1
|
Kicińska AK, Rękas M. Alternative application of an iTrack microcatheter and canaloplasty: case report and literature review. Expert Opin Drug Deliv 2023; 20:1201-1208. [PMID: 37700455 DOI: 10.1080/17425247.2023.2256657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Glaucoma is the leading cause of irreversible blindness worldwide. Schlemm's canal surgery using an iTrack flexible microcatheter has become popular because of its high quality-of-life issues and the growing demand for less invasive but effective procedures. The unique design of the microcatheter makes it a multimodal tool, which can be used not only in the field of antiglaucoma surgery but also as a drug delivery system to treat various conditions. AREAS COVERED This review presents an update on the selected aspects of a drug delivery system using the iTrack microcatheter, including glaucoma gene therapy and posterior-segment diseases, both in animal models and human patients. The authors also report the case of a patient with branch retinal vein occlusion treated with suprachoroidal bevacizumab in the submacular region administered with the iTrack catheter. EXPERT OPINION The findings presented in this study may indicate that the application of a microcatheter in open-angle glaucoma gene therapy is reasonable and can be combined with full or partial surgical canaloplasty procedures. Translation of this potential into a treatment modality would require overcoming multiple barriers.
Collapse
Affiliation(s)
- Aleksandra K Kicińska
- Department of Ophthalmology, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Marek Rękas
- Department of Ophthalmology, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| |
Collapse
|
2
|
Kaufman PL. Deconstructing aqueous humor outflow - The last 50 years. Exp Eye Res 2020; 197:108105. [PMID: 32590004 PMCID: PMC7990028 DOI: 10.1016/j.exer.2020.108105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Herein partially summarizes one scientist-clinician's wanderings through the jungles of primate aqueous humor outflow over the past ~45 years. Totally removing the iris has no effect on outflow facility or its response to pilocarpine, whereas disinserting the ciliary muscle (CM) from the scleral spur/trabecular meshwork (TM) completely abolishes pilocarpine's effect. Epinephrine increases facility in CM disinserted eyes. Cytochalasins and latrunculins increase outflow facility, subthreshold doses of cytochalasins and epinephrine given together increase facility, and phalloidin, which has no effect on facility, partially blocks the effect of both cytochalasins and epinephrine. H-7, ML7, Y27632 and nitric oxide - donating compounds all increase facility, consistent with a mechanosensitive TM/SC. Adenosine A1 agonists increase and angiotensin II decrease facility. OCT and optical imaging techniques now permit visualization and digital recording of the distal outflow pathways in real time. Prostaglandin (PG) F2α analogues increase the synthesis and release of matrix metalloproteinases by the CM cells, causing remodeling and thinning of the interbundle extracellular matrix (ECM), thereby increasing uveoscleral outflow and reducing IOP. Combination molecules (one molecule, two or more effects) and fixed combination products (two molecules in one bottle) simplify drug regimens for patients. Gene and stem cell therapies to enhance aqueous outflow have been successful in laboratory models and may fill an unmet need in terms of patient compliance, taking the patient out of the delivery system. Functional transfer of genes inhibiting the rho cascade or decoupling actin from myosin increase facility, while genes preferentially expressed in the glaucomatous TM decrease facility. In live NHP, reporter genes are expressed for 2+ years in the TM after a single intracameral injection, with no adverse reaction. However, except for one recent report, injection of facility-effective genes in monkey organ cultured anterior segments (MOCAS) have no effect in live NHP. While intracameral injection of an FIV. BOVPGFS-myc.GFP PGF synthase vector construct reproducibly induces an ~2 mmHg reduction in IOP, the effect is much less than that of topical PGF2⍺ analogue eyedrops, and dissipates after 5 months. The turnoff mechanism has yet to be defeated, although proteasome inhibition enhances reporter gene expression in MOCAS. Intracanalicular injection might minimize off-target effects that activate turn-off mechanisms. An AD-P21 vector injected sub-tenon is effective in 'right-timing' wound healing after trabeculectomy in live laser-induced glaucomatous monkeys. In human (H)OCAS, depletion of TM cells by saponification eliminates the aqueous flow response to pressure elevation, which can be restored by either cultured TM cells or by IPSC-derived TM cells. There were many other steps along the way, but much was accomplished, biologically and therapeutically over the past half century of research and development focused on one very small but complex ocular apparatus. I am deeply grateful for this award, named for a giant in our field that none of us can live up to.
Collapse
Affiliation(s)
- Paul L Kaufman
- University of Wisconsin - Madison, School of Medicine & Public Health, Dept of Ophthalmology & Visual Sciences, United States.
| |
Collapse
|
3
|
Xin C, Wang H, Wang N. Minimally Invasive Glaucoma Surgery: What Do We Know? Where Should We Go? Transl Vis Sci Technol 2020; 9:15. [PMID: 32821487 PMCID: PMC7401977 DOI: 10.1167/tvst.9.5.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
With the arrival of a plethora of new and revolving minimally invasive glaucoma surgery techniques, glaucoma specialists currently are fortunate to have various surgical options that aim to recovery of the function of the aqueous outflow system in different ways. Meanwhile, the aqueous outflow system has become the hot point of researching. In ARVO 2019, a special interest group session was held on new perspectives on minimally invasive glaucoma surgery. Ten surgeons, clinical professors, and experimental scientists were invited to report their latest studies and discussed on five hot topics in this special interest group. This review summarizes the special interest group session and posts the issues of greatest concern, providing insight to the aqueous outflow system and areas that require further study.
Collapse
Affiliation(s)
- Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huangzhou Wang
- Ophthalmology Department, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Xie X, Akiyama G, Bogarin T, Saraswathy S, Huang AS. Visual Assessment of Aqueous Humor Outflow. Asia Pac J Ophthalmol (Phila) 2019; 8:126-134. [PMID: 30916496 PMCID: PMC7028348 DOI: 10.22608/apo.201911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In the past decade, many new pharmacological and surgical treatments have become available to lower intraocular pressure (IOP) for glaucoma. The majority of these options have targeted improving aqueous humor outflow (AHO). At the same time, in addition to new treatments, research advances in AHO assessment have led to the development of new tools to structurally assess AHO pathways and to visualize where aqueous is flowing in the eye. These new imaging modalities have uncovered novel AHO observations that challenge traditional AHO concepts. New behaviors including segmental, pulsatile, and dynamic AHO may have relevance to the disease and the level of therapeutic response for IOP-lowering treatments. By better understanding the regulation of segmental, pulsatile, and dynamic AHO, it may be possible to find new and innovative treatments for glaucoma aiming at these new AHO behaviors.
Collapse
Affiliation(s)
- Xiaobin Xie
- From the Eye Hospital of China Academy of Chinese Medical Sciences, Beijing, China; and UCLA Department of Ophthalmology, Doheny Eye Institute, Los Angeles, CA, United States
| | | | | | | | | |
Collapse
|
5
|
Kaufman PL, Mohr ME, Riccomini SP, Rasmussen CA. Glaucoma Drugs in the Pipeline. Asia Pac J Ophthalmol (Phila) 2018; 7:345-351. [PMID: 30221499 DOI: 10.22608/apo.2018298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glaucoma is a chronic disease that can be challenging to treat for both patients and physicians. Most patients will require more than 1 medication over time to maintain their intraocular pressure (IOP) at a physiologically benign level. Patients may become refractory to existing compounds and many struggle with adherence to multiple topical drop regimens. The field of glaucoma therapeutics has been advancing rapidly with an emphasis on compounds comprising multiple molecules/mechanisms of action that offer additivity and are complementary to current therapeutics. Several new topical drop compounds directly targeting the trabecular meshwork (TM)/Schlemm canal/conventional outflow pathway to reduce outflow resistance have obtained US Food and Drug Administration approval in the past year. These include rho kinase inhibitors and nitric oxide donating compounds. Alternative therapies that offer long-term IOP lowering while removing the patient from the drug delivery system are moving forward in development. These include gene therapy and stem cell strategies, which could ease or eliminate the burden of topical drop self-administration for several years. Additionally, a variety of novel formulations and devices are in development that aim for controlled, steady state delivery of therapeutics over periods of months. The future of glaucoma therapy is focusing on an increase in specificity for the individual patient: their type of glaucoma; underlying mechanisms; genetic make-up; comorbid conditions; and rate of progression. Maintaining functional vision and improving patient outcomes remains the goal in glaucoma therapeutics. The current collection of novel therapeutics offers an expanded set of tools to achieve that goal.
Collapse
Affiliation(s)
- Paul L Kaufman
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Mary E Mohr
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Scott P Riccomini
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Carol A Rasmussen
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
6
|
Huang AS, Francis BA, Weinreb RN. Structural and functional imaging of aqueous humour outflow: a review. Clin Exp Ophthalmol 2017; 46:158-168. [PMID: 28898516 DOI: 10.1111/ceo.13064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 01/15/2023]
Abstract
Maintaining healthy aqueous humour outflow (AHO) is important for intraocular cellular health and stable vision. Impairment of AHO can lead to increased intraocular pressure, optic nerve damage and concomitant glaucoma. An improved understanding of AHO will lead to improved glaucoma surgeries that enhance native AHO as well as facilitate the development of AHO-targeted pharmaceuticals. Recent AHO imaging has evolved to live human assessment and has focused on the structural evaluation of AHO pathways and the functional documentation of fluid flow. Structural AHO evaluation is predominantly driven by optical coherence tomography, and functional evaluation of flow is performed using various methods, including aqueous angiography. Advances in structural and functional evaluation of AHO are reviewed with discussion of strengths, weaknesses and potential future directions.
Collapse
Affiliation(s)
- Alex S Huang
- Doheny Eye Institute, Los Angeles, California, USA.,Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Brian A Francis
- Doheny Eye Institute, Los Angeles, California, USA.,Doheny Eye Centers, Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Robert N Weinreb
- Shiley Eye Institute and Hamilton Glaucoma Center, Department of Ophthalmology, University of California, San Diego, California, USA
| |
Collapse
|
7
|
Wang Y, Li F, Wang S. MicroRNA‑93 is overexpressed and induces apoptosis in glaucoma trabecular meshwork cells. Mol Med Rep 2016; 14:5746-5750. [PMID: 27878244 DOI: 10.3892/mmr.2016.5938] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/03/2016] [Indexed: 11/05/2022] Open
Abstract
Glaucoma is an optic neuropathy and a major cause of blindness globally. Trabecular meshwork cells are important in maintaining aqueous humor flow, the dysfunction of which tends to induce glaucoma. As important regulators of gene expression, microRNAs may be crucial in regulating trabecular meshwork cells. The present study aimed to reveal the effect of microRNA‑93 (miR‑93) on glaucoma trabecular meshwork (GTM) cell apoptosis. The expression levels of miR‑93 were compared between human trabecular meshwork (HTM) cells and GTM cells. The expression of miR‑93 was inhibited and increased by transfecting the cells with a lentivirus containing its specific inhibitor sponge and expression vector to investigate changes in GTM cell viability and apoptosis. Alterations in the protein expression of nuclear factor erythroid 2‑like 2 (NFE2L2) were also examined to elucidate the possible mechanism underlying the effects of miR‑93. The results showed a marked promotion in the expression of miR‑93 in the GTM cells, compared with the HTM cells (P<0.01). GTM cell viability was increased and its apoptosis was inhibited by transfection with the miR‑93 sponge (P<0.01 and P<0.001, respectively), whereas the overexpression of miR‑93 abrogated these effects (P<0.05 and P<0.0001, respectively). The expression of NFE2L2, a possible target of miR‑93, was promoted by transfection with the miR‑93 sponge (P<0.01) and was inhibited in the cells overexpressing miR‑93 (P<0.01). Therefore, miR‑93 was capable of inhibiting viability and inducing apoptosis of the GTM cells, which was achieved via the suppression of NFE2L2. These results elucidated the pro‑apoptotic effects of miR‑93 in GTM cells and its possible functional mechanism, providing potential therapeutic targets for the treatment of glaucoma.
Collapse
Affiliation(s)
- Yansa Wang
- Department of Ophthalmology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Fenghua Li
- Department of Ophthalmology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Shuyun Wang
- Department of Ophthalmology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
8
|
Huang AS, Mohindroo C, Weinreb RN. Aqueous Humor Outflow Structure and Function Imaging At the Bench and Bedside: A Review. ACTA ACUST UNITED AC 2016; 7. [PMID: 27790380 PMCID: PMC5079182 DOI: 10.4172/2155-9570.1000578] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Anterior segment glaucoma clinical care and research has recently gained new focus because of novel imaging modalities and the advent of angle-based surgical treatments. Traditional investigation drawn to the trabecular meshwork now emphasizes the entire conventional aqueous humor outflow (AHO) pathway from the anterior chamber to the episcleral vein. AHO investigation can be divided into structural and functional assessments using different methods. The historical basis for studying the anterior segment of the eye and AHO in glaucoma is discussed. Structural studies of AHO are reviewed and include traditional pathological approaches to modern tools such as multi-model two-photon microscopy and optical coherence tomography. Functional assessment focuses on visualizing AHO itself through a variety of non-real-time and real-time techniques such as aqueous angiography. Implications of distal outflow resistance and segmental AHO are discussed with an emphasis on melding bench-side research to viable clinical applications. Through the development of an improved structure: function relationship for AHO in the anterior segment of the normal and diseased eye, a better understanding of the eye with improved therapeutics may be developed.
Collapse
Affiliation(s)
- Alex S Huang
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Robert N Weinreb
- Hamilton Glaucoma Center and Shiley Eye Institute, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging. PLoS One 2016; 11:e0147176. [PMID: 26807586 PMCID: PMC4725949 DOI: 10.1371/journal.pone.0147176] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/30/2015] [Indexed: 01/22/2023] Open
Abstract
Purpose Trabecular meshwork (TM) bypass surgeries attempt to enhance aqueous humor outflow (AHO) to lower intraocular pressure (IOP). While TM bypass results are promising, inconsistent success is seen. One hypothesis for this variability rests upon segmental (non-360 degrees uniform) AHO. We describe aqueous angiography as a real-time and physiologic AHO imaging technique in model eyes as a way to simulate live AHO imaging. Methods Pig (n = 46) and human (n = 6) enucleated eyes were obtained, orientated based upon inferior oblique insertion, and pre-perfused with balanced salt solution via a Lewicky AC maintainer through a 1mm side-port. Fluorescein (2.5%) was introduced intracamerally at 10 or 30 mm Hg. With an angiographer, infrared and fluorescent (486 nm) images were acquired. Image processing allowed for collection of pixel information based on intensity or location for statistical analyses. Concurrent OCT was performed, and fixable fluorescent dextrans were introduced into the eye for histological analysis of angiographically active areas. Results Aqueous angiography yielded high quality images with segmental patterns (p<0.0001; Kruskal-Wallis test). No single quadrant was consistently identified as the primary quadrant of angiographic signal (p = 0.06–0.86; Kruskal-Wallis test). Regions of high proximal signal did not necessarily correlate with regions of high distal signal. Angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways. Conclusions Aqueous angiography is a real-time and physiologic AHO imaging technique in model eyes.
Collapse
|
10
|
Rasmussen CA, Kaufman PL. Exciting directions in glaucoma. Can J Ophthalmol 2015; 49:534-43. [PMID: 25433744 DOI: 10.1016/j.jcjo.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/13/2014] [Indexed: 01/15/2023]
Abstract
Glaucoma is a complex, life-long disease that requires an individualized, multifaceted approach to treatment. Most patients will be started on topical ocular hypotensive eyedrop therapy, and over time multiple classes of drugs will be needed to control their intraocular pressure. The search for drugs with novel mechanisms of action, to treat those who do not achieve adequate intraocular pressure control with, or become refractory to, current therapeutics, is ongoing, as is the search for more efficient, targeted drug delivery methods. Gene-transfer and stem-cell applications for glaucoma therapeutics are moving forward. Advances in imaging technologies improve our understanding of glaucoma pathophysiology and enable more refined patient evaluation and monitoring, improving patient outcomes.
Collapse
Affiliation(s)
- Carol A Rasmussen
- Department of Ophthalmology & Visual Sciences, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA..
| | - Paul L Kaufman
- Department of Ophthalmology & Visual Sciences, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|