1
|
Juan C, Torrens G, González-Nicolau M, Oliver A. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens. FEMS Microbiol Rev 2018; 41:781-815. [PMID: 29029112 DOI: 10.1093/femsre/fux043] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/18/2017] [Indexed: 01/22/2023] Open
Abstract
This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic β-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic β-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these β-lactamases. They include diverse LysR-type regulators, which control the expression of β-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to β-lactamase overexpression and β-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between β-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert β-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases-Instituto de Investigación Sanitaria de Baleares (IdISBa), 07120 Palma, Illes Balears, Spain
| |
Collapse
|
2
|
Zhuang W, Liu H, Li J, Chen L, Wang G. Regulation of Class A β-Lactamase CzoA by CzoR and IscR in Comamonas testosteroni S44. Front Microbiol 2017; 8:2573. [PMID: 29312251 PMCID: PMC5744064 DOI: 10.3389/fmicb.2017.02573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
A genomic analysis of Comamonas testosteroni S44 revealed a gene that encodes a LysR family transcriptional regulator (here named czoR, czo for cefazolin) located upstream of a putative class A β-lactamase encoding gene (here named czoA). A putative DNA-binding motif of the Fe-S cluster assembly regulator IscR was identified in the czoR-czoA intergenic region. Real-time RT-PCR and lacZ fusion expression assays indicated that transcription of czoA and czoR were induced by multiple β-lactams. CzoA expressed in Escherichia coli was shown to contribute to susceptibility to a wide range of β-lactams judged from minimum inhibitory concentrations. In vitro enzymatic assays showed that CzoA hydrolyzed seven β-lactams, including benzylpenicillin, ampicillin, cefalexin, cefazolin, cefuroxime, ceftriaxone, and cefepime. Deletion of either iscR or czoR increased susceptibility to cefalexin and cefazolin, while complemented strains restored their wild-type susceptibility levels. Electrophoretic mobility shift assays (EMSA) demonstrated that CzoR and IscR bind to different sites of the czoR-czoA intergenic region. Precise CzoR- and IscR-binding sites were confirmed via DNase I footprinting or short fragment EMSA. When cefalexin or cefazolin was added to cultures, czoR deletion completely inhibited czoA expression but did not affect iscR transcription, while iscR deletion decreased the expressions of both czoR and czoA. These results reveal that CzoR positively affects the expression of czoA with its own expression upregulated by IscR.
Collapse
Affiliation(s)
- Weiping Zhuang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongliang Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Jingxin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Lartigue MF, Nordmann P, Edelstein MV, Cuzon G, Brisse S, Poirel L. Characterization of an extended-spectrum class A β-lactamase from a novel enterobacterial species taxonomically related to Rahnella spp./Ewingella spp. J Antimicrob Chemother 2013; 68:1733-6. [PMID: 23580557 DOI: 10.1093/jac/dkt122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To characterize the naturally occurring β-lactamase gene identified from a clinical isolate belonging to a novel enterobacterial species that is closely related to Rahnella spp. and Ewingella spp. METHODS Shotgun cloning and expression in Escherichia coli were performed in order to characterize this resistance determinant. Enzymatic activities were measured by UV spectrophotometry after an ion-exchange chromatography purification procedure. RESULTS A chromosomal gene coding for the extended-spectrum β-lactamase (ESBL) SMO-1 was identified from a novel enterobacterial species that is taxonomically related to Rahnella aquatilis and Ewingella americana. The β-lactamase efficiently hydrolysed penicillins and cefotaxime, and shared 75% amino acid identity with the plasmid-mediated β-lactamase SFO-1 from Serratia fonticola, 74% amino acid identity with the plasmid-mediated ESBL CTX-M-2 originating from Kluyvera spp. and 72% amino acid identity with the chromosomally encoded and intrinsic RAHN-1 from R. aquatilis. CONCLUSIONS We have identified a novel enterobacterial species recovered from a clinical specimen, constituting another potential source of acquired ESBL. The ESBL shared significant similarities with the CTX-M-type enzymes.
Collapse
Affiliation(s)
- Marie-Frédérique Lartigue
- INSERM U914 "Emerging Resistance to Antibiotics", Faculté de Médecine et Université Paris Sud, 94275 K.-Bicêtre, France.
| | | | | | | | | | | |
Collapse
|
4
|
Naturally occurring Class A ss-lactamases from the Burkholderia cepacia complex. Antimicrob Agents Chemother 2008; 53:876-82. [PMID: 19075063 DOI: 10.1128/aac.00946-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chromosomally encoded ss-lactamases from the Burkholderia cepacia complex species (formerly Pseudomonas cepacia) were characterized. Cloning and sequencing identified an Ambler class A ss-lactamase (PenB) from B. cenocepacia. It shares 82% amino acid identity with the PenA ss-lactamases previously identified from B. multivorans 249. Its expression was dependent upon a LysR-type regulatory protein. Its narrow-spectrum hydrolysis activity mostly included penicillins but also included expanded-spectrum cephalosporins and aztreonam at lower levels. In that study, Pen-like ss-lactamases (PenC, PenD, PenE, PenF) that shared 63 to 92% identity with PenB from B. cenocepacia were identified from other Burkholderia species. The corresponding ss-lactamase genes might be used as genetic tools for accurate Burkholderia species identification.
Collapse
|
5
|
Naas T, Aubert D, Ozcan A, Nordmann P. Chromosome-encoded narrow-spectrum Ambler class A beta-lactamase GIL-1 from Citrobacter gillenii. Antimicrob Agents Chemother 2007; 51:1365-72. [PMID: 17242148 PMCID: PMC1855525 DOI: 10.1128/aac.01152-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A novel beta-lactamase gene was cloned from the whole-cell DNA of an enterobacterial Citrobacter gillenii reference strain that displayed a weak narrow-spectrum beta-lactam-resistant phenotype and was expressed in Escherichia coli. It encoded a clavulanic acid-inhibited Ambler class A beta-lactamase, GIL-1, with a pI value of 7.5 and a molecular mass of ca. 29 kDa. GIL-1 had the highest percent amino acid sequence identity with TEM-1 and SHV-1, 77%, and 67%, respectively, and only 46%, 31%, and 32% amino acid sequence identity with CKO-1 (C. koseri), CdiA1 (C. diversus), and SED-1 (C. sedlaki), respectively. The substrate profile of the purified GIL-1 was similar to that of beta-lactamases TEM-1 and SHV-1. The blaGIL-1 gene was chromosomally located, as revealed by I-CeuI experiments, and was constitutively expressed at a low level in C. gillenii. No gene homologous to the regulatory ampR genes of chromosomal class C beta-lactamases was found upstream of the blaGIL-1 gene, which fits the noninducibility of beta-lactamase expression in C. gillenii. Rapid amplification of DNA 5' ends analysis of the promoter region revealed putative promoter sequences that diverge from what has been identified as the consensus sequence in E. coli. The blaGIL-1 gene was part of a 5.5-kb DNA fragment bracketed by a 9-bp duplication and inserted between the d-lactate dehydrogenase gene and the ydbH genes; this DNA fragment was absent in other Citrobacter species. This work further illustrates the heterogeneity of beta-lactamases in Citrobacter spp., which may indicate that the variability of Citrobacter species is greater than expected.
Collapse
Affiliation(s)
- Thierry Naas
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre Cédex, France.
| | | | | | | |
Collapse
|
6
|
|
7
|
Beauchef-Havard A, Arlet G, Gautier V, Labia R, Grimont P, Philippon A. Molecular and biochemical characterization of a novel class A beta-lactamase (HER-1) from Escherichia hermannii. Antimicrob Agents Chemother 2003; 47:2669-73. [PMID: 12878539 PMCID: PMC166072 DOI: 10.1128/aac.47.8.2669-2673.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia hermannii showed a low level of resistance to amoxicillin and ticarcillin, reversed by clavulanate, and a moderate susceptibility to piperacillin but was susceptible to all cephalosporins. A bla gene was cloned and encoded a typical class A beta-lactamase (HER-1, pI 7.5), which shares 45, 44, 41, and 40% amino acid identity with other beta-lactamases, AER-1 from Aeromonas hydrophila, MAL-1/Cko-1 from Citrobacter koseri, and TEM-1 and LEN-1, respectively. No ampR gene was detected. Only penicillins were efficiently hydrolyzed, and no hydrolysis was observed for cefuroxime and broad-spectrum cephalosporins. Sequencing of the bla gene in 12 other strains showed 98 to 100% identity with bla(HER-1).
Collapse
|
8
|
Vimont S, Poirel L, Naas T, Nordmann P. Identification of a chromosome-borne expanded-spectrum class a beta-lactamase from Erwinia persicina. Antimicrob Agents Chemother 2002; 46:3401-5. [PMID: 12384342 PMCID: PMC128706 DOI: 10.1128/aac.46.11.3401-3405.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From whole-cell DNA of an enterobacterial Erwinia persicina reference strain that displayed a penicillinase-related antibiotic-resistant phenotype, a beta-lactamase gene was cloned and expressed in Escherichia coli. It encoded a clavulanic-acid-inhibited Ambler class A beta-lactamase, ERP-1, with a pI value of 8.1 and a relative molecular mass of ca. 28 kDa. ERP-1 shared 45 to 50% amino acid identity with the most closely related enzymes, the chromosomally encoded enzymes from Citrobacter koseri, Kluyvera ascorbata, Kluyvera cryocrescens, Klebsiella oxytoca, Proteus vulgaris, Proteus penneri, Rahnella aquatilis, Serratia fonticola, Yersinia enterocolitica, and the plasmid-mediated enzymes CTX-M-8 and CTX-M-9. The substrate profile of the noninducible ERP-1 was similar to that of these beta-lactamases. ERP-1 is the first extended-spectrum beta-lactamase from an enterobacterial species that is plant associated and plant pathogenic.
Collapse
Affiliation(s)
- Sophie Vimont
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, 94275 Le Kremlin-Bicêtre, France
| | | | | | | |
Collapse
|
9
|
Decousser JW, Poirel L, Nordmann P. Characterization of a chromosomally encoded extended-spectrum class A beta-lactamase from Kluyvera cryocrescens. Antimicrob Agents Chemother 2001; 45:3595-8. [PMID: 11709346 PMCID: PMC90875 DOI: 10.1128/aac.45.12.3595-3598.2001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chromosomally located beta-lactamase gene, cloned and expressed in Escherichia coli from a reference strain of the enterobacterial species Kluyvera cryocrescens, encoded a clavulanic acid-inhibited Ambler class A enzyme, KLUC-1, with a pI value of 7.4. KLUC-1 shared 86% amino acid identity with a subgroup of plasmid-mediated CTX-M-type extended-spectrum beta-lactamases (CTX-M-1, -3, -10, -11, and -12), the most closely related enzymes, and 77% amino acid identity with KLUA-1 from Kluyvera ascorbata. The substrate profile of KLUC-1 corresponded to that of CTX-M-type enzymes.
Collapse
Affiliation(s)
- J W Decousser
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, 94275 Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
10
|
Bellais S, Poirel L, Fortineau N, Decousser JW, Nordmann P. Biochemical-genetic characterization of the chromosomally encoded extended-spectrum class A beta-lactamase from Rahnella aquatilis. Antimicrob Agents Chemother 2001; 45:2965-8. [PMID: 11557504 PMCID: PMC90766 DOI: 10.1128/aac.45.10.2965-2968.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From whole-cell DNA of a clinical isolate of the enterobacterial species Rahnella aquatilis, a beta-lactamase gene was cloned that encoded a chromosomally encoded Ambler class A enzyme, RAHN-1. RAHN-1, with a pI of 7.2, shares 76, 73, and 71% amino acid identity with the extended-spectrum beta-lactamase of chromosomal origin from Serratia fonticola and with the plasmid-mediated beta-lactamases CTX-M-2 and CTX-M-1, respectively. The hydrolysis spectrum of the clavulanic acid-inhibited RAHN-1 was expanded to cephalosporins such as cefuroxime, cefotaxime, and ceftriaxone, but not to ceftazidime. Its expression was not inducible.
Collapse
Affiliation(s)
- S Bellais
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris-Sud, 78 rue de Général Leclerc, 94275 Le Kremlin-Bicêtre Cedex, France
| | | | | | | | | |
Collapse
|
11
|
Naas T, Massuard S, Garnier F, Nordmann P. AmpD is required for regulation of expression of NmcA, a carbapenem-hydrolyzing beta-lactamase of Enterobacter cloacae. Antimicrob Agents Chemother 2001; 45:2908-15. [PMID: 11557489 PMCID: PMC90751 DOI: 10.1128/aac.45.10.2908-2915.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further elucidate the induction process of the carbapenem-hydrolyzing beta-lactamase of Ambler class A, NmcA, ampD genes of the wild-type (WT) strain and of ceftazidime-resistant mutants of Enterobacter cloacae NOR-1 were cloned and tested in transcomplementation experiments. Ceftazidime-resistant E. cloacae NOR-1 mutants exhibited derepressed expression of the AmpC-type cephalosporinase and of the carbapenem-hydrolyzing beta-lactamase NmcA. The ampD genes of Escherichia coli and E. cloacae WT NOR-1 transcomplemented the ceftazidime-resistant E. cloacae NOR-1 mutants to the WT level of beta-lactamase expression, while the mutated ampD alleles of E. cloacae NOR-1 failed to do so. The deduced E. cloacae NOR-1 WT AmpD protein exhibited 95 and 91% amino acid identity with the E. cloacae O29 and E. cloacae 14 WT AmpD proteins, respectively. Of the 12 ceftazidime-resistant E. cloacae NOR-1 strains, 3 had AmpD proteins with amino acid changes, while the others had truncated AmpD proteins. Most of these mutations were located outside the conserved regions that link the AmpD proteins to the cell wall hydrolases. AmpD from E. cloacae NOR-1 is involved in the regulation of expression of both beta-lactamases (NmcA and AmpC), suggesting that structurally unrelated genes may be under the control of an identical genetic system.
Collapse
Affiliation(s)
- T Naas
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris-Sud, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre Cedex, France.
| | | | | | | |
Collapse
|
12
|
Petrella S, Clermont D, Casin I, Jarlier V, Sougakoff W. Novel class A beta-lactamase Sed-1 from Citrobacter sedlakii: genetic diversity of beta-lactamases within the Citrobacter genus. Antimicrob Agents Chemother 2001; 45:2287-98. [PMID: 11451687 PMCID: PMC90644 DOI: 10.1128/aac.45.8.2287-2298.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Citrobacter sedlakii 2596, a clinical strain resistant to aminopenicillins, carboxypenicillins, and early cephalosporins such as cephalothin, but remaining susceptible to acylureidopenicillins, carbapenems, and later cephalosporins such as cefotaxime, was isolated from the bile of a patient treated with beta-lactam and quinolone antibiotics. The isolate produced an inducible class A beta-lactamase of pI 8.6, named Sed-1, which was purified. Characterized by a molecular mass of 30 kDa, Sed-1 preferentially hydrolyzed benzylpenicillin, cephalothin, and cloxacillin. The corresponding gene, bla(Sed-1), was cloned and sequenced. Its deduced amino acid sequence shared more than 60% identity with the chromosome-encoded beta-lactamases from Citrobacter koseri (formerly C. diversus) (84%), Klebsiella oxytoca (74%), Serratia fonticola (67%), and Proteus vulgaris (63%) and 71% identity with the plasmid-mediated enzyme MEN-1. A gene coding for a LysR transcriptional regulator was found upstream from bla(Sed-1). This regulator, named SedR, displayed 90% identity with the AmpR sequence of the chromosomal beta-lactamase from C. koseri and 63 and 50% identity with the AmpR sequences of P. vulgaris and Enterobacter cloacae, respectively. By using DNA-DNA hybridization, a bla(Sed-1)-like gene was identified in two reference strains, C. sedlakii (CIP-105037) and Citrobacter rodentium (CIP-104675), but not in the 18 strains of C. koseri studied. Two DNA fragments were amplified and sequenced from the reference strains of C. sedlakii CIP-105037 and C. rodentium CIP-104675 using two primers specific for bla(Sed-1). They shared 98 and 80% identity with bla(Sed-1), respectively, confirming the diversity of the chromosomally encoded class A beta-lactamases found in Citrobacter.
Collapse
Affiliation(s)
- S Petrella
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Faculté de Médecine Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
13
|
Trépanier S, Prince A, Huletsky A. Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator. Antimicrob Agents Chemother 1997; 41:2399-405. [PMID: 9371340 PMCID: PMC164135 DOI: 10.1128/aac.41.11.2399] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Burkholderia cepacia is recognized as an important pathogen in the lung infections of patients with cystic fibrosis. An inducible beta-lactamase activity has been associated with increased resistance to beta-lactam antibiotics in clinical isolates of B. cepacia. In this study, we report the revised sequence of the penA gene, which encodes the inducible penicillinase of B. cepacia, and show that it belongs to the molecular class A beta-lactamases and exhibits a high degree of similarity to the chromosomal beta-lactamase of Klebsiella oxytoca. Analysis of the nucleotide sequence of the DNA region directly upstream of the penA coding sequence revealed an open reading frame (penR), the transcription of which was oriented opposite to that of penA and whose initiation was 130 bp away from that of penA. Two potential ribosome-binding sites and two overlapping -10 and -35 promoter sequences were identified in the intercistronic region. The predicted translation product of penR was a polypeptide of 301 amino acids with an estimated molecular size of 33.2 kDa. The deduced polypeptide of penR showed a high degree of similarity with AmpR-like transcriptional activators of class A and C beta-lactamases, with identities of 59 and 58.7% with Pseudomonas aeruginosa PAO1 AmpR and Proteus vulgaris B317 CumR, respectively. The N-terminal portion of B. cepacia PenR was predicted to include a helix-turn-helix motif, which may bind the LysR motif identified in the intercistronic region. Induction of PenA by imipenem was shown to be dependent upon the presence of PenR. Expression of the cloned B. cepacia penA and penR genes in Escherichia coli SNO302 (ampD) resulted in a high basal and hyperinducible PenA activity. These results suggest that the regulation of the PenA penicillinase of B. cepacia 249 is similar to that observed in other class A and class C beta-lactamases that are under the control of a divergently transcribed AmpR-like regulator.
Collapse
Affiliation(s)
- S Trépanier
- Département de Microbiologie, Pavillon Marchand, Université Laval, Ste-Foy, Québec, Canada
| | | | | |
Collapse
|