1
|
Li Y, Wang Z. Biomaterials for Corneal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408021. [PMID: 39739318 PMCID: PMC11809424 DOI: 10.1002/advs.202408021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Corneal blindness is a significant reason for visual impairment globally. Researchers have been investigating several methods for corneal regeneration in order to cure these patients. Biomaterials are favored due to their biocompatibility and capacity to promote cell adhesion. A variety of natural and synthetic biomaterials, along with decellularized cornea, have been employed in corneal wound healing. Commonly utilized natural biomaterials encompass proteins such as collagen, gelatin, and silk fibroin (SF), as well as polysaccharides including alginate, chitosan (CS), hyaluronic acid (HA), and cellulose. Synthetic biomaterials primarily consist of polyvinyl alcohol (PVA), poly(ε-caprolactone) (PCL), and poly (lactic-co-glycolic acid) (PLGA). Bio-based materials and their composites are primarily utilized as hydrogels, films, scaffolds, patches, nanocapsules, and other formats for the treatment of blinding ocular conditions, including corneal wounds, corneal ulcers, corneal endothelium, and stromal defects. This review attempts to summarize in vitro, preclinical, and clinical trial studies relevant to corneal regeneration using biomaterials within the last five years, and expect that these experiences and outcomes will inspire and provide practical strategies for the future development of biomaterials for corneal regeneration. Furthermore, potential improvements and difficulties for these biomaterials are discussed.
Collapse
Affiliation(s)
- Yimeng Li
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
2
|
Yu C, Dong L, Lv Y, Shi X, Zhang R, Zhou W, Wu H, Li H, Li Y, Li Z, Luo D, Wei WB. Nanotherapy for Neural Retinal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409854. [PMID: 39807033 DOI: 10.1002/advs.202409854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Retinal diseases can severely impair vision and even lead to blindness, posing significant threats to both physical and mental health. Physical retinal regenerative therapies are poised to revolutionize the treatment of various disorders associated with blindness. However, these therapies must overcome the challenges posed by the protective inner and outer blood‒retinal barriers. Nanotechnology applications in ophthalmology have shown great potential in addressing the issue of drug delivery to the eye. Moreover, nanotechnology-based therapeutics can have profound clinical impacts on retinopathy, particularly retinal regeneration, thereby improving patient outcomes. Continuous advancements in nanotechnology are being applied to regenerate lost or damaged eye tissues and to treat vision loss and blindness caused by various retinal degenerative diseases. These approaches can be categorized into three main strategies: i) nanoparticles for delivering drugs, genes, and other essential substances; ii) nanoscaffolds for providing biocompatible support; and iii) nanocomposites for enhancing the functionality of primary or stem cells. The aim of this comprehensive review is to present the current understanding of nanotechnology-based therapeutics for retinal regeneration, with a focus on the perspective functions of nanomaterials.
Collapse
Affiliation(s)
- Chuyao Yu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xuhan Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ruiheng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wenda Zhou
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Haotian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Heyan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yitong Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
3
|
Rafiei S, Ghanbari-Abdolmaleki M, Zeinali R, Heidari-Keshel S, Rahimi A, Royanian F, Zaeifi D, Taheri K, Pourtaghi K, Khaleghi M, Biazar E. Silk fibroin/vitreous humor hydrogel scaffold modified by a carbodiimide crosslinker for wound healing. Biopolymers 2024; 115:e23612. [PMID: 38994706 DOI: 10.1002/bip.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Natural-derived biomaterials can be used as substrates for the growth, proliferation, and differentiation of cells. In this study, bovine vitreous humor as a biological material was cross-linked to silk fibroin with different concentration ratios to design a suitable substrate for corneal tissue regeneration. The cross-linked samples were evaluated with different analyses such as structural, physical (optical, swelling, and degradation), mechanical, and biological (viability, cell adhesion) assays. The results showed that all samples had excellent transparency, especially those with higher silk fibroin content. Increasing the ratio of vitreous humor to silk fibroin decreased mechanical strength and increased swelling and degradation, respectively. There was no significant difference in the toxicity of the samples, and with the increase in vitreous humor ratio, adhesion and cell proliferation increased. Generally, silk fibroin with vitreous humor can provide desirable characteristics as a transparent film for corneal wound healing.
Collapse
Affiliation(s)
- Sepideh Rafiei
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | | | - Reza Zeinali
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universität Politècnica de Catalunya, Terrassa, Spain
| | - Saeed Heidari-Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Royanian
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Davood Zaeifi
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kiana Taheri
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Kimia Pourtaghi
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maryam Khaleghi
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| |
Collapse
|
4
|
Ra’oh NA, Man RC, Fauzi MB, Ghafar NA, Buyong MR, Hwei NM, Halim WHWA. Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction. Polymers (Basel) 2023; 15:polym15071766. [PMID: 37050380 PMCID: PMC10097332 DOI: 10.3390/polym15071766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Over the last several decades, numerous modifications and advancements have been made to design the optimal corneal biomatrix for corneal epithelial cell (CECs) or limbal epithelial stem cell (LESC) carriers. However, researchers have yet to discover the ideal optimization strategies for corneal biomatrix design and its effects on cultured CECs or LESCs. This review discusses and summarizes recent optimization strategies for developing an ideal collagen biomatrix and its interactions with CECs and LESCs. Using PRISMA guidelines, articles published from June 2012 to June 2022 were systematically searched using Web of Science (WoS), Scopus, PubMed, Wiley, and EBSCOhost databases. The literature search identified 444 potential relevant published articles, with 29 relevant articles selected based on inclusion and exclusion criteria following screening and appraising processes. Physicochemical and biocompatibility (in vitro and in vivo) characterization methods are highlighted, which are inconsistent throughout various studies. Despite the variability in the methodology approach, it is postulated that the modification of the collagen biomatrix improves its mechanical and biocompatibility properties toward CECs and LESCs. All findings are discussed in this review, which provides a general view of recent trends in this field.
Collapse
Affiliation(s)
- Nur Amalia Ra’oh
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Rohaina Che Man
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Wan Haslina Wan Abdul Halim
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Pourjabbar B, Biazar E, Heidari Keshel S, Baradaran‐Rafii A. Improving the properties of fish skin collagen/silk fibroin dressing by chemical treatment for corneal wound healing. Int Wound J 2022; 20:484-498. [PMID: 35912793 PMCID: PMC9885469 DOI: 10.1111/iwj.13896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/03/2023] Open
Abstract
Natural biomaterials are crucial in ocular tissue engineering because they allow cells to proliferate, differentiate, and stratify while maintaining the typical epithelial phenotype. In this study, membranes as dressings were formed from silk fibroin and collagen (Co) extracted from fish skin and then modified with carbodiimide chemical cross linker in different concentrations. The samples were evaluated by different analyses such as structural, physical (optical, swelling, denaturation temperature, degradation), mechanical, and biological (viability, cell adhesion, immunocytochemistry) assays. The results showed that all membranes have excellent transparency, especially with higher silk fibroin content. Increasing the cross linker concentration and the ratio of silk fibroin to Co increased the denaturation temperature and mechanical strength and, conversely, reduced the degradation rate and cell adhesion. The samples did not show a significant difference in toxicity with increasing cross linker and silk fibroin ratio. In general, samples with a low silk fibroin ratio combined with cross linker can provide desirable properties as a membrane for corneal wound healing.
Collapse
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon BranchIslamic Azad UniversityTonekabonIran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran,Medical Nanotechnology and Tissue Engineering Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Alireza Baradaran‐Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Colucci F, Mancini V, Mattu C, Boffito M. Designing Multifunctional Devices for Regenerative Pharmacology Based on 3D Scaffolds, Drug-Loaded Nanoparticles, and Thermosensitive Hydrogels: A Proof-of-Concept Study. Pharmaceutics 2021; 13:pharmaceutics13040464. [PMID: 33808138 PMCID: PMC8066789 DOI: 10.3390/pharmaceutics13040464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Regenerative pharmacology combines tissue engineering/regenerative medicine (TERM) with drug delivery with the aim to improve the outcomes of traditional TERM approaches. In this work, we aimed to design a multicomponent TERM platform comprising a three-dimensional scaffold, a thermosensitive hydrogel, and drug-loaded nanoparticles. We used a thermally induced phase separation method to obtain scaffolds with anisotropic mechanical properties, suitable for soft tissue engineering. A thermosensitive hydrogel was developed using a Poloxamer® 407-based poly(urethane) to embed curcumin-loaded nanoparticles, obtained by the single emulsion nanoprecipitation method. We found that encapsulated curcumin could retain its antioxidant activity and that embedding nanoparticles within the hydrogel did not affect the hydrogel gelation kinetics nor the possibility to progressively release the drug. The porous scaffold was easily loaded with the hydrogel, resulting in significantly enhanced (4-fold higher) absorption of a model molecule of nutrients (fluorescein isothiocyanate dextran 4kDa) from the surrounding environment compared to pristine scaffold. The developed platform could thus represent a valuable alternative in the treatment of many pathologies affecting soft tissues, by concurrently exploiting the therapeutic effects of drugs, with the 3D framework acting as a physical support for tissue regeneration and the cell-friendly environment represented by the hydrogel.
Collapse
Affiliation(s)
- Francesco Colucci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (F.C.); (V.M.)
| | - Vanessa Mancini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (F.C.); (V.M.)
- Department of Anatomy & Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (F.C.); (V.M.)
- PolitoBIOMed Laboratory, Politecnico di Torino, 10129 Turin, Italy
- Correspondence: (C.M.); (M.B.)
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (F.C.); (V.M.)
- PolitoBIOMed Laboratory, Politecnico di Torino, 10129 Turin, Italy
- Institute for Chemical-Physical Processes, National Research Council (CNR-IPCF), 56124 Pisa, Italy
- Correspondence: (C.M.); (M.B.)
| |
Collapse
|