1
|
Liu Y, Zhang Y, Zhao W, Liu X, Hu F, Dong B. Pharmacotherapy of Lower Respiratory Tract Infections in Elderly-Focused on Antibiotics. Front Pharmacol 2019; 10:1237. [PMID: 31736751 PMCID: PMC6836807 DOI: 10.3389/fphar.2019.01237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Lower respiratory tract infections (LRTIs) refer to the inflammation of the trachea, bronchi, bronchioles, and lung tissue. Old people have an increased risk of developing LRTIs compared to young adults. The prevalence of LRTIs in the elderly population is not only related to underlying diseases and aging itself, but also to a variety of clinical issues, such as history of hospitalization, previous antibacterial therapy, mechanical ventilation, antibiotic resistance. These factors mentioned above have led to an increase in the prevalence and mortality of LRTIs in the elderly, and new medical strategies targeting LRTIs in this population are urgently needed. After a systematic review of the current randomized controlled trials and related studies, we recommend novel pharmacotherapies that demonstrate advantages for the management of LRTIs in people over the age of 65. We also briefly reviewed current medications for respiratory communicable diseases in the elderly. Various sources of information were used to ensure all relevant studies were included. We searched Pubmed, MEDLINE (OvidSP), EMBASE (OvidSP), and ClinicalTrials.gov. Strengths and limitations of these drugs were evaluated based on whether they have novelty of mechanism, favorable pharmacokinetic/pharmacodynamic profiles, avoidance of interactions and intolerance, simplicity of dosing, and their ability to cope with challenges which was mainly evaluated by the primary and secondary endpoints. The purpose of this review is to recommend the most promising antibiotics for treatment of LRTIs in the elderly (both in hospital and in the outpatient setting) based on the existing results of clinical studies with the novel antibiotics, and to briefly review current medications for respiratory communicable diseases in the elderly, aiming to a better management of LRTIs in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Yan Zhang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Wanyu Zhao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Xiaolei Liu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Fengjuan Hu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Chou CC, Shen CF, Chen SJ, Chen HM, Wang YC, Chang WS, Chang YT, Chen WY, Huang CY, Kuo CC, Li MC, Lin JF, Lin SP, Ting SW, Weng TC, Wu PS, Wu UI, Lin PC, Lee SSJ, Chen YS, Liu YC, Chuang YC, Yu CJ, Huang LM, Lin MC. Recommendations and guidelines for the treatment of pneumonia in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:172-199. [PMID: 30612923 DOI: 10.1016/j.jmii.2018.11.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/19/2023]
Abstract
Pneumonia is a leading cause of death worldwide, ranking third both globally and in Taiwan. This guideline was prepared by the 2017 Guidelines Recommendations for Evidence-based Antimicrobial agents use in Taiwan (GREAT) working group, formed under the auspices of the Infectious Diseases Society of Taiwan (IDST). A consensus meeting was held jointly by the IDST, Taiwan Society of Pulmonary and Critical Care Medicine (TSPCCM), the Medical Foundation in Memory of Dr. Deh-Lin Cheng, the Foundation of Professor Wei-Chuan Hsieh for Infectious Diseases Research and Education and CY Lee's Research Foundation for Pediatric Infectious Diseases and Vaccines. The final guideline was endorsed by the IDST and TSPCCM. The major differences between this guideline and the 2007 version include the following: the use of GRADE methodology for the evaluation of available evidence whenever applicable, the specific inclusion of healthcare-associated pneumonia as a category due to the unique medical system in Taiwan and inclusion of recommendations for treatment of pediatric pneumonia. This guideline includes the epidemiology and recommendations of antimicrobial treatment of community-acquired pneumonia, hospital-acquired pneumonia, ventilator-associated pneumonia, healthcare-associated pneumonia in adults and pediatric pneumonia.
Collapse
Affiliation(s)
- Chih-Chen Chou
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Fen Shen
- Division of Infectious Diseases, Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Su-Jung Chen
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Hsien-Meng Chen
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Shuo Chang
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Ting Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Yu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ching-Ying Huang
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Ching-Chia Kuo
- Division of Infectious Diseases and Pediatric General Medicine, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ming-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Fu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shih-Ping Lin
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shih-Wen Ting
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tzu-Chieh Weng
- Division of Holistic Care Unit, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ping-Sheng Wu
- Division of Infectious Diseases, Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Un-In Wu
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan.
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Yung-Ching Liu
- Division of Infectious Diseases, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chong-Jen Yu
- National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ming Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Zuckerman JM, Qamar F, Bono BR. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med Clin North Am 2011; 95:761-91, viii. [PMID: 21679791 DOI: 10.1016/j.mcna.2011.03.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The advanced macrolides, azithromycin and clarithromycin, and the ketolide, telithromycin, are structural analogs of erythromycin. They have several distinct advantages when compared with erythromycin, including enhanced spectrum of activity, more favorable pharmacokinetics and pharmacodynamics, once-daily administration, and improved tolerability. Clarithromycin and azithromycin are used extensively for the treatment of respiratory tract infections, sexually transmitted diseases, and Helicobacter pylori-associated peptic ulcer disease. Telithromycin is approved for the treatment of community-acquired pneumonia. Severe hepatotoxicity has been reported with the use of telithromycin.
Collapse
Affiliation(s)
- Jerry M Zuckerman
- Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
4
|
Jean SS, Hsueh PR. High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 2011; 37:291-5. [PMID: 21382699 DOI: 10.1016/j.ijantimicag.2011.01.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 01/29/2023]
Abstract
Antimicrobial resistance is associated with high mortality rates and high medical costs. Marked variations in the resistance profiles of bacterial and fungal pathogens as well as the quality of public hygiene have had a considerable impact on the effectiveness of antimicrobial agents in Asian countries. In Asia, one of the epicentres of antimicrobial drug resistance, there is an alarming number of antibiotic-resistant species, including penicillin- and erythromycin-resistant Streptococcus pneumoniae, ampicillin-resistant Haemophilus influenzae, multidrug-resistant (MDR) Acinetobacter baumannii, extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (particularly mediated by CTX-M-9, CTX-M-14 and CTX-M-15), New Delhi metallo-β-lactamase 1 (NDM-1)-producing Enterobacteriaceae, MDR Salmonella enterica serotypes Choleraesuis and Typhi, carbapenem-resistant A. baumannii (OXA-58 and OXA-23 carbapenemases) and azole-resistant Candida glabrata. A few clones of MDR A. baumannii and hospital-acquired meticillin-resistant Staphylococcus aureus (MRSA) have been widely disseminated in hospital settings in Asia, and K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains have been widely distributed in China. In addition, the emergence of extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) has illustrated the need for regular monitoring of resistance profiles of clinical isolates as well as the deliberative use of fluoroquinolones. Continuous surveillance of resistance data from clinical isolates as well as implementation of strict infection control policies in healthcare settings are required to mitigate the progression of antimicrobial resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Departments of Intensive Care and Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | | |
Collapse
|
6
|
Darabi A, Hocquet D, Dowzicky MJ. Antimicrobial activity against Streptococcus pneumoniae and Haemophilus influenzae collected globally between 2004 and 2008 as part of the Tigecycline Evaluation and Surveillance Trial. Diagn Microbiol Infect Dis 2010; 67:78-86. [PMID: 20385351 DOI: 10.1016/j.diagmicrobio.2009.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/24/2009] [Accepted: 12/06/2009] [Indexed: 11/16/2022]
Abstract
We report here on the in vitro activity of tigecycline and comparators against a global collection of Streptococcus pneumoniae and Haemophilus influenzae collected between 2004 and 2008 as part of the Tigecycline Evaluation and Surveillance Trial. A total of 6785 S. pneumoniae and 6642 H. influenzae isolates were collected, most from North America. The percentages of penicillin-intermediate resistance and penicillin resistance among S. pneumoniae in North America were 27.8% and 14.3%, respectively. Penicillin resistance ranged from 9.3% in Europe to 25.1% in the Asia-Pacific Rim. The rate of beta-lactamase-producing H. influenzae was 25.8% in North America, and among the other regions, it ranged from 8.7% in South Africa to 26.8% in the Asia-Pacific Rim. Tigecycline MIC(90)'s were 0.03 to 0.12 mg/L and 0.5 to 2 mg/L, depending on the region considered, against S. pneumoniae and H. influenzae, respectively. Tigecycline had low MIC(90)'s against S. pneumoniae and H. influenzae, irrespective of resistance to beta-lactams.
Collapse
Affiliation(s)
- Ali Darabi
- WPAHS, Core Lab., Pittsburgh, PA 15212, USA
| | | | | |
Collapse
|
8
|
Zuckerman JM, Qamar F, Bono BR. Macrolides, ketolides, and glycylcyclines: azithromycin, clarithromycin, telithromycin, tigecycline. Infect Dis Clin North Am 2010; 23:997-1026, ix-x. [PMID: 19909895 DOI: 10.1016/j.idc.2009.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The advanced macrolides, azithromycin and clarithromycin, and the ketolide, telithromycin, are structural analogs of erythromycin. They have several distinct advantages when compared with erythromycin, including enhanced spectrum of activity, more favorable pharmacokinetics and pharmacodynamics, once-daily administration, and improved tolerability. Clarithromycin and azithromycin are used extensively for the treatment of respiratory tract infections, sexually transmitted diseases, and Helicobacter pylori-associated peptic ulcer disease. Telithromycin is approved for the treatment of community-acquired pneumonia. Severe hepatotoxicity has been reported with the use of telithromycin.
Collapse
Affiliation(s)
- Jerry M Zuckerman
- Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|