1
|
Shih YY, Kao CW, Jhong YR, Chen YA, Chen YW. Synergistic effects of fibrin-enriched adipose decellularized extracellular matrix (AdECM) and microfluidic model on vascularization. RSC Adv 2024; 14:34143-34155. [PMID: 39469019 PMCID: PMC11513771 DOI: 10.1039/d4ra05573j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Vasculature is essential for maintaining the cellular function and balance of organs and tumors. As a key component of the tumor microenvironment (TME), it significantly influences tumor characteristics. Angiogenesis, heavily influenced by the extracellular matrix (ECM), which acts as a structural scaffold and growth factor reservoir, is regulated by various factors. Notably, adipose tissues and adipose-derived stromal cells contribute angiogenic and anti-apoptotic factors that promote angiogenesis. Sustained vasculature is essential for tissue engineering and ex vivo disease modeling. Lack of shear stress from fluid flow leads to vascular instability and regression. Microfluidic models replicate three-dimensional (3D) cultures from original tissues, encapsulate microenvironmental factors, and maintain consistent fluid flow. In our study, we established decellularized adipose ECM (AdECM) derived from bovine sources and engineered a 3D-printed microfluidic device. We observed significant increases in both the length and diameter of vascular networks after coculturing HUVECs and HDFs in a fibrin gel containing 0.5% AdECM. Additionally, gene expression related to ECM remodeling and angiogenesis was significantly enhanced in vasculature cultivated in fibrin gel containing 0.5% AdECM compared to that in fibrin gel alone. The enhanced vasculogenesis was further amplified and sustained by the 3D microfluidic device placed on a rocker during extended cultivation, primarily through the activation of the PI3K and JAK-mediated pathways. Our ex vivo model with vascularized colon tumoroids revealed that integrating AdECM within a microfluidic device correlates with increased tumoroid growth. Therefore, our study underscores the synergistic impact of AdECM and microfluidic device in promoting and sustaining vasculature. This synergy may have significant implications for tissue regeneration and ex vivo disease modeling, facilitating drug testing and efficacy evaluation.
Collapse
Affiliation(s)
- Yu-Yin Shih
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Chun-Wei Kao
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-Rong Jhong
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-An Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
| | - Yi-Wen Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital Taichung 404332 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University Taichung 406040 Taiwan
| |
Collapse
|
2
|
Chen J, Wang B, Dasgupta A, Porte C, Eckardt L, Qi J, Weiler M, Lammers T, Rix A, Shi Y, Kiessling F. Aminolysis-mediated single-step surface functionalization of poly (butyl cyanoacrylate) microbubbles for ultrasound molecular imaging. J Nanobiotechnology 2024; 22:528. [PMID: 39218888 PMCID: PMC11367926 DOI: 10.1186/s12951-024-02806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Molecular ultrasound imaging with actively targeted microbubbles (MB) proved promising in preclinical studies but its clinical translation is limited. To achieve this, it is essential that the actively targeted MB can be produced with high batch-to-batch reproducibility with a controllable and defined number of binding ligands on the surface. In this regard, poly (n-butyl cyanoacrylate) (PBCA)-based polymeric MB have been used for US molecular imaging, however, ligand coupling was mostly done via hydrolysis and carbodiimide chemistry, which is a multi-step procedure with poor reproducibility and low MB yield. Herein, we developed a single-step coupling procedure resulting in high MB yields with minimal batch-to-batch variation. Actively targeted PBCA-MB were generated using an aminolysis protocol, wherein amine-containing cRGD was added to the MB using lithium methoxide as a catalyst. We confirmed the successful conjugation of cRGD on the MB surface, while preserving their structure and acoustic signal. Compared to the conventional hydrolysis protocol, aminolysis resulted in higher MB yields and better reproducibility of coupling efficiency. Optical imaging revealed that under flow conditions, cRGD- and rhodamine-labelled MB, generated by aminolysis, specifically bind to tumor necrosis factor-alpha (TNF-α) activated endothelial cells in vitro. Furthermore, US molecular imaging demonstrated a markedly higher binding of the cRGD-MB than of control MB in TNF-α activated mouse aortas and 4T1 tumors in mice. Thus, using the aminolysis based conjugation approach, important refinements on the production of cRGD-MB could be achieved that will facilitate the production of clinical-scale formulations with excellent binding and ultrasound imaging performance.
Collapse
Affiliation(s)
- Junlin Chen
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Bi Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Céline Porte
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Lisa Eckardt
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Jinwei Qi
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Yang Shi
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
4
|
Rapp J, Ness J, Wolf J, Hospach A, Liang P, Hug MJ, Agostini H, Schlunck G, Lange C, Bucher F. 2D and 3D in vitro angiogenesis assays highlight different aspects of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167028. [PMID: 38244944 DOI: 10.1016/j.bbadis.2024.167028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
In angiogenesis research, scientists need to carefully select appropriate in vitro models to test their hypotheses to minimize the risk for false negative or false positive study results. In this study, we investigate molecular differences between simple two-dimensional and more complex three-dimensional angiogenesis assays and compare them to in vivo data from cancer-associated angiogenesis using an unbiased transcriptomic analysis. Human umbilical vein endothelial cells were treated with VEGF in 2D wound healing and proliferation assays and the 3D spheroid sprouting assay. VEGF-induced transcriptomic shifts were assessed in both settings by bulk RNA sequencing. Immunocytochemistry was used for protein detection. The data was linked to the transcriptomic profile of vascular endothelial cells from a single cell RNA sequencing dataset of various cancer tissue compared to adjacent healthy tissue control. VEGF induced a more diverse transcriptomic shift in vascular endothelial cells in a 3D experimental setting (767 differentially expressed genes) compared to the 2D settings (167 differentially expressed genes). Particularly, VEGF-induced changes in cell-matrix interaction, tip cell formation, and glycolysis were pronounced in the 3D spheroid sprouting experiments. Immunocytochemistry for VCAM1 and CD34 confirmed enhanced expression in response to VEGF-treatment in 3D settings. In vivo, vascular endothelial cells within various cancer tissue were characterized by strong transcriptomic changes in cell-matrix interaction and glycolysis similar to the 3D setting. Consequently, 3D assays may better address certain key aspects of angiogenesis in comparison to fast and scalable 2D assays. This should be taken into consideration within the context of each research question.
Collapse
Affiliation(s)
- Julian Rapp
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan Ness
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Julian Wolf
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alban Hospach
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Paula Liang
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Martin J Hug
- Pharmacy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital Muenster, Muenster, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
5
|
Ravichandran A, Monkman J, Mehdi AM, Blick T, Snell C, Kulasinghe A, Bray LJ. The in situ transcriptomic landscape of breast tumour-associated and normal adjacent endothelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166985. [PMID: 38061601 DOI: 10.1016/j.bbadis.2023.166985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Triple Negative Breast Cancer (TNBC) is associated with increased angiogenesis, which is known to aid tumour growth and metastasis. Anti-angiogenic therapies that have been developed to target this feature have mostly generated disappointing clinical results. Further research into targeted approaches is limited by a lack of understanding of the in situ molecular profile of tumour-associated vasculature. In this study, we aimed to understand the differences in the molecular profiles of tumour endothelial cells vs normal-adjacent endothelial cells in TNBC tissues. METHOD We have applied unbiased whole transcriptome spatial profiling of in situ gene expressions of endothelial cells localized in full-face patient TNBC tissues (n = 4) and normal-adjacent regions of the same patient breast tissues. RESULTS Our comparative analysis revealed that 2412 genes were differentially expressed (padj < 0.05) between the tumour endothelial cells and normal-adjacent endothelial cells. Pathway enrichment showed the enrichment of gene sets related to cell-cell, cell-ECM adhesion, chromatin organization and remodeling, and protein-DNA complex subunit organization. CONCLUSION Overall, the results revealed unique molecular profiles and signalling pathways of tumour-associated vasculature, which is a critical step towards larger cohort studies investigating potential targets for TNBC prognosis and anti-angiogenic treatments.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
| | - James Monkman
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed M Mehdi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Queensland Cyber Infrastructure Foundation Ltd, Facility for Advanced Bioinformatics, Brisbane, QLD 4072, Australia
| | - Tony Blick
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Cameron Snell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Mater Pathology, Mater Hospital Brisbane, Mater Health Services, Brisbane, QLD 4101, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Laura J Bray
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Centre for the Personalised Analysis of Cancers, Queensland University of Technology, Translational Research Institute, QLD 4102, Australia; Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
6
|
Hou H, Li J, Wang J, Zhou L, Li J, Liang J, Yin G, Li X, Cheng Y, Zhang K. ITGA9 Inhibits Proliferation and Migration of Dermal Microvascular Endothelial Cells in Psoriasis. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:2795-2806. [PMID: 36573168 PMCID: PMC9789714 DOI: 10.2147/ccid.s394398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Background Cell proliferation, migration, and angiogenesis are aberrant in psoriatic human dermal microvascular endothelial cells (HDMECs), resulting in abnormal endothelial function and microvascular dilation in psoriasis. Objective To explore the role of Integrin subunit alpha 9 (ITGA9) in proliferation and migration of dermal microvascular endothelial cells. Methods HDMECs were isolated from the skin of 6 psoriatic patients and 6 healthy controls. Expression levels of ITGA9 mRNA and protein were assessed with qRT-PCR and Western blot, respectively, while miqRT-PCR was used to determine expression levels of miR-146a-3p. Cell proliferation and migration were assessed in human microvascular endothelial cell line (HMEC-1), following overexpression of either ITGA9 or miR-146a-3p, or co-transfection with miR-146a-3p-mimic and pLVX - ITGA9. Cell viability was detected by Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation assay. Cell apoptosis was assessed, using annexin V-FITC/PI apoptosis detection kit, while cell migration was detected by wound healing and transwell assay. Results Expression levels of ITGA9 were significantly decreased in psoriatic HDMECs compared to normal controls. Moreover, expression levels of miR-146a-3p were higher in psoriatic HDMECs than in normal controls. Overexpression of miR-146a-3p lowered expression levels of ITGA9, accompanied by increased proliferation and migration of HMEC-1 in vitro. In contrast, overexpression of ITGA9 inhibited proliferation and migration of HMEC-1, while increasing expression levels of cdc42, ki67, focal adhesion kinase (FAK), c-Src tyrosine kinase (Src), RAC1 and RhoA. Conclusion ITGA9 can repress the proliferation and migration of HMEC-1, suggesting utility of ITGA9 as a potential therapeutic intervention for psoriasis.
Collapse
Affiliation(s)
- Hui Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiao Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Juanjuan Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yueai Cheng
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China,Correspondence: Kaiming Zhang, Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province, People’s Republic of China, Tel +86-351-5656080, Email
| |
Collapse
|
7
|
Hunter EJ, Hamaia SW, Kim PSK, Malcor JDM, Farndale RW. The effects of inhibition and siRNA knockdown of collagen-binding integrins on human umbilical vein endothelial cell migration and tube formation. Sci Rep 2022; 12:21601. [PMID: 36517525 PMCID: PMC9751114 DOI: 10.1038/s41598-022-25937-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Blood vessels in the body are lined with endothelial cells which have vital roles in numerous physiological and pathological processes. Collagens are major constituents of the extracellular matrix, and many adherent cells express several collagen-binding adhesion receptors. Here, we study the endothelium-collagen interactions mediated by the collagen-binding integrins, α1β1, α2β1, α10β1 and α11β1 expressed in human umbilical vein endothelial cells (HUVECs). Using qPCR, we found expression of the α10 transcript of the chondrocyte integrin, α10β1, along with the more abundant α2, and low-level expression of α1. The α11 transcript was not detected. Inhibition or siRNA knockdown of the α2-subunit resulted in impaired HUVEC adhesion, spreading and migration on collagen-coated surfaces, whereas inhibition or siRNA knockdown of α1 had no effect on these processes. In tube formation assays, inhibition of either α1 or α2 subunits impaired the network complexity, whereas siRNA knockdown of these integrins had no such effect. Knockdown of α10 had no effect on cell spreading, migration or tube formation in these conditions. Overall, our results indicate that the collagen-binding integrins, α1β1 and α2β1 play a central role in endothelial cell motility and self-organisation.
Collapse
Affiliation(s)
- Emma J Hunter
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
- Stem Cell and Brain Research Institute, Université Lyon 1, INSERM U1208, 18 Avenue Doyen Lépine, 69500, Bron, France
| | - Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
| | - Peter S-K Kim
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
| | - Jean-Daniel M Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMS3444 BioSciences Gerland-Lyon Sud, UMR5305, CNRS/Université Lyon 1, Lyon, France
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK.
- CambCol Laboratories Ltd, 18 Oak Lane, Littleport, Ely, CB6 1QZ, UK.
| |
Collapse
|
8
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Chen T, Sun T, Bian Y, Pei Y, Feng F, Chi H, Li Y, Tang X, Sang S, Du C, Chen Y, Chen Y, Sun H. The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. J Med Chem 2022; 65:3685-3705. [DOI: 10.1021/acs.jmedchem.1c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yaoyao Bian
- College of Acupuncture and Massage, College of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Feng Feng
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food and Pharmaceuticals Science College, Huaian 223003, People’s Republic of China
| | - Yuan Li
- Department of Pharmaceutical Engineering, Jiangsu Food and Pharmaceuticals Science College, Huaian 223005, People’s Republic of China
| | - Xu Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Chenxi Du
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Ying Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| |
Collapse
|
10
|
Sex-Based Differences in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:499-533. [PMID: 34664253 DOI: 10.1007/978-3-030-73119-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Cancers are heterogeneous multifactorial diseases consisting of a major public health issue worldwide. Sex disparities are evidenced in cancer incidence, mortality, expression of prognosis factor, response to treatment, and survival. For both sexes, an interplay of intrinsic and environmental factors influences cancer cells and tumor microenvironment (TME) components. The TME cumulates both supportive and communicative functions, contributing to cancer development, progression, and metastasis dissemination. The frontline topics of this chapter are focused on the contribution of sex, via steroid hormones, such as estrogens and androgens, on the following components of the TME: cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), blood and lymphatic endothelial cells, and immunity/inflammatory system.
Collapse
|
11
|
Oudart JB, Villemin M, Brassart B, Sellier C, Terryn C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Ramont L, Brassart-Pasco S. F4, a collagen XIX-derived peptide, inhibits tumor angiogenesis through αvβ3 and α5β1 integrin interaction. Cell Adh Migr 2021; 15:215-223. [PMID: 34308743 PMCID: PMC8312610 DOI: 10.1080/19336918.2021.1951425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We previously demonstrated that F4 peptide (CNPEDCLYPVSHAHQR) from collagen XIX was able to inhibit melanoma cell migrationin vitro and cancer progression in a mouse melanoma model. The aim of the present work was to study the anti-angiogenic properties of F4 peptide. We demonstrated that F4 peptide inhibited VEGF-induced pseudo-tube formation on Matrigel by endothelial cells and endothelial sprouting in a rat aortic ring assay. By affinity chromatography, we identified αvβ3 and α5β1 integrins as potential receptors for F4 peptide on endothelial cell surface. Using solid phase assays, we proved the direct interaction between F4 and both integrins. Taken together, our results demonstrate that F4 peptide is a potent antitumor agent inhibiting both angiogenesis and tumor cell migration.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Matthieu Villemin
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Bertrand Brassart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Christèle Sellier
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Christine Terryn
- PICT, Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Aurélie Dupont-Deshorgue
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Jean Claude Monboisse
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - François-Xavier Maquart
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Laurent Ramont
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France.,CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| |
Collapse
|
12
|
Hou Y, Bock F, Hos D, Cursiefen C. Lymphatic Trafficking in the Eye: Modulation of Lymphatic Trafficking to Promote Corneal Transplant Survival. Cells 2021; 10:1661. [PMID: 34359831 PMCID: PMC8306557 DOI: 10.3390/cells10071661] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
(Lymph)angiogenesis into the cornea prior to and after corneal transplantation is a critical risk factor for allograft rejection. Lymphatic vessels even more than blood vessels seem important in mediating immune responses, as they facilitate allograft sensitization in the draining lymph nodes. Thus, the concept of modulating lymphatic trafficking to promote corneal graft survival seems promising. A variety of approaches has been developed to inhibit progressive lymphangiogenesis in experimental settings. Recently, additionally to pharmacological approaches, clinically available techniques such as UVA-based corneal collagen crosslinking and fine needle diathermy were reported to be effective in regressing lymphatic vessels and to experimentally promote graft survival. Clinical pilot studies also suggest the efficacy of blocking antigen presenting cell trafficking to regional lymph nodes by regressing corneal lymphatic vessels to enhance allograft survival in high-risk eyes. In this article, we will give an overview of current strategies to modulate lymphatic trafficking with a special focus on recently reported strategies, which may be easy to translate into clinical practice. This novel concept of temporary, pretransplant regression of lymphatic vessels at the site of transplantation to promote subsequent corneal transplant survival ("lymphangioregressive preconditioning") may also be applicable to other transplantation sites later.
Collapse
Grants
- German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de); German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de);
- EU COST BM1302 EU COST BM1302 (DH, CC; www.biocornea.eu);
- EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu); EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu);
- EU COST Aniridia (CC; www.aniridia-net.eu); EU COST Aniridia (CC; www.aniridia-net.eu);
- Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/); Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/);
- Shanghai Sailing Program Shanghai Sailing Program
Collapse
Affiliation(s)
- Yanhong Hou
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Disease, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
13
|
Huang CW, Chuang CP, Chen YJ, Wang HY, Lin JJ, Huang CY, Wei KC, Huang FT. Integrin α 2β 1-targeting ferritin nanocarrier traverses the blood-brain barrier for effective glioma chemotherapy. J Nanobiotechnology 2021; 19:180. [PMID: 34120610 PMCID: PMC8201891 DOI: 10.1186/s12951-021-00925-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ferritin, the natural iron storage protein complex, self-assembles into a uniform cage-like structure. Human H-ferritin (HFn) has been shown to transverse the blood-brain barrier (BBB) by binding to transferrin receptor 1 (TfR1), which is abundant in endothelial cells and overexpressed in tumors, and enters cells via endocytosis. Ferritin is easily genetically modified with various functional molecules, justifying that it possesses great potential for development into a nanocarrier drug delivery system. RESULTS In this study, a unique integrin α2β1-targeting H-ferritin (2D-HFn)-based drug delivery system was developed that highlights the feasibility of receptor-mediated transcytosis (RMT) for glioma tumor treatment. The integrin targeting α2β1 specificity was validated by biolayer interferometry in real time monitoring and followed by cell binding, chemo-drug encapsulation stability studies. Compared with naïve HFn, 2D-HFn dramatically elevated not only doxorubicin (DOX) drug loading capacity (up to 458 drug molecules/protein cage) but also tumor targeting capability after crossing BBB in an in vitro transcytosis assay (twofold) and an in vivo orthotopic glioma model. Most importantly, DOX-loaded 2D-HFn significantly suppressed subcutaneous and orthotopic U-87MG tumor progression; in particular, orthotopic glioma mice survived for more than 80 days. CONCLUSIONS We believe that this versatile nanoparticle has established a proof-of-concept platform to enable more accurate brain tumor targeting and precision treatment arrangements. Additionally, this unique RMT based ferritin drug delivery technique would accelerate the clinical development of an innovative drug delivery strategy for central nervous system diseases with limited side effects in translational medicine.
Collapse
Affiliation(s)
- Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation (CAMIT), Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Pao Chuang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Yan-Jun Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Hsu-Yuan Wang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Jia-Jia Lin
- Center for Advanced Molecular Imaging and Translation (CAMIT), Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Ting Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan.
| |
Collapse
|
14
|
Polani F, Grierson PM, Lim KH. Stroma-targeting strategies in pancreatic cancer: Past lessons, challenges and prospects. World J Gastroenterol 2021; 27:2105-2121. [PMID: 34025067 PMCID: PMC8117738 DOI: 10.3748/wjg.v27.i18.2105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to emerge as the second leading cause of cancer-related death after 2030. Extreme treatment resistance is perhaps the most significant factor that underlies the poor prognosis of PDAC. To date, combination chemotherapy remains the mainstay of treatment for most PDAC patients. Compared to other cancer types, treatment response of PDAC tumors to similar chemotherapy regimens is clearly much lower and shorter-lived. Aside from typically harboring genetic alterations that to date remain un-druggable and are drivers of treatment resistance, PDAC tumors are uniquely characterized by a densely fibrotic stroma that has well-established roles in promoting cancer progression and treatment resistance. However, emerging evidence also suggests that indiscriminate targeting and near complete depletion of stroma may promote PDAC aggressiveness and lead to detrimental outcomes. These conflicting results undoubtedly warrant the need for a more in-depth understanding of the heterogeneity of tumor stroma in order to develop modulatory strategies in favor of tumor suppression. The advent of novel techniques including single cell RNA sequencing and multiplex immunohistochemistry have further illuminated the complex heterogeneity of tumor cells, stromal fibroblasts, and immune cells. This new knowledge is instrumental for development of more refined therapeutic strategies that can ultimately defeat this disease. Here, we provide a concise review on lessons learned from past stroma-targeting strategies, new challenges revealed from recent preclinical and clinical studies, as well as new prospects in the treatment of PDAC.
Collapse
Affiliation(s)
- Faran Polani
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, Saint Louis, MO 63110, United States
| |
Collapse
|
15
|
Artocarpin Targets Focal Adhesion Kinase-Dependent Epithelial to Mesenchymal Transition and Suppresses Migratory-Associated Integrins in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13040554. [PMID: 33920031 PMCID: PMC8071053 DOI: 10.3390/pharmaceutics13040554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/09/2023] Open
Abstract
Focal adhesion kinase (FAK) controls several cancer aggressive potentials of cell movement and dissemination. As epithelial–mesenchymal transition (EMT) and the migratory-associated integrins, known influencers of metastasis, have been found to be linked with FAK activity, this study unraveled the potential pharmacological effect of artocarpin in targeting FAK resulting in the suppression of EMT and migratory behaviors of lung cancer cells. Treatment with artocarpin was applied at concentrations of 0–10 μM, and the results showed non-cytotoxicity in lung cancer cell lines (A549 and H460), normal lung (BEAS-2B) cells and primary metastatic lung cancer cells (ELC12, ELC16, and ELC20). We also found that artocarpin (0–10 µM) had no effect on cell viability, proliferation, and migration in BEAS-2B cells. For metastasis-related approaches, artocarpin significantly inhibited cell migration, invasion, and filopodia formation. Artocarpin also dramatically suppressed anchorage-independent growth, cancer stem cell (CSC) spheroid formation, and viability of CSC-rich spheroids. For molecular targets of artocarpin action, computational molecular docking revealed that artocarpin had the best binding affinity of −8.0 kcal/mol with FAK protein. Consistently, FAK-downstream proteins, namely active Akt (phosphorylated Akt), active mTOR (phosphorylated mTOR), and Cdc42, and EMT marker and transcription factor (N-cadherin, Vimentin, and Slug), were found to be significantly depleted in response to artocarpin treatment. Furthermore, we found the decrease of Caveolin-1 (Cav-1) accompanied by the reduction of integrin-αν and integrin-β3. Taken together, these findings support the anti-metastasis potentials of the compound to be further developed for cancer therapy.
Collapse
|
16
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Cheng YC, Ku WC, Tseng TT, Wu CP, Li M, Lee SC. Anchorage independence altered vasculogenic phenotype of melanoma cells through downregulation in aminopeptidase N /syndecan-1/integrin β4 axis. Aging (Albany NY) 2020; 12:16803-16819. [PMID: 32756007 PMCID: PMC7521491 DOI: 10.18632/aging.103425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
The detachment of tumor cells from extracellular matrix and survival under anchorage-independence were recognized as the initial step of tumor metastasis. Previously we had demonstrated that anchorage-independence altered gene expressions and showed characteristics of cell invasiveness loss, enhanced chemosensitivity, and enhanced subcutaneous tumor formation. However, whether it affected histological phenotypes in tumor tissues remained unclear. Melanoma metastases were generated in nude mice using adherent or suspended melanoma cells. Examination of melanoma metastases revealed histological features of extensive vascular structures in adherent cell-derived tumors, while not seen in suspended cell-derived tumors. Quantitative proteomic analysis at adherent, suspended, and re-attached melanoma cells suggested that aminopeptidase N was potentially downregulated upon cell suspension or reattachment. Downregulation of aminopeptidase N by gene-specific shRNAs showed reduced cell invasiveness and enhanced subcutaneous tumor formation that was consistent with previous observations. Experiments by suppression or overexpression of aminopeptidase N expression demonstrated that aminopeptidase N regulated syndecan-1 and integrin β4 expression through PKCδ pathway. Histological analysis at melanoma metastases further suggested that CD31+/aminopeptidase N+/syndecan-1+/integrin β4+ phenotypes were associated with vascular structures. In summary, we suggested the expression axis of aminopeptidase N/syndecan-1/integrin β4 in melanoma cells was suppressed by detachment stress, which diminished vascular phenotypes of melanoma metastases.
Collapse
Affiliation(s)
- Yu-Che Cheng
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan,Proteomics Laboratory, Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Ting-Ting Tseng
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Ching-Po Wu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Mengjin Li
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Shao-Chen Lee
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
18
|
Karakus OO, Godugu K, Rajabi M, Mousa SA. Dual Targeting of Norepinephrine Transporter (NET) Function and Thyrointegrin αvβ3 Receptors in the Treatment of Neuroblastoma. J Med Chem 2020; 63:7653-7662. [DOI: 10.1021/acs.jmedchem.0c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| |
Collapse
|
19
|
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; 80:195-204. [PMID: 32428714 DOI: 10.1016/j.semcancer.2020.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Cancer cells exhibit molecular characteristics that confer them different proliferative capacities and survival advantages to adapt to stress conditions, such as deregulation of cellular bioenergetics, genomic instability, ability to promote angiogenesis, invasion, cell dormancy, immune evasion, and cell death resistance. In addition to these hallmarks of cancer, the current cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. These aspects highlight the need to identify promising therapeutic targets for new generations of anti-cancer drugs. Toxins isolated from snake venoms are a natural source of useful molecular scaffolds to obtain agents with a selective effect on cancer cells. In this article, we discuss the recent advances in the molecular mechanisms of nine classes of snake toxins that suppress the hallmarks of cancer by induction of oxidative phosphorylation dysfunction, reactive oxygen species-dependent DNA damage, blockage of extracellular matrix-integrin signaling, disruption of cytoskeleton network and inhibition of growth factor-dependent signaling. The possible therapeutic implications of toxin-based anti-cancer drug development are also highlighted.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7800003, Chile; Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
20
|
The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int J Mol Sci 2020; 21:ijms21093244. [PMID: 32375307 PMCID: PMC7247322 DOI: 10.3390/ijms21093244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The lower incidence of cardiovascular diseases in pre-menopausal women compared to men is well-known documented. This protection has been largely attributed to the protective effect of estrogens, which exert many beneficial effects against arterial diseases, including vasodilatation, acceleration of healing in response to arterial injury, arterial collateral growth and atheroprotection. More recently, with the visualization of the lymphatic vessels, the impact of estrogens on lymphedema and lymphatic diseases started to be elucidated. These estrogenic effects are mediated not only by the classic nuclear/genomic actions via the specific estrogen receptor (ER) α and β, but also by rapid extra-nuclear membrane-initiated steroid signaling (MISS). The ERs are expressed by endothelial, lymphatic and smooth muscle cells in the different vessels. In this review, we will summarize the complex vascular effects of estrogens and selective estrogen receptor modulators (SERMs) that have been described using different transgenic mouse models with selective loss of ERα function and numerous animal models of vascular and lymphatic diseases.
Collapse
|
21
|
Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J Clin Med 2020; 9:jcm9020479. [PMID: 32050484 PMCID: PMC7073692 DOI: 10.3390/jcm9020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Under normal conditions, the cornea, being the transparent “windscreen” of the eye, is free of both blood and lymphatic vessels. However, various diseases of the eye, like infections, can interfere with the balance between promoting and inhibiting factors, which leads to ingrowth of blood and lymphatic vessels. The newly formed lymphatic vessels increase the risk of graft rejection after subsequent corneal transplantation. Corneal transplantation is one of the most commonly performed transplantations worldwide, with more than 40,000 surgeries per year in Europe. To date, various anti-hem- and anti-lymphangiogenic treatment strategies have been developed specifically for the corneal vascular endothelial growth factor (VEGF) pathway. Currently, however, no treatment strategies are clinically available to specifically modulate lymphangiogenesis. In this review, we will give an overview about endogenous regulators of hem- and lymphangiogenesis and discuss potential new strategies for targeting pathological lymphangiogenesis. Furthermore, we will review recently identified modulators and demonstrate that the cornea is a suitable model for the identification of novel endogenous modulators of lymphangiogenesis. The identification of novel modulators of lymphangiogenesis and a better understanding of the signaling pathways involved will contribute to the development of new therapeutic targets for the treatment of pathological lymphangiogenesis. This, in turn, will improve graft rejection, not only for the cornea.
Collapse
|
22
|
Pedrosa AR, Bodrug N, Gomez-Escudero J, Carter EP, Reynolds LE, Georgiou PN, Fernandez I, Lees DM, Kostourou V, Alexopoulou AN, Batista S, Tavora B, Serrels B, Parsons M, Iskratsch T, Hodivala-Dilke KM. Tumor Angiogenesis Is Differentially Regulated by Phosphorylation of Endothelial Cell Focal Adhesion Kinase Tyrosines-397 and -861. Cancer Res 2019; 79:4371-4386. [PMID: 31189647 DOI: 10.1158/0008-5472.can-18-3934] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
Expression of focal adhesion kinase (FAK) in endothelial cells (EC) is essential for angiogenesis, but how FAK phosphorylation at tyrosine-(Y)397 and Y861 regulate tumor angiogenesis in vivo is unknown. Here, we show that tumor growth and angiogenesis are constitutively reduced in inducible, ECCre+;FAKY397F/Y397F -mutant mice. Conversely, ECCre+;FAKY861F/Y861F mice exhibit normal tumor growth with an initial reduction in angiogenesis that recovered in end-stage tumors. Mechanistically, FAK-Y397F ECs exhibit increased Tie2 expression, reduced Vegfr2 expression, decreased β1 integrin activation, and disrupted downstream FAK/Src/PI3K(p55)/Akt signaling. In contrast, FAK-Y861F ECs showed decreased Vegfr2 and Tie2 expression with an enhancement in β1 integrin activation. This corresponds with a decrease in Vegfa-stimulated response, but an increase in Vegfa+Ang2- or conditioned medium from tumor cell-stimulated cellular/angiogenic responses, mimicking responses in end-stage tumors with elevated Ang2 levels. Mechanistically, FAK-Y861F, but not FAK-Y397F ECs showed enhanced p190RhoGEF/P130Cas-dependent signaling that is required for the elevated responses to Vegfa+Ang2. This study establishes the differential requirements of EC-FAK-Y397 and EC-FAK-Y861 phosphorylation in the regulation of EC signaling and tumor angiogenesis in vivo. SIGNIFICANCE: Distinct motifs of the focal adhesion kinase differentially regulate tumor blood vessel formation and remodeling.
Collapse
Affiliation(s)
- Ana-Rita Pedrosa
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Natalia Bodrug
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Paraskivi Natalia Georgiou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Isabelle Fernandez
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Delphine M Lees
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Vassiliki Kostourou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Annika N Alexopoulou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Silvia Batista
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bernardo Tavora
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
23
|
Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, Hou Y, Le VNH, Salabarria AC, Horstmann J, Bachmann BO, Cursiefen C. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 2019; 73:100768. [PMID: 31279005 DOI: 10.1016/j.preteyeres.2019.07.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
In the past decade, novel lamellar keratoplasty techniques such as Deep Anterior Lamellar Keratoplasty (DALK) for anterior keratoplasty and Descemet stripping automated endothelial keratoplasty (DSAEK)/Descemet membrane endothelial keratoplasty (DMEK) for posterior keratoplasty have been developed. DALK eliminates the possibility of endothelial allograft rejection, which is the main reason for graft failure after penetrating keratoplasty (PK). Compared to PK, the risk of endothelial graft rejection is significantly reduced after DSAEK/DMEK. Thus, with modern lamellar techniques, the clinical problem of endothelial graft rejection seems to be nearly solved in the low-risk situation. However, even with lamellar grafts there are epithelial, subepithelial and stromal immune reactions in DALK and endothelial immune reactions in DSAEK/DMEK, and not all keratoplasties can be performed in a lamellar fashion. Therefore, endothelial graft rejection in PK is still highly relevant, especially in the "high-risk" setting, where the cornea's (lymph)angiogenic and immune privilege is lost due to severe inflammation and pathological neovascularization. For these eyes, currently available treatment options are still unsatisfactory. In this review, we will describe currently used keratoplasty techniques, namely PK, DALK, DSAEK, and DMEK. We will summarize their indications, provide surgical descriptions, and comment on their complications and outcomes. Furthermore, we will give an overview on corneal transplant immunology. A specific focus will be placed on endothelial graft rejection and we will report on its incidence, clinical presentation, and current/future treatment and prevention options. Finally, we will speculate how the field of keratoplasty and prevention of corneal allograft rejection will develop in the future.
Collapse
Affiliation(s)
- Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Japan
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Viet Nhat Hung Le
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Department of Ophthalmology, Hue College of Medicine and Pharmacy, Hue University, Viet Nam
| | | | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bjoern O Bachmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Morfoisse F, Noel A. Lymphatic and blood systems: Identical or fraternal twins? Int J Biochem Cell Biol 2019; 114:105562. [PMID: 31278994 DOI: 10.1016/j.biocel.2019.105562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Blood and lymphatic systems work in close collaboration to ensure their respective physiological functions. The lymphatic vessel network is being extensively studied, but has been overlooked as compared to the blood vasculature mainly due to the problematic discrimination of lymphatic vessels from the blood ones. This issue has been fortunately resolved in the past decade leading to the emergence of a huge amount of data in lymphatic biology revealing many shared features with the blood vasculature. However, this likeliness between the two vascular systems may lead to a simplistic view of lymphatics and a direct transcription of what is known for the blood system to the lymphatic one, thereby neglecting the lymphatic specificities. In this context, this review aims to clarify the main differences between the two vascular systems focusing on recently discovered lymphatic features.
Collapse
Affiliation(s)
- Florent Morfoisse
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium.
| |
Collapse
|
25
|
Cesar PHS, Braga MA, Trento MVC, Menaldo DL, Marcussi S. Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Curr Drug Targets 2019; 20:465-477. [DOI: 10.2174/1389450119666181022154737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Disintegrins are non-enzymatic proteins that interfere on cell–cell interactions and signal transduction, contributing to the toxicity of snake venoms and play an essential role in envenomations. Most of their pharmacological and toxic effects are the result of the interaction of these molecules with cell surface ligands, which has been widely described and studied. These proteins may act on platelets, leading to hemorrhage, and may also induce apoptosis and cytotoxicity, which highlights a high pharmacological potential for the development of thrombolytic and antitumor agents. Additionally, these molecules interfere with the functions of integrins by altering various cellular processes such as migration, adhesion and proliferation. This review gathers information on functional characteristics of disintegrins isolated from snake venoms, emphasizing a comprehensive view of the possibility of direct use of these molecules in the development of new drugs, or even indirectly as structural models.
Collapse
Affiliation(s)
- Pedro Henrique Souza Cesar
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Mariana Aparecida Braga
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Marcus Vinicius Cardoso Trento
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Danilo Luccas Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (FCFRP-USP), Ribeirão Preto-SP, Brazil
| | - Silvana Marcussi
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
26
|
Native and recombinant phospholipases A2 of Scorpio maurus venom glands impair angiogenesis by targeting integrins α5β1 and αvβ3. Int J Biol Macromol 2018; 116:305-315. [DOI: 10.1016/j.ijbiomac.2018.04.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
|
27
|
Affiliation(s)
- Carsten Höltke
- Institut für Klinische Radiologie, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer Campus 1, D-48149 Münster, Germany
| |
Collapse
|
28
|
Shlamkovich T, Aharon L, Koslawsky D, Einav Y, Papo N. Targeting the Tie2-α vβ 3 integrin axis with bi-specific reagents for the inhibition of angiogenesis. BMC Biol 2018; 16:92. [PMID: 30119679 PMCID: PMC6097439 DOI: 10.1186/s12915-018-0557-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increased activity of the receptor tyrosine kinase Tie2 has been implicated in the promotion of pathological angiogenesis. This activity is mainly mediated through angiopoietin (Ang)1- and Ang2-dependent activation of integrins by Tie2, rendering the Ang/Tie2/integrin axis an attractive putative target for cancer therapeutics. RESULTS To target this axis, we developed single domain, non-immunoglobulin high-affinity bi-specific protein inhibitors against both Tie2 and αvβ3 integrin. We have previously engineered the Ang2-binding domain of Tie2 (Ang2-BD) as a Tie2 inhibitor. Here, we engineered an exposed loop in Ang2-BD to generate variants that include an integrin-binding Arg-Gly-Asp (RGD) motif and used flow cytometry screening of a yeast-displayed Ang2-BD RGD loop library to identify the integrin antagonists. The bi-specific antagonists targeting both Tie2 and αvβ3 integrin inhibited adhesion and proliferation of endothelial cells cultured together with the αvβ3 integrin ligand vitronectin, as well as endothelial cell invasion and tube formation. The bi-specific reagents inhibited downstream signaling by Tie2 intracellularly in response to its agonist Ang1 more effectively than the wild-type Ang2 BD that binds Tie2 alone. CONCLUSIONS Collectively, this study-the first to describe inhibitors targeting all the known functions resulting from Tie2/integrin αvβ3 cross-talk-has created new tools for studying Tie2- and integrin αvβ3-dependent molecular pathways and provides the basis for the rational and combinatorial engineering of ligand-Tie2 and ligand-integrin αvβ3 receptor interactions. Given the roles of these pathways in cancer angiogenesis and metastasis, this proof of principle study paves the route to create novel Tie2/integrin αvβ3-targeting proteins for clinical use as imaging and therapeutic agents.
Collapse
MESH Headings
- Angiogenesis Inhibitors/chemistry
- Angiogenesis Inhibitors/pharmacology
- Animals
- Mice
- Neovascularization, Physiologic/genetics
- Receptor, TIE-2/antagonists & inhibitors
- Receptor, TIE-2/chemistry
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Receptors, Vitronectin/chemistry
- Receptors, Vitronectin/genetics
- Receptors, Vitronectin/metabolism
- Ribonuclease, Pancreatic/antagonists & inhibitors
- Ribonuclease, Pancreatic/chemistry
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
Collapse
Affiliation(s)
- Tomer Shlamkovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Lidan Aharon
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Dana Koslawsky
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Yulia Einav
- Faculty of Engineering, Holon Institute of Technology, Holon, Israel
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
29
|
Ban EZ, Lye MS, Chong PP, Yap YY, Lim SYC, Abdul Rahman H. Association of hOGG1 Ser326Cys, ITGA2 C807T, TNF-A -308G>A and XPD Lys751Gln polymorphisms with the survival of Malaysian NPC patients. PLoS One 2018; 13:e0198332. [PMID: 29912899 PMCID: PMC6005472 DOI: 10.1371/journal.pone.0198332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Background Nasopharyngeal carcinoma is a rare form of cancer across the world except in certain areas such as Southern China, Hong Kong and Malaysia. NPC is considered a relatively radiosensitive tumor and patients diagnosed at early stages tend to survive longer compared to those with advanced disease. Given that early symptoms of NPC are non-specific and that the nasopharynx is relatively inaccessible, less invasive screening methods such as biomarker screening might be the key to improve NPC survival and management. A number of genes with their respective polymorphisms have been shown in past studies to be associated with survival of various cancers. hOGG1 and XPD genes encode for a DNA glycosylase and a DNA helicase respectively; both are proteins that are involved in DNA repair. ITGA2 is the alpha subunit of the transmembrane receptor integrin and is mainly responsible for cell-cell and cell-extracellular matrix interaction. TNF-α is a cytokine that is released by immune cells during inflammation. Methods Restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) was used to genotype all the aforementioned gene polymorphisms. Kaplan-Meier survival function, log-rank test and Cox regression were used to investigate the effect of gene polymorphisms on the all-cause survival of NPC. Results NPC cases carrying T/T genotype of ITGA2 C807T have poorer all-cause survival compared to those with C/C genotypes, with an adjusted HR of 2.06 (95% CI = 1.14–3.72) in individual model. The 5-year survival rate of C/C carriers was 55% compared to those with C/T and T/T where the survival rates were 50% and 43%, respectively. Conclusion The finding from the present study showed that ITGA2 C807T polymorphism could be potentially useful as a prognostic biomarker for NPC. However, the prognostic value of ITGA2 C807T polymorphism has to be validated by well-designed further studies with larger patient numbers.
Collapse
Affiliation(s)
- Eng-Zhuan Ban
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Munn-Sann Lye
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- * E-mail:
| | - Pei Pei Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yoke-Yeow Yap
- Department of Otorhinolaryngology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Hejar Abdul Rahman
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
30
|
Gajbhiye KR, Gajbhiye V, Siddiqui IA, Gajbhiye JM. cRGD functionalised nanocarriers for targeted delivery of bioactives. J Drug Target 2018; 27:111-124. [PMID: 29737883 DOI: 10.1080/1061186x.2018.1473409] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The integrins αvβ3 play a very imperative role in angiogenesis and are overexpressed in endothelial cells of the tumour. Recent years have witnessed huge exploration in the field of αvβ3 integrin-mediated bioactive targeting for treatment of cancer. In these studies, the cRGD peptide has been employed extensively owing to their binding capacity to the αvβ3 integrin. Principally, RGD-based approaches comprise of antagonist molecules of the RGD sequence, drug-RGD conjugates, and most importantly tethering of the nanocarrier surface with the RGD peptide as targeting ligand. Targeting tumour vasculature or cells via cRGD conjugated nanocarriers have emerged as a promising technique for delivering chemotherapeutic drugs and imaging agents for cancer theranostics. In this review, primary emphasis has been given on the application of cRGD-anchored nanocarriers for targeted delivery of drugs, imaging agents, etc. for tumour therapy.
Collapse
Affiliation(s)
- K R Gajbhiye
- a Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune , India
| | - V Gajbhiye
- b Nanobioscience , Agharkar Research Institute , Pune , India
| | - Imtiaz A Siddiqui
- c Department of Dermatology , University of Wisconsin , Madison , WI , USA
| | - J M Gajbhiye
- a Division of Organic Chemistry , CSIR-National Chemical Laboratory , Pune , India
| |
Collapse
|
31
|
Anti-angiogenic effect of phospholipases A2 from Scorpio maurus venom glands on Human Umbilical Vein Endothelial Cells. Toxicon 2018; 145:6-14. [DOI: 10.1016/j.toxicon.2018.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 11/18/2022]
|
32
|
Mostafavi-Pour Z, Ashrafi MR, Talaei-Khozani T. Down regulation of ITGA4 and ITGA5 genes after formation of 3D spherules by human Wharton's jelly stem cells (hWJSCs). Mol Biol Rep 2018; 45:245-252. [PMID: 29411210 DOI: 10.1007/s11033-018-4157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
Human Wharton's jelly mesenchymal stem cells (hWJSCs) are multipotent stem cells that could be aggregated into 3D spherules. ITGA4 and ITGA5 genes encode α4 and α5 subunits of integrins, respectively. In this study, we analyzed expression levels of ITGA4 and ITGA5 gene mRNAs in undifferentiated and 3D spherules forming hWJSCs in order to determine their expression pattern for possible future treatment of cancer cells in a co-culture fashion. For the purpose of obtaining hWJSCs, umbilical cords were collected from patients with caesarian section at full term delivery. The cells were then characterized according to cell surface markers using flow cytometry. Furthermore pluripotency of the obtained cells was verified. Subsequently the cells were aggregated in 3D spherules using hanging drop cultures. Expression levels of ITGA4 and ITGA5 gene mRNAs were determined by RT-PCR and Real time PCR, both in the initial undifferentiated cells and those aggregated in the spherules. The obtained hWJSCs demonstrated pluripotency, differentiating to adipogenic and osteogenic cells. They also expressed mesenchymal stem cell surface markers. Following the aggregation of these cells and formation of 3D spherules, mRNA expression levels of both genes were significantly reduced (P < 0.05) compared with the initial undifferentiated state. The results of this study demonstrated that aggregation of hWJSCs into spherules alters their expression of ITGA4 and ITGA5. The implications of such an alteration would require further research.
Collapse
Affiliation(s)
- Zohreh Mostafavi-Pour
- Recombinant Protein Laboratory, School of Advance Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. .,Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Ashrafi
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Tissue Engineering Lab, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Haplotype CGC from XPD, hOGG1 and ITGA2 polymorphisms increases the risk of nasopharyngeal carcinoma in Malaysia. PLoS One 2017; 12:e0187200. [PMID: 29121049 PMCID: PMC5679532 DOI: 10.1371/journal.pone.0187200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND 8-oxoG, a common DNA lesion resulting from reactive oxygen species (ROS), has been shown to be associated with cancer initiation. hOGG1 DNA glycosylase is the primary enzyme responsible for excision of 8-oxoG through base excision repair (BER). Integrins are members of a family of cell surface receptors that mediate the cell-cell and extracellular matrix (ECM) interactions. Integrins are involved in almost every aspect of carcinogenesis, from cell differentiation, cell proliferation, metastasis to angiogenesis. Loss of ITGA2 expression was associated with enhanced tumor intravasation and metastasis of breast and colon cancer. XPD gene encodes DNA helicase enzyme that is involved in nucleotide excision repair (NER). It is shown in previous research that XPD homozygous wildtype Lys/Lys genotype was associated with higher odds of NPC. METHODS We conducted a 1 to N case-control study involving 300 nasopharyngeal carcinoma (NPC) cases and 533 controls matched by age, gender and ethnicity to investigate the effect of hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms on NPC risk. Linkage disequilibrium and haplotype analysis were conducted to explore the association of allele combinations with NPC risk. Restriction fragment length polymorphism (RFLP-PCR) was used for DNA genotyping. RESULTS No significant association was observed between hOGG1 Ser326Cys and ITGA2 C807T polymorphisms with NPC risk after adjustment for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption. Lys/Lys genotype of XPD Lys751Gln polymorphism was associated with increased NPC risk (OR = 1.60, 95% CI = 1.06-2.43). Subjects with history of smoking (OR = 1.81, 95% CI = 1.26-2.60), and salted fish consumption before age of 10 (OR = 1.77, 95% CI = 1.30-2.42) were observed to have increased odds of NPC. The odds of developing NPC of CGC haplotype was significantly higher compared to reference AGC haplotype (OR = 2.20, 95% CI = 1.06-4.58). CONCLUSION The allele combination of CGC from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC.
Collapse
|
34
|
Garmy-Susini B, Pizzinat N, Villeneuve N, Bril A, Brakenhielm E, Parini A. [Cardiac lymphatic system]. Med Sci (Paris) 2017; 33:765-770. [PMID: 28945567 DOI: 10.1051/medsci/20173308022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The lymphatic system is a network of vessels and lymphoid tissues that maintain tissue fluid homeostasis, transport intestinal fat, and regulate immune surveillance. Despite a large body of evidence showing the importance of lymphatic vessels in cardiovascular diseases, the role of cardiac lymphatics has not been extensively investigated. This review highlights the chronology of key discoveries in cardiac lymphatic development and function. In physiology, the cardiac lymphatic system dynamically regulates interstitial fluid drainage to the mediastinal lymph nodes to maintain homeostasis and prevent edema. After myocardial infarction, lymphatic vessels in the ischemic heart become dysfunctional and contribute to the development of chronic myocardial edema that aggravates cardiac fibrosis and dysfunction. Stimulation of cardiac lymphangiogenesis, based on the delivery of lymphangiogenic growth factors, such as VEGF-C, may represent a novel therapeutic strategy to improve cardiac function.
Collapse
Affiliation(s)
- Barbara Garmy-Susini
- Institut des maladies métaboliques et cardiovasculaires (I2MC), université de Toulouse, Inserm U1048, université Paul Sabatier, 1, avenue Jean Poulhès, 31432 Toulouse, France
| | - Nathalie Pizzinat
- Institut des maladies métaboliques et cardiovasculaires (I2MC), université de Toulouse, Inserm U1048, université Paul Sabatier, 1, avenue Jean Poulhès, 31432 Toulouse, France
| | | | - Antoine Bril
- Institut de recherches Servier, Suresnes, France
| | | | - Angelo Parini
- Institut des maladies métaboliques et cardiovasculaires (I2MC), université de Toulouse, Inserm U1048, université Paul Sabatier, 1, avenue Jean Poulhès, 31432 Toulouse, France
| |
Collapse
|
35
|
Shang L, Ye X, Zhu G, Su H, Su Z, Chen B, Xiao K, Li L, Peng M, Peng T. Prognostic value of integrin variants and expression in post-operative patients with HBV-related hepatocellular carcinoma. Oncotarget 2017; 8:76816-76831. [PMID: 29100351 PMCID: PMC5652745 DOI: 10.18632/oncotarget.20161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/20/2017] [Indexed: 01/21/2023] Open
Abstract
Integrins are a large family of cell surface receptors that bind extracellular matrix proteins and participate in cancer progression. However, the prognostic value of integrin family genes in post-operative patients with HBV-related hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated 18 single nucleotide polymorphisms (SNPs) in integrin family genes and found that the AG/GG genotypes at rs988574 in ITGA1 predicted a better prognosis compared to carriers of the AA genotype (P = 0.025, HR = 0.69, 95%CI = 0.50–0.96). Moreover, rs988574 genotype combined with serum level of AFP had a better prognostic value in HBV-related HCC patients (P = 0.026, HR = 1.75, 95% CI = 1.07–2.85). Furthermore, we compared the expression of 24 integrin family genes in HBV-related HCC tissues and adjacent normal tissues. Survival analysis demonstrated that expression of three of the family members, ITGA5, ITGB5 and ITGA2B, were significantly associated with the overall survival (OS) or relapse-free survival (RFS) of HBV-related HCC patients. Additionally, patients with lower expression of both ITGA5 and ITGB5 had the best OS and RFS (P = 0.017 and P = 0.002, respectively). Our study demonstrated that rs988574 of ITGA1 and the expression of ITGA5, ITGB5 and ITGA2B are potential independent prognostic bio-markers and therapeutic targets for HBV-related HCC patients and may be useful for the diagnosis of HBV-related HCC.
Collapse
Affiliation(s)
- Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhixiong Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaiyin Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Minhao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Ma C, Yin H, Zhong J, Zhang Y, Luo C, Che D, Fang Z, Li L, Qin S, Liang J, Qi W, Yang Z, Zhou T, Ma J, Yang X, Gao G. Kallistatin exerts anti-lymphangiogenic effects by inhibiting lymphatic endothelial cell proliferation, migration and tube formation. Int J Oncol 2017; 50:2000-2010. [PMID: 28440474 PMCID: PMC5435323 DOI: 10.3892/ijo.2017.3972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Kallistatin has been recognized as an endogenous angiogenic inhibitor. However, its effects on lymphatic endothelial cells and lymphangiogenesis remain poorly understood. Lymphangiogenesis is involved in tumor metastasis via the lymphatic vasculature in various types of tumors. The aim of this study was to investigate the effects of kallistatin on lymphangiogenesis and the mechanism of action involved. Treatment with kallistatin recombinant protein or overexpression of kallistatin inhibited the proliferation, migration and tube formation of human lymphatic endothelial cells (hLECs), and induced apoptosis of hLECs. Furthermore, our results showed that the lymphatic vessel density (LVD) was reduced in lung and stomach sections from kallistatin-overexpressing transgenic mice. Treatment with kallistatin recombinant protein decreased the LVD in the implanted gastric xenograft tumors of nude mice. To the best of our knowledge, the present study is the first to demonstrate that kallistatin possesses anti-lymphangiogenic activity in vitro and in vivo. Moreover, kallistatin inhibited proliferation and migration of hLECs by reducing the phosphorylation of ERK and Akt, respectively. These findings suggested that kallistatin may be a promising agent that could be used to suppress cancer metastasis by inhibiting both angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Caiqi Ma
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haofan Yin
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jun Zhong
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Zhang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chuanghua Luo
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Di Che
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenzhen Fang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lei Li
- Reproductive Center, The Third Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Shuxing Qin
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jieying Liang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianxing Ma
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
37
|
Hwang-Bo J, Park JH, Bae MG, Chung IS. Recombinant canstatin inhibits VEGF-A-induced lymphangiogenesis and metastasis in an oral squamous cell carcinoma SCC-VII animal model. Cancer Med 2016; 5:2977-2988. [PMID: 27650585 PMCID: PMC5083751 DOI: 10.1002/cam4.866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/22/2016] [Accepted: 07/24/2016] [Indexed: 01/30/2023] Open
Abstract
We describe the inhibitory effects of recombinant canstatin on tumor growth and lymphangiogenesis induced by an oral squamous cell carcinoma (SCC) using an orthotropic oral SCC animal model. Recombinant canstatin treatment decreased final tumor volumes and weights, as well as densities of blood and lymphatic vessels. Lung metastasis of oral SCC was significantly reduced in recombinant canstatin‐treated animals. Recombinant canstatin reduced vascular endothelial growth factor (VEGF)‐A expression in SCC‐VII cells treated with the hypoxia mimetic agent, CoCl2. VEGF‐A induced in vivo lymphatic vessel formation in a Matrigel plug, but this was remarkably reduced in a recombinant canstatin‐treated Matrigel. Recombinant canstatin suppressed the expression of vascular endothelial growth factor receptors (VEGFR)‐1 and ‐2 stimulated by VEGF‐A. Based on immunohistochemical analysis, recombinant canstatin significantly reduced the expression of VEGF‐A, VEGFR‐1, and ‐2 in SCC‐VII‐induced tumors. Recombinant canstatin did not affect the expression of VEGF‐C or VEGFR‐3. In addition, recombinant canstatin suppressed the VEGF‐A‐induced phosphorylation of VEGFR‐1 and ‐2. Our results indicate that recombinant canstatin exhibits antitumoral and antilymphangiogenic activities against oral SCC cells. Antilymphangiogenic signaling by recombinant canstatin is probably mediated by the suppression of the integrin αvβ3/VEGFR‐1 and/or ‐2 signaling induced by VEGF‐A. Our results also suggest that recombinant canstatin has a high potential to inhibit oral SCC‐induced tumors and lymphatic metastasis.
Collapse
Affiliation(s)
- Jeon Hwang-Bo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jong-Hwa Park
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Mun Gyeong Bae
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - In Sik Chung
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
38
|
Zhang L, Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol Med Rep 2015; 12:7869-76. [PMID: 26497667 PMCID: PMC4758278 DOI: 10.3892/mmr.2015.4443] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 06/26/2015] [Indexed: 01/11/2023] Open
Abstract
Integrin β1 (ITGB1) is frequently upregulated in ovarian cancer, and promotes ovarian tumorigenesis and cancer progression. However, the effects of ITGB1 inhibition on ovarian cancer progression and anticancer therapy remain to be elucidated. The results of the present study indicated that ITGB1 was upregulated in HO-8910 and HO-8910PM ovarian cancer cell lines, and knockdown of ITGB1 using short hairpin RNA markedly increased tumor cell apoptosis, decreased tumor cell adhesion and migration, and reduced tumor cell invasion by suppressing matrix metalloproteinase (MMP)-2 and MMP-9 expression. Furthermore, the results of the present study provided evidence regarding the role of ITGB1 inhibition in bevacizumab anticancer therapy. The activation of signal transducer and activator of transcription 1 (STAT1) by focal adhesion kinase (FAK) is involved in integrin-mediated cell migration and adhesion. In the present study, the expression levels of FAK were markedly upregulated in ovarian cancer. The adherence and migratory potentials of ovarian cancer cells were significantly reduced when the FAK/STAT1 signaling pathway was inhibited by fludarabine. The results of the present study demonstrated that ITGB1 inhibition effectively reduced tumorigenesis and disease exacerbation, and contributed to bevacizumab anticancer therapy via the FAK/STAT1 signaling pathway, suggesting that inhibition of ITGB1 is a potential novel therapeutic strategy for ovarian carcinogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wen Zou
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
39
|
Bianconi D, Schuler A, Pausz C, Geroldinger A, Kaider A, Lenz HJ, Kornek G, Scheithauer W, Zielinski CC, Pabinger I, Ay C, Prager GW. Integrin beta-3 genetic variants and risk of venous thromboembolism in colorectal cancer patients. Thromb Res 2015; 136:865-9. [PMID: 26440977 PMCID: PMC7496222 DOI: 10.1016/j.thromres.2015.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 11/16/2022]
Abstract
Background Integrin β3 is involved in tumor and endothelial cell biology as well as in platelet aggregation. Herein, we evaluated the predictive potential of three germline single nucleotide polymorphisms (SNPs) in the integrin β3 gene (rs3809865, rs5918 and rs4642) to predict the risk of venous thromboembolism (VTE) in colorectal cancer (CRC) patients, which is one of the leading causes of death among cancer patients. Methods 112 patients diagnosed with CRC enrolled in the prospective Vienna Cancer and Thrombosis Study (CATS) were assessed with a median follow-up of 46 months. DNA was isolated from venous blood samples and SNPs were analyzed by the PCR-RFLP method. Results VTE occurred in 12% (n = 13) of all patients. The SNPs rs5918 and rs4642 were not associated with VTE risk. For rs3809565, 23% (n = 11) of patients had the A/A genotype, 4% (n = 2) had the A/T genotype, but none (0%) had the T/T genotype. In the univariate analysis, patients with the A/A genotype had a significantly higher risk to develop VTE compared to the other polymorphisms (P = 0.0005 after Fine and Gray). In the multivariable analysis, the predictive value remained significant. Conclusions This study identified the rs3809865 A/A genotype as an independent risk factor for VTE in CRC patients. Our findings would help identify high risk patients and would be essential for tailored anticoagulant prophylaxis.
Collapse
Affiliation(s)
- Daniela Bianconi
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Alexandra Schuler
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Clemens Pausz
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Angelika Geroldinger
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria
| | - Alexandra Kaider
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria
| | - Heinz-Josef Lenz
- Norris Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Gabriela Kornek
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Werner Scheithauer
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Christoph C Zielinski
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Ingrid Pabinger
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria
| | - Cihan Ay
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.
| | - Gerald W Prager
- Department of Internal Medicine I, Comprehensive Cancer Center Vienna, Medical University of Vienna, Austria.
| |
Collapse
|
40
|
HU JIALIANG, CHENG TAO, ZHANG LIJUN, SUN BEICHENG, DENG LEI, XU HANMEI. Anti-tumor peptide AP25 decreases cyclin D1 expression and inhibits MGC-803 proliferation via phospho-extracellular signal-regulated kinase-, Src-, c-Jun N-terminal kinase-and phosphoinositide 3-kinase-associated pathways. Mol Med Rep 2015; 12:4396-4402. [DOI: 10.3892/mmr.2015.3912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 02/24/2015] [Indexed: 11/05/2022] Open
|
41
|
Guo Z, He B, Yuan L, Dai W, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. Dual targeting for metastatic breast cancer and tumor neovasculature by EphA2-mediated nanocarriers. Int J Pharm 2015; 493:380-9. [PMID: 26004003 DOI: 10.1016/j.ijpharm.2015.05.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/10/2023]
Abstract
EphA2 is a transmembrane receptor tyrosine kinase that is highly expressed on both tumor neovasculature and some kinds of tumor cells. Here, a homing peptide with a sequence of YSAYPDSVPMMSK (YSA) that binds specifically with EphA2 was utilized to modify the stealth liposomes (YSA-LP). With a particle size of about 85 nm, this functionalized nanocarrier was loaded with fluorescent probe or doxorubicin (DOX) and investigated in vitro and in vivo. In the cellular endocytosis studies in vitro, coumarin-6 loaded YSA-LP exhibited significant specificity to both EphA2-overexpressing tumor cells (MDA-MB-231) and human umbilical vein endothelial cells (HUVEC) via a YSA mediated interaction. In a MDA-MB-231 xenograft tumor mouse model, DiR-loaded YSA-LP showed more lasting accumulation in tumor tissue by small animal imaging compared to unmodified liposomes (LP). Further, YSA-LP greatly facilitated the efficacy of DOX loaded against both tumor cells and tumor angiogenesis in the same mouse model, evidenced by inhibiting tumor growth, metastasis and CD31 expression as well as inducing cancer cell apoptosis. Additionally, YSA-LP (DOX) showed relatively low systemic and cardiac toxicity compared with control groups. In conclusion, YSA might be a promising targeting motif for EphA2-overexpressing tumor cells and tumor neovasculature, which could be used to mediate drug delivery for chemotherapy agents.
Collapse
Affiliation(s)
- Zhaoming Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of Life Science and Medicine, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lan Yuan
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiancheng Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
42
|
Schlesinger M, Bendas G. Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Rev 2015; 34:575-91. [DOI: 10.1007/s10555-014-9545-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Tumor Microenvironment as a Determinant of Photodynamic Therapy Resistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
H-CRRETAWAC-OH, a lead structure for the development of radiotracer targeting integrin α5β1? BIOMED RESEARCH INTERNATIONAL 2014; 2014:243185. [PMID: 25374888 PMCID: PMC4211326 DOI: 10.1155/2014/243185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022]
Abstract
Imaging of angiogenic processes is of great interest in preclinical research as well as in clinical settings. The most commonly addressed target structure for imaging angiogenesis is the integrin α(v)β(3). Here we describe the synthesis and evaluation of [(18)F]FProp-Cys(*)-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys(*)-OH, a radiolabelled peptide designed to selectively target the integrin α(5)β(1). Conjugation of 4-nitrophenyl-(RS)-2-[(18)F]fluoropropionate provided [(18)F]FProp-Cys(*)-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys(*)-OH in high radiochemical purity (>95%) and a radiochemical yield of approx. 55%. In vitro evaluation showed α(5)β(1) binding affinity in the nanomolar range, whereas affinity to α(v)β(3) and α(IIb)β(3) was >50 μM. Cell uptake studies using human melanoma M21 (α(v)β(3)-positive and α(5)β(1)-negative), human melanoma M21-L (α(v)β(3)-negative and α(5)β(1)-negative), and human prostate carcinoma DU145 (α(v)β(3)-negative and α(5)β(1)-positive) confirmed receptor-specific binding. The radiotracer was stable in human serum and showed low protein binding. Biodistribution studies showed tumour uptake ranging from 2.5 to 3.5% ID/g between 30 and 120 min post-injection. However, blocking studies and studies using mice bearing α(5)β(1)-negative M21 tumours did not confirm receptor-specific uptake of [(18)F]FProp-Cys(*)-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys(*)-OH, although this radiopeptide revealed high affinity and substantial selectivity to α(5)β(1) in vitro. Further experiments are needed to study the in vivo metabolism of this peptide and to develop improved radiopeptide candidates suitable for PET imaging of α(5)β(1) expression in vivo.
Collapse
|
45
|
Bouvard C, Segaoula Z, De Arcangelis A, Galy-Fauroux I, Mauge L, Fischer AM, Georges-Labouesse E, Helley D. Tie2-dependent deletion of α6 integrin subunit in mice reduces tumor growth and angiogenesis. Int J Oncol 2014; 45:2058-64. [PMID: 25176420 DOI: 10.3892/ijo.2014.2631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/17/2014] [Indexed: 11/05/2022] Open
Abstract
The α6 integrin subunit (α6) has been implicated in cancer cell migration and in the progression of several malignancies, but its role in tumor angiogenesis is unclear. In mice, anti-α6 blocking antibodies reduce tumor angiogenesis, whereas Tie1-dependent α6 gene deletion enhances neovessel formation in melanoma and lung carcinoma. To clarify the discrepancy in these results we used the cre-lox system to generate a mouse line, α6fl/fl‑Tie2Cre(+), with α6 gene deletion specifically in Tie2-lineage cells: endothelial cells, pericytes, subsets of hematopoietic stem cells, and Tie2-expressing monocytes/macrophages (TEMs), known for their proangiogenic properties. Loss of α6 expression in α6fl/fl‑Tie2Cre(+) mice reduced tumor growth in a murine B16F10 melanoma model. Immunohistological analysis of the tumors showed that Tie2-dependent α6 gene deletion was associated with reduced tumor vascularization and with reduced infiltration of proangiogenic Tie2-expressing macrophages. These findings demonstrate that α6 integrin subunit plays a major role in tumor angiogenesis and TEM infiltration. Targeting α6 could be used as a strategy to reduce tumor growth.
Collapse
Affiliation(s)
| | | | - Adèle De Arcangelis
- Institute of Genetics, Cellular and Molecular Biology, INSERM U964, CNRS UMR 7104, University of Strasbourg, Illkirch, France
| | | | - Laetitia Mauge
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Elisabeth Georges-Labouesse
- Institute of Genetics, Cellular and Molecular Biology, INSERM U964, CNRS UMR 7104, University of Strasbourg, Illkirch, France
| | | |
Collapse
|
46
|
Morjen M, Honoré S, Bazaa A, Abdelkafi-Koubaa Z, Ellafi A, Mabrouk K, Kovacic H, El Ayeb M, Marrakchi N, Luis J. PIVL, a snake venom Kunitz-type serine protease inhibitor, inhibits in vitro and in vivo angiogenesis. Microvasc Res 2014; 95:149-56. [PMID: 25173589 DOI: 10.1016/j.mvr.2014.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/17/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022]
Abstract
Development and homeostasis of the vascular system requires integrin-promoting endothelial cell adhesion, migration and survival. Nowadays, integrins represent potential targets for pharmacological agents and open new avenues for the control of metastatic spread in the treatment of tumor malignancies. We have already reported that PIVL, a serine protease inhibitor isolated from Macrovipera lebetina venom, displays an anti-tumor effect through interference with integrin receptor function. Here, we report that PIVL inhibits human vascular endothelial cell adhesion and migration onto fibrinogen and fibronectin in a dose-dependent manner without any cytotoxicity. Furthermore, we show that PIVL increases microtubule dynamic instability in HMEC-1 transfected with EGFP-tagged α-tubulin. Using Matrigel™ and chick chorioallantoic membrane assays, we demonstrate that PIVL exhibits a strong anti-angiogenic effect both in vitro and in vivo. Interestingly, results herein reveal that the potent anti-angiogenic properties of PIVL are mediated by its RGD-like motif ((41)RGN(43)).
Collapse
Affiliation(s)
- Maram Morjen
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia.
| | - Stéphane Honoré
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, UMR_S 911, Marseille, France; APHM, Hôpital Timone, Service Pharmacie, Marseille, France
| | - Amine Bazaa
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia
| | | | - Ameneallah Ellafi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia
| | - Kamel Mabrouk
- Equipe CROPS, Institut de Chimie Radicalaire - UMR 7273, Université d'Aix-Marseille, Site de Saint Jérôme, Av. Escadrille Normandie Niemen, 13397 Marseille, France
| | - Hervé Kovacic
- APHM, Hôpital Timone, Service Pharmacie, Marseille, France
| | - Mohamed El Ayeb
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia
| | - Naziha Marrakchi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Tunisia; Faculté de Médecine de Tunis, Tunisia
| | - José Luis
- APHM, Hôpital Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
47
|
Abstract
Ocular neovascularization can affect almost all the tissues of the eye: the cornea, the iris, the retina, and the choroid. Pathological neovascularization is the underlying cause of vision loss in common ocular conditions such as diabetic retinopathy, retinopathy of prematurity and age-related macular neovascularization. Glycosylation is the most common covalent posttranslational modification of proteins in mammalian cells. A growing body of evidence demonstrates that glycosylation influences the process of angiogenesis and impacts activation, proliferation, and migration of endothelial cells as well as the interaction of angiogenic endothelial cells with other cell types necessary to form blood vessels. Recent studies have provided evidence that members of the galectin class of β-galactoside-binding proteins modulate angiogenesis by novel carbohydrate-based recognition systems involving interactions between glycans of angiogenic cell surface receptors and galectins. This review discusses the significance of glycosylation and the role of galectins in the pathogenesis of ocular neovascularization.
Collapse
Affiliation(s)
- Anna I Markowska
- Departments of Ophthalmology and Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA Ymir Genomics LLC, Cambridge, MA 02139, USA
| | - Zhiyi Cao
- Departments of Ophthalmology and Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA New England Eye Center, Boston, MA 02111, USA
| | - Noorjahan Panjwani
- Departments of Ophthalmology and Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
48
|
PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. BIOMED RESEARCH INTERNATIONAL 2014; 2014:871609. [PMID: 25013808 PMCID: PMC4072020 DOI: 10.1155/2014/871609] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022]
Abstract
Noninvasive determination of integrin expression has become an interesting approach in nuclear medicine. Since the discovery of the first 18F-labeled cyclic RGD peptide as radiotracer for imaging integrin αvβ3 expression in vivo, there have been carried out enormous efforts to develop RGD peptides for PET imaging. Moreover, in recent years, additional integrins, including α5β1 and αvβ6 came into the focus of pharmaceutical radiochemistry. This review will discuss the tracers already evaluated in clinical trials and summarize the preliminary outcome. It will also give an overview on recent developments to further optimize the first-generation compounds such as [18F]Galacto-RGD. This includes recently developed 18F-labeling strategies and also new approaches in 68Ga-complex chemistry. Furthermore, the approaches to develop radiopharmaceuticals targeting integrin α5β1 and αvβ6 will be summarized and discussed.
Collapse
|
49
|
Schlesinger M, Bendas G. Vascular cell adhesion molecule-1 (VCAM-1)--an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer 2014; 136:2504-14. [PMID: 24771582 DOI: 10.1002/ijc.28927] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/16/2014] [Indexed: 12/14/2022]
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) first attracted attention more than two decades ago as endothelial adhesion receptor with key function for leukocyte recruitment in term of cellular immune response. The early finding of VCAM-1 binding to melanoma cells, and thus a suggested mechanistic contribution to metastatic spread, was the first and for a long time the only link of VCAM-1 to cancer sciences. In the last few years, hallmarked by a growing insight into the molecular understanding of tumorigenicity and metastasis, an impressive variety of VCAM-1 functionalities in cancer have been elucidated. The present review aims to provide a current overview of VCAM-1 relevance for tumor growth, metastasis, angiogenesis, and related processes. By illustrating the intriguing role of VCAM-1 in cancer disease, VCAM-1 is suggested as a new and up to now underestimated target in cancer treatment and in clinical diagnosis of malignancies.
Collapse
Affiliation(s)
- Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | | |
Collapse
|
50
|
Vermorken JB, Peyrade F, Krauss J, Mesía R, Remenar E, Gauler TC, Keilholz U, Delord JP, Schafhausen P, Erfán J, Brümmendorf TH, Iglesias L, Bethe U, Hicking C, Clement PM. Cisplatin, 5-fluorouracil, and cetuximab (PFE) with or without cilengitide in recurrent/metastatic squamous cell carcinoma of the head and neck: results of the randomized phase I/II ADVANTAGE trial (phase II part). Ann Oncol 2014; 25:682-688. [PMID: 24567516 PMCID: PMC3933250 DOI: 10.1093/annonc/mdu003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 12/23/2013] [Accepted: 12/31/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recurrent and/or metastatic squamous cell carcinoma of the head and neck (R/M-SCCHN) overexpresses αvβ5 integrin. Cilengitide selectively inhibits αvβ3 and αvβ5 integrins and is investigated as a treatment strategy. PATIENTS AND METHODS The phase I/II study ADVANTAGE evaluated cilengitide combined with cisplatin, 5-fluorouracil, and cetuximab (PFE) in R/M-SCCHN. The phase II part reported here was an open-label, randomized, controlled trial investigating progression-free survival (PFS). Patients received up to six cycles of PFE alone or combined with cilengitide 2000 mg once (CIL1W) or twice (CIL2W) weekly. Thereafter, patients received maintenance therapy (cilengitide arms: cilengitide plus cetuximab; PFE-alone arm: cetuximab only) until disease progression or unacceptable toxicity. RESULTS One hundred and eighty-two patients were treated. Median PFS per investigator read was similar for CIL1W + PFE, CIL2W + PFE, and PFE alone (6.4, 5.6, and 5.7 months, respectively). Accordingly, median overall survival and objective response rates were not improved with cilengitide (12.4 months/47%, 10.6 months/27%, and 11.6 months/36%, respectively). No clinically meaningful safety differences were observed between groups. None of the tested biomarkers (expression of integrins, CD31, Ki-67, vascular endothelial growth factor receptor 2, vascular endothelial-cadherin, type IV collagen, epidermal growth factor receptor, or p16 for human papillomavirus) were predictive of outcome. CONCLUSION Neither of the cilengitide-containing regimens demonstrated a PFS benefit over PFE alone in R/M-SCCHN patients.
Collapse
Affiliation(s)
- J B Vermorken
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium.
| | - F Peyrade
- Medical Oncology Service, Center Antoine Lacassagne, Nice, France
| | - J Krauss
- Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - R Mesía
- Medical Oncology Service, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
| | - E Remenar
- Head and Neck Surgery, National Oncology Institute, Budapest, Hungary
| | - T C Gauler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen
| | - U Keilholz
- Department of Hematology and Medical Oncology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - J P Delord
- Clinical Research Unit, Institute Claudius Regaud, Toulouse, France
| | - P Schafhausen
- II Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Erfán
- Onco-radiology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - T H Brümmendorf
- Department of Hematology and Oncology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - L Iglesias
- Lung and Head and Neck Cancer Unit, Hospital 12 de Octubre, Madrid, Spain
| | - U Bethe
- Merck KGaA, Darmstadt, Germany
| | | | - P M Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|