1
|
Mora-Pereira M, Abarca EM, Duran S, Ravis W, McMullen RJ, Fischer BM, Lee YHP, Wooldridge AA. Sustained-release voriconazole-thermogel for subconjunctival injection in horses: ocular toxicity and in-vivo studies. BMC Vet Res 2020; 16:115. [PMID: 32295599 PMCID: PMC7160932 DOI: 10.1186/s12917-020-02331-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background Keratomycosis is a relatively common, sight threatening condition in horses, where treatment is often prolonged and costly. Subconjunctival (SCo) injections offer less resistance to drug diffusion than the topical route, resulting in better penetration to the ocular anterior segment. Voriconazole, a second generation triazole antifungal, is effective against common fungal organisms causing keratomycosis. If combined with a thermogel biomaterial, voriconazole can be easily injected in the SCo space to provide sustained drug release. The purpose of this study was to evaluate the drug concentrations in the anterior segment and clinical effects after SCo injections of voriconazole-containing thermogel: poly (DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) in healthy equine eyes. Results Voriconazole aqueous humor (AH) and tear concentrations were compared between 6 horses, receiving 1% voriconazole applied topically (0.2 mL, q4h) (Vori-Top) or 1.7% voriconazole-thermogel (0.3 mL) injected SCo (Vori-Gel). For the Vori-Gel group, voriconazole concentrations were measured in AH and tears at day 2 and then weekly for 23 days, and at day 2 only for the Vori-Top group. Ocular inflammation was assessed weekly (Vori-Gel) using the modified Hackett-McDonald scoring system. Ocular tissue concentrations of voriconazole following SCo 1.7% voriconazole-thermogel (0.3 mL) injections were evaluated post euthanasia in 6 additional horses at 3 different time points. Three horses received bilateral injections at 2 h (n = 3, right eye (OD)) and 48 h (n = 3, left eye (OS)) prior to euthanasia, and 3 horses were injected unilaterally (OS), 7 days prior to euthanasia. Voriconazole-thermogel was easily injected and well tolerated in all cases, with no major adverse effects. On day 2, drug concentrations in tears were higher in the Vori-Top, but not statistically different from Vori-Gel groups. For the Vori-Gel group, voriconazole was non-quantifiable in the AH at any time point. Total voriconazole concentrations in the cornea were above 0.5 μg/g (the target minimum inhibitory concentration (MIC) for Aspergillus sp.) for up to 48 h; however, concentrations were below this MIC at 7 days post treatment. Conclusions Voriconazole-thermogel was easily and safely administered to horses, and provided 48 h of sustained release of voriconazole into the cornea. This drug delivery system warrants further clinical evaluation.
Collapse
Affiliation(s)
- Mariano Mora-Pereira
- J. T. Vaughan Large Animal Teaching Hospital, Auburn University, Auburn, AL, USA
| | - Eva M Abarca
- J. T. Vaughan Large Animal Teaching Hospital, Auburn University, Auburn, AL, USA.
| | - Sue Duran
- J. T. Vaughan Large Animal Teaching Hospital, Auburn University, Auburn, AL, USA
| | - William Ravis
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Richard J McMullen
- J. T. Vaughan Large Animal Teaching Hospital, Auburn University, Auburn, AL, USA
| | - Britta M Fischer
- J. T. Vaughan Large Animal Teaching Hospital, Auburn University, Auburn, AL, USA
| | | | - Anne A Wooldridge
- J. T. Vaughan Large Animal Teaching Hospital, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Kong X, Fu J, Shao K, Wang L, Lan X, Shi J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater 2019; 100:255-269. [PMID: 31606531 DOI: 10.1016/j.actbio.2019.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Inspired by the wound healing characteristics of the oral mucosa, a biomimetic hydrogel was prepared to realize the rapid and scar-free healing of skin wounds. Through monitoring the healing process of injured oral mucosa, we find out that the combination of high, rapid and sequential expression of some growth factors and the sterile-moist microenvironment are crucial for re-epithelialization and precise control of the inflammation process. On the base of our findings, a hydrogel loaded with several functional compounds was prepared to achieve a comprehensive simulation of the oral mucosal trauma microenvironment for skin wound healing. After 7 days treatment, the skin wound area of the treated group was only about 20% of that of the untreated group, and the proportion of collagen type III and type I in the treated group was much higher than that of the untreated group, suggesting lighter scar hyperplasia. The comprehensive treatment strategy of sequential expression of growth factors in combination with maintaining of a sterile and humid environment is expected to have great application prospect in the field of chronic trauma repair and cosmetic surgery. STATEMENT OF SIGNIFICANCE: Long healing time and scar hyperplasia during wound healing have been a serious problem in the past decades of wound healing research. Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Therefore, in recent years, many scholars have begun to study the healing mechanism of oral mucosa, which supports a new inspiration for the study of skin wound repair: whether the injured skin can achieve a rapid scar-free healing effect similar to oral mucosa? Imitating the biological process of oral mucosa wound healing would be a promising therapeutic strategy in wound healing. Therefore, inspired by the wound healing characteristics of the oral mucosa, a biomimetic gel was prepared to realize the rapid and scar-free healing of skin wounds. Through monitoring the healing process of injured oral mucosa, the combination of high, rapid and sequential expression of some growth factors and sterile-moist microenvironment was crucial for re-epithelialization and precise control of the inflammation process. The comprehensive treatment strategy of sequential expression of growth factors in combination with maintance of a sterile and humid environment implies its potential use in the field of chronic trauma repair and cosmetic surgery.
Collapse
Affiliation(s)
- Xiaoying Kong
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Jun Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315200, China
| | - Kai Shao
- Medical Experimental Center, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao 266035, China
| | - Lili Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Xuefang Lan
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Jinsheng Shi
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China.
| |
Collapse
|
3
|
Bimatoprost loaded nanovesicular long-acting sub-conjunctival in-situ gelling implant: In vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109730. [PMID: 31349399 DOI: 10.1016/j.msec.2019.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 11/22/2022]
Abstract
Primary treatment for glaucoma relies on chronic instillation (daily) of intraocular pressure (IOP) lowering eye drops. Present study tends to develop and assess a novel sustained release bimatoprost loaded nanovesicular (BMT-NV) - thermosensitive in-situ gelling implant (BMT-NV-GEL-IM), for subconjunctival delivery. BMT-NVs developed using novel composition and method of preparation, (IPA/700/DEL/2014) and industrially viable methodology were characterized and evaluated comprehensively for ocular suitability. Their incorporation into an in-situ gelling formula was safe (in vitro and in vivo) and stable upon sterilization. Autoclavability was an important consideration, as a preservative-free, single-use BMT-NV-GEL-IM will avoid side- effects associated with repetitive application of drops containing preservatives like benzalkonium chloride (BAK). An extended in vitro release of BMT (80.23%) was observed for 10 days while the IOP lowering effect extended over 2 months with single subconjunctival injection of BMT-NV-GEL-IM in rats. No clinical signs of irritation, inflammation, or infection were observed in any injected eye, throughout the study, as also confirmed by histology. Furthermore, single administration of BMT-NV-GEL as topical drop lowered the IOP over 5 days. Presence of significant diffuse fluorescence in confocal microscopy of internal eye tissues post-in vivo application, as subconjunctival implant, even after 2 month and eye drops upto1 week provide direct evidence of successful sustained delivery. We thus provide an improved modality for antiglaucoma medication in patients who are challenged to adhere to a regimen of daily eye drops.
Collapse
|
4
|
Srinivasarao DA, Lohiya G, Katti DS. Fundamentals, challenges, and nanomedicine‐based solutions for ocular diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1548. [DOI: 10.1002/wnan.1548] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/21/2018] [Accepted: 10/28/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dadi A. Srinivasarao
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Garima Lohiya
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| | - Dhirendra S. Katti
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
5
|
Emami A, Tepper J, Short B, Yaksh TL, Bendele AM, Ramani T, Cisternas AF, Chang JH, Mellon RD. Toxicology Evaluation of Drugs Administered via Uncommon Routes: Intranasal, Intraocular, Intrathecal/Intraspinal, and Intra-Articular. Int J Toxicol 2017; 37:4-27. [PMID: 29264927 DOI: 10.1177/1091581817741840] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As the need for nasal, ocular, spinal, and articular therapeutic compounds increases, toxicology assessments of drugs administered via these routes play an important role in human safety. This symposium outlined the local and systemic evaluation to support safety during the development of these drugs in nonclinical models with some case studies. Discussions included selection of appropriate species for the intended route; conducting nonclinical studies that closely mimic the intended use with adequate duration; functional assessment, if deemed necessary; evaluation of local tissues with special histological staining procedure; and evaluations of safety margins based on local and systemic toxicity.
Collapse
Affiliation(s)
- Armaghan Emami
- 1 US Food and Drug Administration, Silver Spring, MD, USA
| | - Jeff Tepper
- 2 Tepper Nonclinical Consulting, San Carlos, CA, USA
| | - Brian Short
- 3 Brian Short Consulting, LLC, Trabuco Canyon, CA, USA
| | - Tony L Yaksh
- 4 Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | - Jay H Chang
- 1 US Food and Drug Administration, Silver Spring, MD, USA
| | | |
Collapse
|
6
|
RNA nanoparticle distribution and clearance in the eye after subconjunctival injection with and without thermosensitive hydrogels. J Control Release 2017; 270:14-22. [PMID: 29170141 DOI: 10.1016/j.jconrel.2017.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/28/2017] [Accepted: 11/18/2017] [Indexed: 12/15/2022]
Abstract
Thermodynamically and chemically stable RNA nanoparticles derived from the three-way junction (3WJ) of the pRNA from bacteriophage phi29 DNA packaging motor were examined previously for ocular delivery. It was reported that, after subconjunctival injection, RNA nanoparticles with tri-way shape entered the corneal cells but not the retinal cells, whereas particle with four-way shape entered both corneal and retinal cells. The present study evaluated ocular delivery of RNA nanoparticles with various shapes and sizes, and assessed the effect of thermosensitive hydrogels (poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(lactic-co-glycolic acid); PLGA-PEG-PLGA) for increasing the retention of RNA nanoparticles in the eye. Fluorescence imaging of mouse eyes and fluorescence microscopy of dissected eye tissues from the conjunctiva, cornea, retina, and sclera were performed to determine the distribution and clearance of the nanoparticles in the eyes after subconjunctival injection in vivo. RNA nanoparticles entered the cells of the conjunctiva, cornea, retina, and sclera after subconjunctival delivery. The clearance of RNA pentagon was slower than both RNA square and triangle of the same designed edge length (10nm) in the eye, and the clearance of RNA squares of the longer edge lengths (10 and 20nm) was slower than RNA square of the shorter edge length (5nm), thus indicating that the size could affect ocular pharmacokinetics of the nanoparticles. At 24h after the injection, approximately 6-10% of the fluorescence signal from the larger nanoparticles in the study (RNA square of 20nm edge length and RNA pentagon of 10nm edge length) remained in the eye, and up to 70% of the retinal cells contained the nanoparticles. The results suggest that the larger nanoparticles were "gulped" in conjunctival, corneal, retinal, and scleral cells, similar to the behavior observed in macrophages. Additionally, the combination of RNA nanoparticles with the thermosensitive polymers increased the retention of the nanoparticles in the eye.
Collapse
|
7
|
Evaluation of pentablock co-polymer (PTS sol ) for sustained topical ocular drug delivery. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|