1
|
Fujii K, Morita S, Mochizuki M, Shibuya-Takahashi R, Fujimori H, Yamaguchi K, Abe J, Yamazaki T, Imai T, Sugamura K, Yasuda J, Satoh K, Sato I, Saito-Koyama R, Fujishima F, Sasano H, Kato Y, Matsuura K, Asada Y, Tamai K. Establishment of a monoclonal antibody against glycosylated CD271 specific for cancer cells in immunohistochemistry. Cancer Sci 2022; 113:2878-2887. [PMID: 35343032 PMCID: PMC9357664 DOI: 10.1111/cas.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Various proteins are highly expressed in cancer (e.g., epidermal growth factor receptor); however, the majority are also expressed in normal cells, although they may differ in expression intensity. Recently, we reported that CD271 (nerve growth factor receptor), a glycosylated protein, increases malignant behavior of cancer, particularly stemlike phenotypes in squamous cell carcinoma (SCC). CD271 is expressed in SCC and in normal epithelial basal cells. Glycosylation alterations generally occur in cancer cells; therefore, we attempted to establish a cancer‐specific anti‐glycosylated CD271 antibody. We purified recombinant glycosylated CD271 protein, immunized mice with the protein, and screened hybridomas using an ELISA assay with cancer cell lines. We established a clone G4B1 against CD271 which is glycosylated with O‐glycan and sialic acid. The G4B1 antibody reacted with the CD271 protein expressed in esophageal cancer, but not in normal esophageal basal cells. This specificity was confirmed in hypopharyngeal and cervical cancers. G4B1 antibody recognized the fetal esophageal epithelium and Barrett's esophagus, which possess stem cell–like characteristics. In conclusion, G4B1 antibody could be useful for precise identification of dysplasia and cancer cells in SCC.
Collapse
Affiliation(s)
- Keitaro Fujii
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan.,Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Shinkichi Morita
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan.,Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Jiro Abe
- Department of Thoracic Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Tomoko Yamazaki
- Department of Head and Neck Medical Oncology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Takayuki Imai
- Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai, Miyagi, 983-8536, Japan
| | - Ikuro Sato
- Department of Pathology, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Ryoko Saito-Koyama
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuto Matsuura
- Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan.,Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1, Medeshima-Shiote, Natori, Miyagi, Japan
| |
Collapse
|
2
|
Gao W, Xu S, Zhang M, Liu S, Siu SPK, Peng H, Ng JCW, Tsao GSW, Chan AWH, Chow VLY, Chan JYW, Wong TS. NADPH oxidase 5α promotes the formation of CD271 tumor-initiating cells in oral cancer. Am J Cancer Res 2020; 10:1710-1727. [PMID: 32642285 PMCID: PMC7339284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) has a distinctive cell sub-population known as tumor-initiating cells (TICs). CD271 is a functional TIC receptor in head and neck cancers. The molecular mechanisms governing CD271 up-regulation remains unclear. Oxidative stress is a contributing factor in TIC development. Here, we explored the potential role of NADPH oxidase 5 (NOX5) and its regulatory mechanism on the development of CD271-expressing OTSCC. Our results showed that the splice variant NOX5α is the most prevalent form expressed in head and neck cancers. NOX5α enhanced OTSCC proliferation, migration, and invasion. Overexpression of NOX5α increased the size of OTSCC xenograft significantly in vivo. The tumor-promoting functions of NOX5α were mediated through the reactive oxygen species (ROS)-generating property. NOX5α activated ERK singling and increased CD271 expression at the transcription level. Also, NOX5α reduces the sensitivity of OTSCC to cisplatin and natural killer cells. The findings indicate that NOX5α plays an important part in the development of TIC in OTSCC.
Collapse
Affiliation(s)
- Wei Gao
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Shaowei Xu
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College7 Raoping Road, Shantou 515031, Guangdong Province, China
| | - Minjuan Zhang
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Shuai Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Sharie Pui-Kei Siu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Hanwei Peng
- Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College7 Raoping Road, Shantou 515031, Guangdong Province, China
| | - Judy Chun-Wai Ng
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - George Sai-Wah Tsao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong30-32 Ngan Shing Street, Shatin, NT, China
| | - Velda Ling-Yu Chow
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jimmy Yu-Wai Chan
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Thian-Sze Wong
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|