemia inhibitory factor is a novel biomarker to predict lymph node and distant metastasis in pancreatic cancer. Int J Cancer 2020; 148:1006-1013. [PMID: 32914874 DOI: 10.1002/ijc.33291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has a low survival rate, and most patients have lymph node metastasis and distant metastasis at the time of diagnosis. Despite efforts to improve overall survival (OS) and recurrence free survival (RFS), the prognosis of pancreatic cancer remains poor, underscoring the importance of identifying new biomarkers to predict metastasis in patients with pancreatic cancer. Leukemia inhibitory factor (LIF) is overexpressed in many types of cancer and is involved in the development of various malignancies including pancreatic cancer. However, the role of LIF as a biomarker to predict metastasis in pancreatic cancer remains unclear. In this study, univariate and multivariate Cox regression analyses identified LIF expression in pancreatic tumor tissues as an independent risk factor related to worse OS and RFS. LIF overexpression was related to poor clinicopathological features such as lymph node metastasis and Pathological stage (pTNM) stage. Serum LIF levels were higher in pancreatic cancer patients than in healthy controls. The area under the receiver operating characteristic curve indicated that serum LIF is more effective than other biomarkers (CA199 and CEA) for predicting lymph node and distant metastasis.
Collapse
Affiliation(s)
- Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Weiwei Bai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jianhua Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Liu
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Kaili Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
7
|
Bian SB, Yang Y, Liang WQ, Zhang KC, Chen L, Zhang ZT. Leukemia inhibitory factor promotes gastric cancer cell proliferation, migration, and invasion via the LIFR-Hippo-YAP pathway. Ann N Y Acad Sci 2020; 1484:74-89. [PMID: 32827446 DOI: 10.1111/nyas.14466] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
The long-term outcome of gastric cancer (GC) patients remains unsatisfactory despite some recent improvements. Leukemia inhibitory factor (LIF) is a prognostic biomarker for some solid tumors, however its role in GC remains unknown. In this study, we demonstrated that LIF and LIF receptor (LIFR) are overexpressed in GC tissues and established that a correlation exists between them. LIF and LIFR expression are associated with tumor differentiation, lymphovascular invasion, tumor stage, lymph node metastasis, and pTNM stage, indicating that they may be useful prognostic factors. LIF promoted GC cell proliferation, colony formation, invasion, migration, and tumor growth; it also promoted cell cycle progression and inhibited apoptosis; and knocking out the LIFR gene reversed the effects of LIF. LIF inhibited the activity of the Hippo pathway, resulting in reduced phosphorylation of YAP, increased YAP nuclear translocation, and increased cell proliferation. Finally, silencing YAP mRNA expression suppressed cell proliferation. Overall, the results demonstrate that LIF promotes the malignant biological behavior of GC cells through LIFR-Hippo-YAP signaling. LIF may therefore be a useful biomarker for GC.
Collapse
Affiliation(s)
- Shi-Bo Bian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China.,Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wen-Quan Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ke-Cheng Zhang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
8
|
Balic JJ, Saad MI, Dawson R, West AJ, McLeod L, West AC, D'Costa K, Deswaerte V, Dev A, Sievert W, Gough DJ, Bhathal PS, Ferrero RL, Jenkins BJ. Constitutive STAT3 Serine Phosphorylation Promotes Helicobacter-Mediated Gastric Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1256-1270. [PMID: 32201262 DOI: 10.1016/j.ajpath.2020.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Gastric cancer is associated with chronic inflammation (gastritis) triggered by persistent Helicobacter pylori (H. pylori) infection. Elevated tyrosine phosphorylation of the latent transcription factor STAT3 is a feature of gastric cancer, including H. pylori-infected tissues, and aligns with nuclear transcriptional activity. However, the transcriptional role of STAT3 serine phosphorylation, which promotes STAT3-driven mitochondrial activities, is unclear. Here, by coupling serine-phosphorylated (pS)-STAT3-deficient Stat3SA/SA mice with chronic H. felis infection, which mimics human H. pylori infection in mice, we reveal a key role for pS-STAT3 in promoting Helicobacter-induced gastric pathology. Immunohistochemical staining for infiltrating immune cells and expression analyses of inflammatory genes revealed that gastritis was markedly suppressed in infected Stat3SA/SA mice compared with wild-type mice. Stomach weight and gastric mucosal thickness were also reduced in infected Stat3SA/SA mice, which was associated with reduced proliferative potential of infected Stat3SA/SA gastric mucosa. The suppressed H. felis-induced gastric phenotype of Stat3SA/SA mice was phenocopied upon genetic ablation of signaling by the cytokine IL-11, which promotes gastric tumorigenesis via STAT3. pS-STAT3 dependency by Helicobacter coincided with transcriptional activity on STAT3-regulated genes, rather than mitochondrial and metabolic genes. In the gastric mucosa of mice and patients with gastritis, pS-STAT3 was constitutively expressed irrespective of Helicobacter infection. Collectively, these findings suggest an obligate requirement for IL-11 signaling via constitutive pS-STAT3 in Helicobacter-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ruby Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alice J West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Anouk Dev
- Department of Gastroenterology and Hepatology, Monash Health, Melbourne, Victoria, Australia
| | - William Sievert
- Department of Gastroenterology and Hepatology, Monash Health, Melbourne, Victoria, Australia
| | - Daniel J Gough
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Prithi S Bhathal
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
9
|
Abstract
Interleukin (IL)-11 belongs to the IL-6 family of cytokines, discovered over 30 years ago. While early studies focused on the ability of IL-11 to stimulate megakaryocytopoiesis, the importance of this cytokine to inflammatory disease and cancers is only just beginning to be uncovered. This review outlines recent advances in our understanding of IL-11 biology, and highlights the development of novel therapeutics with the potential for clinical targeting of signaling by this cytokine in multiple diseases.
Collapse
Affiliation(s)
- Paul M Nguyen
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Suad M Abdirahman
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Tracy L Putoczki
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| |
Collapse
|
10
|
Correction to: Interplay Between Helicobacter pylori Infection, Interleukin-11, and Leukemia Inhibitory Factor in Gastric Cancer Among Egyptian Patients, by Sabry D, Abdelaleem OO, Hefzy EM, Ibrahim AA, Ahmed TI, Hassan EA, Abdel-Hameed ND, Khalil MAF. J Interferon Cytokine Res 2018;38(11):517-525. DOI: 10.1089/jir.2018.0065. J Interferon Cytokine Res 2019; 39:190. [PMID: 30794008 DOI: 10.1089/jir.2018.0065.correx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|