1
|
Ye H, Yang Y, Chen R, Shi X, Fang Y, Yang J, Dong Y, Chen L, Xia J, Wang C, Yang C, Feng J, Wang Y, Feng X, Lü C. Recognition of Invasive Prostate Cancer Using a GHRL Polypeptide Probe Targeting GHSR in a Mouse Model In Vivo. Curr Pharm Des 2020; 26:1614-1621. [PMID: 31880242 DOI: 10.2174/1381612826666191227160001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ghrelin (GHRL) is a polypeptide that can specifically bind to the growth hormone secretagogue receptor (GHSR). The expression of GHSR is significantly different in normal and prostate cancer (PC) tissues in humans. It is important to find an effective diagnostic method for the diagnosis and prognosis of invasive PC/neuroendocrine prostate cancer (NEPC). METHODS GHRL and GHSR mRNA levels were determined by a quantitative real-time polymerase chain reaction in PC tissues. The expression of GHRL and GHSR proteins was assessed by Western blot assay and immunohistochemistry. A GHRL polypeptide probe was synthesized by standard solid-phase polypeptide synthesis, and labeled with Alexa Fluor 660. Confocal microscopy was used to capture fluorescence images. Living imaging analysis showed tumor areas of different invasiveness in mice models. RESULTS The levels of GHRL and GHSR copy number amplification and mRNA expression were increased in invasive PC/NEPC, and the protein expression levels of GHRL and GHSR were similarly increased in NEPC. The GHRL polypeptide probe could effectively bind to GHSR. In PC3 cells, it was found that the GHRL probe specifically binds to GHSR on the cell membrane and accumulates in the cells through internalization after binding. Live imaging in mice models showed that there were different signal intensities in tumor areas with different invasiveness. CONCLUSION GHSR and GHRL might be used in molecular imaging diagnosis for invasive PC/NEPC in the future.
Collapse
Affiliation(s)
- Huamao Ye
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Yue Yang
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Xiaolei Shi
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Yu Fang
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Jun Yang
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Yuanzhen Dong
- State Key Laboratory of Innovative Drugs and Pharmaceutical Technology, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Lili Chen
- State Key Laboratory of Innovative Drugs and Pharmaceutical Technology, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Jianghua Xia
- State Key Laboratory of Innovative Drugs and Pharmaceutical Technology, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Chao Wang
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Jun Feng
- State Key Laboratory of Innovative Drugs and Pharmaceutical Technology, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Yang Wang
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Xiang Feng
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China
| | - Chen Lü
- Department of Urology, Shanghai Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, China.,Department of Urology, Shanghai East Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| |
Collapse
|
2
|
Seminara RS, Jeet C, Biswas S, Kanwal B, Iftikhar W, Sakibuzzaman M, Rutkofsky IH. The Neurocognitive Effects of Ghrelin-induced Signaling on the Hippocampus: A Promising Approach to Alzheimer's Disease. Cureus 2018; 10:e3285. [PMID: 30443455 PMCID: PMC6235652 DOI: 10.7759/cureus.3285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
The communication between the gastrointestinal tract and the central nervous system (CNS) allows for certain peptide hormones to influence neurocognitive function. Ghrelin, also known as the 'hunger hormone,' has the unique ability to enter the CNS and interact with the growth hormone secretagogue receptor (GHS-R) within the hippocampus. Upon interaction with ghrelin, a conformational change in the receptor causes an increase in transcription factors to foster a wide array of physiologic changes in response to caloric deprivation. With the GHS-R in a relatively high concentration within the hippocampus, ghrelin can promote memory, spatial, learning, and behavioral effects. In fact, ghrelin appears to also have a neuroprotective and neuromodulatory response once active within the hippocampal dentate gyrus. Through the GHS-R, higher levels of ghrelin may alter cognitive circuitry and offer a possible link to the treatment of some pathologies implicated in neurological dysfunction. Alzheimer's disease (AD) is already becoming a significant target for ghrelin neuroreceptor therapy. In such experimental models, ghrelin has been shown to combat this degenerative process by eliciting an ameliorative and regenerative response. Although trials and research are still ongoing, further studies are indicated as early research into this adjuvant therapy is promising. The research team explored the effects of ghrelin by reviewing the downstream signaling modifications of ghrelin's interaction with a specific CNS receptor, the GHS-R. Although the GHS-R is found in multiple locations within the CNS, the team investigated the role of the GHS-R within the hippocampus to focus solely on the neurocognitive implications of ghrelin. The team noted which signaling pathways in particular that ghrelin initiated and used this approach to determine whether ghrelin may have any therapeutic benefits. The team explored the possible therapeutic indications of ghrelin by looking at studies conducted with a specific neurodegenerative disease known to target the hippocampus.
Collapse
Affiliation(s)
- Robert S Seminara
- Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Charan Jeet
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sharmi Biswas
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bushra Kanwal
- Department of Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Waleed Iftikhar
- Internal Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Md Sakibuzzaman
- Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ian H Rutkofsky
- Medicine, International American University College of Medicine, Washington, D.C., USA
| |
Collapse
|
3
|
Ceriotti S, Consiglio AL, Casati L, Cremonesi F, Sibilia V, Ferrucci F. The ghrelin paradox in the control of equine chondrocyte function: The good and the bad. Peptides 2018. [PMID: 29526750 DOI: 10.1016/j.peptides.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggests a role for ghrelin in the control of articular inflammatory diseases like osteoarthritis (OA). In the present study we examined the ability of ghrelin to counteract LPS-induced necrosis and apoptosis of chondrocytes and the involvement of GH secretagogue receptor (GHS-R)1a in the protective action of ghrelin. The effects of ghrelin (10-7-10-11 mol/L) on equine primary cultured chondrocytes viability and necrosis in basal conditions and under LPS treatment (100 ng/ml) were detected by using both acridine orange/propidium iodide staining and annexin-5/propidium iodide staining. The presence of GHS-R1a on chondrocytes was detected by Western Blot. The involvement of the GHS-R1a in the ghrelin effect against LPS-induced cytotoxicity was examined by pretreating chondrocytes with D-Lys3-GHRP-6, a specific GHS-R1a antagonist, and by using des-acyl ghrelin (DAG, 10-7 and 10-9 mol/L) which did not recognize the GHS-R 1a. Low ghrelin concentrations reduced chondrocyte viability whereas 10-7 mol/L ghrelin protects against LPS-induced cellular damage. The protective effect of ghrelin depends on the interaction with the GHS-R1a since it is significantly reduced by D-Lys3-GHRP-6. The negative action of ghrelin involves caspase activation and could be due to an interaction with a GHS-R type different from the GHS-R1a recognized by both low ghrelin concentrations and DAG. DAG, in fact, induces a dose-dependent decrease in chondrocyte viability and exacerbates LPS-induced damage. These data indicate that ghrelin protects chondrocytes against LPS-induced damage via interaction with GHS-R1a and suggest the potential utility of local GHS-R1a agonist administration to treat articular inflammatory diseases such as OA.
Collapse
Affiliation(s)
- Serena Ceriotti
- Department of Health, Animal Science and Food Safety, School of Veterinary Medicine, Università degli Studi di Milano, Italy
| | - Anna Lange Consiglio
- Reproduction Unit, Large Animal Veterinary Hospital (Lodi), Università degli Studi di Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Fausto Cremonesi
- Reproduction Unit, Large Animal Veterinary Hospital (Lodi), Università degli Studi di Milano, Italy; Department of Veterinary Medicine, Università degli Studi di Milano, Italy
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy.
| | - Francesco Ferrucci
- Department of Health, Animal Science and Food Safety, School of Veterinary Medicine, Università degli Studi di Milano, Italy
| |
Collapse
|