1
|
Nanamiya R, Suzuki H, Takei J, Li G, Goto N, Harada H, Saito M, Tanaka T, Asano T, Kaneko MK, Kato Y. Development of Monoclonal Antibody 281-mG 2a-f Against Golden Hamster Podoplanin. Monoclon Antib Immunodiagn Immunother 2022; 41:311-319. [PMID: 35483059 DOI: 10.1089/mab.2021.0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Golden (Syrian) hamster (Mesocricetus auratus) is a small animal model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Pathological analyses of the tissues are required to understand the pathogenesis of SARS-CoV-2 and the evaluation of therapeutic modalities, including neutralizing monoclonal antibodies (mAbs). However, mAbs that recognize the golden hamster-derived antigens and distinguish specific cell types, such as the pneumocytes, are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. In this study, an anti-Chinese hamster (Cricetulus griseus) PDPN mAb PMab-281 (IgG3, kappa) was established using the Cell-Based Immunization and Screening (CBIS) method. A defucosylated mouse IgG2a version of PMab-281 (281-mG2a-f) was also developed. The 281-mG2a-f strongly recognized both the Chinese hamster and the golden hamster PDPN using flow cytometry and could detect lung type I alveolar epithelial cells, lymphatic endothelial cells, and Bowman's capsules in the kidney from the golden hamster using immunohistochemistry. These results suggest the usefulness of 281-mG2a-f for analyzing the golden hamster-derived tissues and cells for SARS-CoV-2 research.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Asano T, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Identification of the Binding Epitope of an Anti-mouse CCR4 Monoclonal Antibody, C 4Mab-1. Monoclon Antib Immunodiagn Immunother 2022; 41:214-220. [PMID: 35917564 DOI: 10.1089/mab.2022.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
C-C chemokine receptor 4 (CCR4) is one of G protein-coupled receptors, and interacts with chemokines, CCL17 and CCL22. CCR4 is expressed on T cells such as helper T type 2 cells, regulatory T cells, and interleukin 17-producing T helper cells. CCR4 is associated with T cells trafficking into the tumor microenvironment, and is associated with tumor progression or metastasis. Therefore, CCR4 may be a potential therapeutic option for T cell malignancies. C4Mab-1 is a novel anti-mouse CCR4 (mCCR4) monoclonal antibody produced by mCCR4 N-terminal peptide immunization. C4Mab-1 is useful for flow cytometric analysis. In this study, we conducted the epitope mapping of C4Mab-1 using enzyme-linked immunosorbent assay (ELISA) and peptide blocking assay. The result of ELISA indicated that Thr7, Asp8, and Gln11 of mCCR4 are the critical amino acids for the C4Mab-1 binding. Furthermore, peptide blocking assay by flow cytometry showed that Thr7, Asp8, and Gln11 of mCCR4 are essential for C4Mab-1 binding to mCCR4-overexpressed Chinese hamster ovary-K1 (CHO/mCCR4) cells, and Val6, Thr9, and Thr10 are involved in the C4Mab-1 binding to CHO/mCCR4 cells. These results indicate that the critical binding epitope of C4Mab-1 includes Thr7, Asp8, and Gln11 of mCCR4.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Goto N, Suzuki H, Tanaka T, Asano T, Kaneko MK, Kato Y. Development of a Monoclonal Antibody PMab-292 Against Ferret Podoplanin. Monoclon Antib Immunodiagn Immunother 2022; 41:101-109. [PMID: 35471053 DOI: 10.1089/mab.2021.0067] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ferrets (Mustela putorius furo) have been used as small animal models to investigate severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) infections. Pathological analyses of these tissue samples, including those of the lung, are, therefore, essential to understand the pathogenesis of SARS-CoVs and evaluate the action of therapeutic monoclonal antibodies (mAbs) against this disease. However, mAbs that recognize ferret-derived proteins and distinguish between specific cell types, such as lung epithelial cells, are limited. Podoplanin (PDPN) has been identified as an essential marker in lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. In this study, an anti-ferret PDPN (ferPDPN) mAb PMab-292 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening (CBIS) method. PMab-292 recognized ferPDPN-overexpressed Chinese hamster ovary-K1 (CHO/ferPDPN) cells by flow cytometry and Western blotting. The kinetic analysis using flow cytometry showed that the KD of PMab-292 for CHO/ferPDPN was 3.4 × 10-8 M. Furthermore, PMab-292 detected lung type I alveolar epithelial cells, lymphatic endothelial cells, and glomerular/Bowman's capsule in the kidney using immunohistochemistry. Hence, these results propose the usefulness of PMab-292 in analyzing ferret-derived tissues for SARS-CoV-2 research.
Collapse
Affiliation(s)
- Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Asano T, Takei J, Furusawa Y, Saito M, Suzuki H, Kaneko MK, Kato Y. Epitope Mapping of an Anti-CD20 Monoclonal Antibody (C 20Mab-60) Using the HisMAP Method. Monoclon Antib Immunodiagn Immunother 2021; 40:243-249. [PMID: 34958277 DOI: 10.1089/mab.2021.0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD20 is one of the B-lymphocyte antigens and an effective target for the detection and treatment of B cell lymphomas; specific and sensitive monoclonal antibodies (mAbs) are required thus for their diagnosis. Recently, we developed a novel anti-CD20 mAb (clone C20Mab-60), which is not only useful for flow cytometry but also for Western blot and immunohistochemical analyses. However, the epitope of C20Mab-60 has not been determined. To clarify the binding region of mAbs against their target molecules, it is essential to understand the pharmacological function of each mAb. In this study, we aimed to identify the epitope of C20Mab-60 for CD20 using the novel histidine tag (His-tag) insertion for epitope mapping (HisMAP) method. We first established an anti-His-tag mAb, HisMab-1 (mouse IgG2b, kappa), by immunizing mice with recombinant proteins containing an N-terminal His-tag. Although HisMab-1 detected the 4x, 5x, and 6xHis tag-inserted CD20 proteins using flow cytometry, 5xHis tag was selected. While HisMab-1 recognized all the 5xHis tag-inserted CD20 from the 142nd to the 183rd amino acid (aa), C20Mab-60 did not react with the 5xHis tag-inserted CD20 from the 171st to the 174th aa. These results indicate that the main epitope of C20Mab-60 for CD20 is a peptide from 171st to 174th aa of CD20. HisMAP method could be advantageous in the determination of the critical epitope of functional mAbs against many target molecules.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development and Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
5
|
Nanamiya R, Sano M, Asano T, Yanaka M, Nakamura T, Saito M, Tanaka T, Hosono H, Tateyama N, Kaneko MK, Kato Y. Epitope Mapping of an Anti-Human Epidermal Growth Factor Receptor Monoclonal Antibody (EMab-51) Using the RIEDL Insertion for Epitope Mapping Method. Monoclon Antib Immunodiagn Immunother 2021; 40:149-155. [PMID: 34424763 DOI: 10.1089/mab.2021.0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The classic method for identifying the epitope that monoclonal antibodies (mAbs) bind uses deletion mutants and point mutants of the target protein. However, determining the epitope of mAbs-reactive membrane proteins is often challenging. We recently developed the RIEDL insertion for epitope mapping (REMAP) method to identify mAb-binding epitopes. Herein, we first checked the reactivity of an anti-epidermal growth factor receptor (EGFR) mAb (EMab-51) to several EGFR deletion mutants such as EGFR/dN152, EGFR/dN313, EGFR/dN370, EGFR/dN375, EGFR/dN380, and EGFR/dN482. We found the N-terminus of the EMab-51-binding epitope between residues 375 and 380 of EGFR. We next produced EGFR/dN313 mutants with the RIEDL peptide tag inserted at each possible position of 375-AFRGDSFTHTPPLDP-389. EMab-51 lost its reactivity with the mutants having a RIEDL tag inserted at each position of 377-RGDSFTHTPP-386, whereas LpMab-7 (an anti-RIEDL mAb) detected every mutant. Thus, using the REMAP method, we identified the EMab-51-binding epitope of EGFR as 377-RGDSFTHTPP-386.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
6
|
Asano T, Kaneko MK, Kato Y. Development of a Novel Epitope Mapping System: RIEDL Insertion for Epitope Mapping Method. Monoclon Antib Immunodiagn Immunother 2021; 40:162-167. [PMID: 34424761 DOI: 10.1089/mab.2021.0023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To clarify the binding region of monoclonal antibodies (mAbs) to target molecules, it is very essential to understand the pharmacological function of each mAb. Although deletion mutants and point mutants are usefully utilized for epitope mapping, we often experience the difficulty of determining the mAb epitope against membrane proteins. We aimed to develop a novel method to determine the binding region of mAbs using epitope tag system. We first checked the reactivity of an anti-CD44 mAb (C44Mab-5) to several deletion mutants of CD44. We then employed the RIEDL tag system ("RIEDL" peptide and LpMab-7 mAb). We inserted the "RIEDL" peptide into the CD44 protein from the 21st to 41st amino acid (AA). The transfectants produced were stained by LpMab-7 and C44Mab-5 in flow cytometry. C44Mab-5 did not react with 30th-361st AA of the deletion mutant of CD44. Furthermore, the reaction of C44Mab-5 to RIEDL tag-inserted CD44 from 25th to 36th AA was lost, although LpMab-7 detected most of the RIEDL tag-inserted CD44 from 21st to 41st AA. The epitope of C44Mab-5 for CD44 was determined to be the peptide from 25th to 36th AA of CD44 using RIEDL insertion for epitope mapping (REMAP) method. The REMAP method might be useful for determining the critical epitope of functional mAbs against many target molecules.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Tanaka T, Asano T, Sano M, Takei J, Hosono H, Nanamiya R, Tateyama N, Kaneko MK, Kato Y. Epitope Mapping of the Anti-California Sea Lion Podoplanin Monoclonal Antibody PMab-269 Using Alanine-Scanning Mutagenesis and ELISA. Monoclon Antib Immunodiagn Immunother 2021; 40:196-200. [PMID: 34283661 DOI: 10.1089/mab.2021.0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Podoplanin (PDPN) plays a pivotal role in platelet aggregation, embryo development, and tumor progression. PDPN is universally expressed in many mammalian species, and is considered a typical lymphatic endothelial cell marker. We have previously developed the mouse anti-California sea lion (Zalophus californianus) PDPN (seaPDPN) monoclonal antibody (mAb), clone PMab-269, which is suitable for different experimental applications, including flow cytometry, Western blotting, and immunohistochemistry. In this study, we identified the PMab-269 epitope of the seaPDPN by enzyme-linked immunosorbent assay using deletion mutants and point mutants generated for seaPDPN. Our results demonstrated that PMab-269 recognized the peptide, corresponding to the amino acids 63-82 of seaPDPN. Furthermore, the reactions of PMab-269 to seven alanine-substituted peptides, such as P68A, D76A, F77A, H78A, L79A, E80A, and D81A, were abolished among 20 alanine-substituted peptides. We identified the seven amino acids (Pro68, Asp76, Phe77, His78, Leu79, Glu80, and Asp81) as the critical epitope targeted by PMab-269. The successful identification of the PMab-269 epitope might contribute to the pathophysiological investigations of seaPDPN.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nami Tateyama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
8
|
Sayama Y, Sano M, Kaneko MK, Kato Y. Epitope Analysis of an Anti-Whale Podoplanin Monoclonal Antibody, PMab-237, Using Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2020; 39:17-22. [PMID: 31934820 PMCID: PMC7044787 DOI: 10.1089/mab.2019.0045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Podoplanin (PDPN) is a small mucin-type transmembrane glycoprotein, which was first discovered in podocytes of the kidney. PDPN is a specific lymphatic endothelial marker and is also known as T1alpha, a marker of lung type I alveolar cells, or Aggrus, a platelet aggregation-inducing factor. PDPN possesses three platelet aggregation-stimulating (PLAG) domains and PLAG-like domains (PLDs), which bind to C-type lectin-like receptor-2. Previously, we developed a novel anti-whale PDPN (wPDPN) monoclonal antibody (mAb) PMab-237 using the Cell-Based Immunization and Screening (CBIS) method and the RIEDL tag of Arg-Ile-Glu-Asp-Leu sequence. PMab-237 detected wPDPN by flow cytometry, western blot, and immunohistochemical analyses. However, the specific binding epitope of PMab-237 for wPDPN remains unknown. In this study, deletion mutants and point mutants of wPDPN with N-terminal RIEDL tag were produced to analyze the PMab-237 epitope using flow cytometry. The analysis of deletion mutants showed that the N-terminus of the PMab-237 epitope exists between the 80th amino acid (AA) and the 85th AA of wPDPN. In addition, the analysis of point mutants demonstrated that the critical epitope of PMab-237 includes Leu82 and Thr84 of wPDPN, indicating that the PMab-237 epitope is located in the PLD of wPDPN.
Collapse
Affiliation(s)
- Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Kaneko MK, Sayama Y, Sano M, Kato Y. The Epitope of PMab-210 Is Located in Platelet Aggregation-Stimulating Domain-3 of Pig Podoplanin. Monoclon Antib Immunodiagn Immunother 2019; 38:271-276. [PMID: 31663836 DOI: 10.1089/mab.2019.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Podoplanin (PDPN)/T1alpha/Aggrus, a small mucin-type transmembrane glycoprotein, has been shown to be expressed on lymphatic endothelial cells and epithelial cells of many organs. PDPN is also upregulated in many cancers, and is involved in cancer metastasis and malignant progression. Human PDPN possesses three platelet aggregation-stimulating (PLAG) domains and the PLAG-like domain, which bind to C-type lectin-like receptor-2 (CLEC-2). Previously, we reported a novel antipig PDPN (pPDPN) monoclonal antibody (PMab-210) using Cell-Based Immunization and Screening (CBIS) method. PMab-210 specifically detected pPDPN-overexpressed Chinese hamster ovary (CHO)-K1 cells by flow cytometry and Western blot analysis. Immunohistochemical analyses demonstrated that PMab-210 stained pulmonary type I alveolar cells strongly and renal corpuscles weakly in pig or microminipig. However, the specific binding epitope of PMab-210 for pPDPN could not be determined by enzyme-linked immunosorbent assay using a series of pPDPN peptides. In this study, deletion mutants or point mutants of pPDPN were produced for analyzing the PMab-210 epitope using flow cytometry. The analysis of deletion mutants showed that N-terminus of PMab-210 epitope exists between 45th amino acid (aa) and 50th aa of pPDPN. In addition, the analysis of point mutants demonstrated that the critical epitope of PMab-210 could include Glu47, Asp48, Tyr49, Thr50, and Val51 of pPDPN, indicating that PMab-210 epitope is located in PLAG3 domain of pPDPN.
Collapse
Affiliation(s)
- Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|