1
|
Matope G, Chaima K, Bande B, Bare W, Kadzviti F, Jinjika F, Tivapasi M. Isolation of multi-drug-resistant strains of Escherichia coli from faecal samples of dogs and cats from Harare, Zimbabwe. Vet Med Sci 2024; 10:e1472. [PMID: 39031748 PMCID: PMC11190846 DOI: 10.1002/vms3.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The escalation of antimicrobial resistance (AMR) in recent years has been of major public health concern globally. Escherichia coli are amongst the bacteria that have been targeted for AMR surveillance due to their ability to cause infection in both animals and humans. Their propensity to produce extended spectrum beta-lactamases further complicates the choices of treatment regimens. OBJECTIVES To investigate the prevalence of antimicrobial-resistance in E. coli strains isolated from faecal samples of dogs and cats from selected veterinary surgeries and animal shelters from Harare, Zimbabwe. MATERIALS AND METHODS A cross-sectional study was carried out to select animals by a systematic random procedure. Faecal samples were collected for culture and isolation of E. coli. Their susceptibility to antimicrobial drugs was assessed using the disc diffusion method. RESULTS A total of 95% (133/140) of the samples from cats (n = 40) and dogs (n = 93) yielded E. coli. Resistance was recorded for ampicillin (45.9%), trimethoprim-sulphamethoxazole (44.4%), nalidixic acid (29.3%), ceftazidime (15.8%) and azithromycin (12.8%), but not for gentamicin and imipenem. A total of 18% of the isolates were multi-drug-resistant where resistance to nalidixic acid, ampicillin and trimethoprim-sulphamethoxazole predominated. CONCLUSION We observed relatively high AMR of E. coli strains against ampicillin. The isolation of multi-drug-resistant strains of E. coli may signal the dissemination of resistance genes in the ecosystem of these bacteria which may have a public health impact.
Collapse
Affiliation(s)
- Gift Matope
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Kudzai Chaima
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Beauty Bande
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Winnet Bare
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Faith Kadzviti
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Farai Jinjika
- Department of Veterinary ServicesUniversity of ZimbabweHarareZimbabwe
| | - Musavenga Tivapasi
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| |
Collapse
|
2
|
Moon BY, Ali MS, Kwon DH, Heo YE, Hwang YJ, Kim JI, Lee YJ, Yoon SS, Moon DC, Lim SK. Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020-2022. Antibiotics (Basel) 2023; 13:27. [PMID: 38247586 PMCID: PMC10812631 DOI: 10.3390/antibiotics13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The occurrence of antimicrobial-resistant bacteria in companion animals poses public health hazards globally. This study aimed to evaluate the antimicrobial resistance profiles and patterns of commensal E. coli strains obtained from fecal samples of healthy dogs and cats in South Korea between 2020 and 2022. In total, 843 E. coli isolates (dogs, n = 637, and cats, n = 206) were assessed for susceptibility to 20 antimicrobials. The resistance rates of the most tested antimicrobials were significantly higher in dog than in cat isolates. Cefalexin (68.9%) demonstrated the highest resistance rates, followed by ampicillin (38.3%), tetracycline (23.1%), and cefazolin (18.7%). However, no or very low resistance (0-0.6%) to amikacin, imipenem, piperacillin, and colistin was found in both dog and cat isolates. Overall, 42.3% of the isolates exhibited multidrug resistance (MDR). MDR in isolates from dogs (34.9%) was significantly higher than in those from cats (20.9%). The main components of the resistance patterns were cefalexin and ampicillin in both dog and cat isolates. Additionally, MDR patterns in isolates from dogs (29.2%) and cats (16%) were shown to encompass five or more antimicrobials. Multidrug-resistant commensal E. coli could potentially be spread to humans or other animals through clonal or zoonotic transmission. Therefore, the incidence of antimicrobial resistance in companion animals highlights the urgent need to restrict antimicrobial resistance and ensure the prudent use of antimicrobials in Korea.
Collapse
Affiliation(s)
- Bo-Youn Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Md. Sekendar Ali
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Hyeon Kwon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ye-Eun Heo
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yu-Jeong Hwang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Ji-In Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Yun Jin Lee
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| | - Dong-Chan Moon
- Division of Antimicrobial Resistance Research, Centre for Infectious Diseases Research, Korea Disease Control and Prevention Agency, Cheongju 28159, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea; (B.-Y.M.); (M.S.A.); (D.-H.K.); (Y.-E.H.); (Y.-J.H.); (J.-I.K.); (Y.J.L.); (S.-S.Y.)
| |
Collapse
|
3
|
Teng L, Feng M, Liao S, Zheng Z, Jia C, Zhou X, Nambiar RB, Ma Z, Yue M. A Cross-Sectional Study of Companion Animal-Derived Multidrug-Resistant Escherichia coli in Hangzhou, China. Microbiol Spectr 2023; 11:e0211322. [PMID: 36840575 PMCID: PMC10100847 DOI: 10.1128/spectrum.02113-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Antimicrobial resistance poses a challenge to global public health, and companion animals could serve as the reservoir for antimicrobial-resistant bacteria. However, the prevalence of antimicrobial-resistant bacteria, especially multidrug-resistant (MDR) bacteria, and the associated risk factors from companion animals are partially understood. Here, we aim to investigate the prevalence of MDR Escherichia coli, as an indicator bacterium, in pet cats and dogs in Hangzhou, China, and evaluate the factors affecting the prevalence of MDR E. coli. The proportion of pets carrying MDR E. coli was 35.77% (49/137), i.e., 40.96% (34/83) for dogs and 27.28% (15/54) for cats. Isolates resistant to trimethoprim-sulfamethoxazole (49.40% and 44.44%), amoxicillin-clavulanic acid (42.17% and 38.89%), and nalidixic acid (40.96% and 35.19%) were the most prevalent in dogs and cats. Interestingly, comparable prevalence of MDR E. coli was observed in pet dogs and cats regardless of the health condition and the history of antibiotic use. Genetic diversity analysis indicates a total of 86 sequencing types (23 clonal complexes), with ST12 being the most dominant. Further genomic investigation of a carbapenem-resistant E. coli ST410 isolate reveals abundant antimicrobial-resistance genes and a plasmid-borne carbapenemase gene (NDM-5) flanked by insertion sequences of IS91 and IS31, suggesting the plasmid and insertion sequences may be involved in carbapenem-resistance dissemination. These data show that companion animal-derived MDR bacteria could threaten public health, and further regulation and supervision of antimicrobial use in pet clinics should be established in China. IMPORTANCE MDR Escherichia coli are considered a global threat because of the decreasing options for antimicrobial therapy. Companion animals could be a reservoir of MDR E. coli, and the numbers of pets and households owning pets in China are booming. However, the prevalence and risk factors of MDR E. coli carriage in Chinese pets were rarely studied. Here, we investigated the prevalence of MDR E. coli in pets in Hangzhou, one of the leading cities with the most established pet market in China, and explored the factors that affected the prevalence. Our findings showed high prevalences of MDR E. coli in pet dogs and cats regardless of their health condition and the history of antibiotic use, suggesting their potential role of public health risk. A call-to-action for improved regulation of antimicrobial use in companion animal is needed in China.
Collapse
Affiliation(s)
- Lin Teng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mengyao Feng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Sihao Liao
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhijie Zheng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xin Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhengxin Ma
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
4
|
Bacterial Prevalence in Skin, Urine, Diarrheal Stool, and Respiratory Samples from Dogs. Microorganisms 2022; 10:microorganisms10081668. [PMID: 36014085 PMCID: PMC9415295 DOI: 10.3390/microorganisms10081668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of bacterial infections in companion animals is a growing concern as humans can also be infected through the transmission of pathogenic bacteria. Because there have been few studies conducted on companion animals, the extent and significance of prevalence in veterinary practices remain unknown. This is the first nationwide surveillance report aimed at elucidating the prevalence pattern and associated infections of isolated bacteria from dogs in Korea. Bacterial isolates were collected from seven different laboratories participating in the Korean Veterinary Antimicrobial Resistance Monitoring System from 2018 to 2019. The samples were obtained from the diarrheal stool, skin/ear, urine, and respiratory samples of veterinary hospital-visited dogs. Isolation and identification of bacterial species was carried out using a bacterial culture approach and then confirmed with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF) and polymerase chain reaction (PCR). Out of 3135 isolates in dogs, 1085, 1761, 171, and 118 were extracted from diarrheal stool, skin/ear, urine, and respiratory samples, respectively. The overall prevalence of bacteria was higher among two age groups (1-5 and 6-10 years) with a 66.5 percent prevalence. This study showed that Escherichia coli was the most prevalent species among isolated bacterial species of diarrheal and urine origin, whereas Staphylococcus pseudintermedius was the most prevalent among skin and respiratory sample isolates. The data on the prevalence of bacteria for each dog specimen could provide basic information to estimate the extent of bacterial infection and antimicrobial resistance development and to guide veterinarians in therapeutic decisions in clinical practices throughout Korea.
Collapse
|
5
|
Cocca G, Piva S, Magno SD, Scarpellini R, Giacometti F, Serraino A, Giunti M. Prevalence and Patterns of Antimicrobial Resistance among Escherichia coli and Staphylococcus spp. in a Veterinary University Hospital. Vet Sci 2021; 8:308. [PMID: 34941835 PMCID: PMC8709074 DOI: 10.3390/vetsci8120308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence of antimicrobial resistance in commensal strains of Escherichia coli and Staphylococcus spp. was investigated in 320 samples collected from patients and the environment of a veterinary university hospital-specifically, the consultation area (CA) and intensive care unit (ICU). E. coli was isolated in 70/160 samples (44%), while Staphylococcus spp. were isolated in 110/160 (69%) samples. The occurrence of multidrug-resistant (MDR) isolates from CA and ICU admission were similar for E. coli (1/12 (8%) versus 4/27 (15%), respectively) and Staphylococcus spp. (10/19 (53%) versus 26/50 (52%), respectively). MDR E. coli isolates increased significantly at hospital discharge (18/31; 58%; p = 0.008). Antimicrobial treatment administered during hospitalization was a risk factor for carriage of MDR E. coli (OR, 23.9; 95% CI: 1.18-484.19; p = 0.04) and MDR Staphylococcus spp. (OR, 19.5; 95% CI 1.30-292.76; p = 0.02), respectively. The odds ratio for MDR E. coli was 41.4 (95% CI 2.13-806.03; p = 0.01), if the administration of fluoroquinolones was evaluated. The mecA gene was detected in 19/24 (79%) coagulase-positive Staphylococcus spp. isolates resistant to oxacillin. High rates of MDR Staphylococcus spp. were reported. Hospitalization in the ICU and antimicrobial treatment were risk factors for colonization by MDR commensal bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Massimo Giunti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (G.C.); (S.P.); (S.D.M.); (R.S.); (F.G.); (A.S.)
| |
Collapse
|
6
|
Extended-Spectrum-β-Lactamase- and AmpC-Producing Escherichia coli in Domestic Dogs: Spread, Characterisation and Associated Risk Factors. Antibiotics (Basel) 2021; 10:antibiotics10101251. [PMID: 34680831 PMCID: PMC8533012 DOI: 10.3390/antibiotics10101251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/18/2023] Open
Abstract
In veterinary medicine, the issue of antimicrobial resistance was mainly addressed in food-producing animals (although companion animals also deserve attention). Indeed, these species may be reservoir of resistant microorganisms, such as extended-spectrum β-lactamase and AmpC (ESBL/AmpC)-producing bacteria. Dogs in particular may transmit them to close-contact humans. Overall 266 faecal samples of healthy dogs were microbiologically and molecularly analyzed to investigate ESBL/AmpC-producing Escherichia coli and the effects of host and environmental factors on their spread. A prevalence of 25.9% of ESBL/AmpC-producing E. coli, supported by blaCTX-M (79.7%), blaTEM (47.8%), blaCMY (13%), and blaSHV (5.8%) gene detection, emerged. Dogs frequenting extra-urban environments showed significantly higher odds of being positive to ESBL/AmpC E. coli (30.2%) compared to urban dogs (16.7%) identifying the environment as a risk factor. About 88.4% of isolates were resistant to cephalosporins, 8.7% to cephalosporins and carbapenems, and 2.9% to cephalosporins, carbapenems, and penicillins. ESBL/AmpC-producing E. coli expressing blaCMY were significantly more resistant to cefoxitin, cefotaxime/clavulanic acid and ceftazidime/clavulanic acid, highlighting its negative effects. Our results suggest the role of domestic dogs as a maintenance host of ESBL/AmpC-producing E. coli leading to a constant health monitoring. The recorded resistances to carbapenems implies attention and further investigations.
Collapse
|
7
|
Merging Metagenomics and Spatial Epidemiology To Understand the Distribution of Antimicrobial Resistance Genes from Enterobacteriaceae in Wild Owls. Appl Environ Microbiol 2020; 86:AEM.00571-20. [PMID: 32769191 DOI: 10.1128/aem.00571-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is a well-documented phenomenon in bacteria from many natural ecosystems, including wild animals. However, the specific determinants and spatial distribution of resistant bacteria and antimicrobial resistance genes (ARGs) in the environment remain incompletely understood. In particular, information regarding the importance of anthropogenic sources of AMR relative to that of other biological and ecological influences is lacking. We conducted a cross-sectional study of AMR in great horned owls (Bubo virginianus) and barred owls (Strix varia) admitted to a rehabilitation center in the midwestern United States. A combination of selective culture enrichment and shotgun metagenomic sequencing was used to identify ARGs from Enterobacteriaceae Overall, the prevalence of AMR was comparable to that in past studies of resistant Enterobacteriaceae in raptors, with acquired ARGs being identified in 23% of samples. Multimodel regression analyses identified seasonality and owl age to be important predictors of the likelihood of the presence of ARGs, with birds sampled during warmer months being more likely to harbor ARGs than those sampled during cooler months and with birds in their hatch year being more likely to harbor β-lactam ARGs than adults. Beyond host-specific determinants, ARG-positive owls were also more likely to be recovered from areas of high agricultural land cover. Spatial clustering analyses identified a significant high-risk cluster of tetracycline resistance gene-positive owls in the southern sampling range, but this could not be explained by any predictor variables. Taken together, these results highlight the complex distribution of AMR in natural environments and suggest that both biological and anthropogenic factors play important roles in determining the emergence and persistence of AMR in wildlife.IMPORTANCE Antimicrobial resistance (AMR) is a multifaceted problem that poses a worldwide threat to human and animal health. Recent reports suggest that wildlife may play an important role in the emergence, dissemination, and persistence of AMR. As such, there have been calls for better integration of wildlife into current research on AMR, including the use of wild animals as biosentinels of AMR contamination in the environment. A One Health approach can be used to gain a better understanding of all AMR sources and pathways, particularly those at the human-animal-environment interface. Our study focuses on this interface in order to assess the effect of human-impacted landscapes on AMR in a wild animal. This work highlights the value of wildlife rehabilitation centers for environmental AMR surveillance and demonstrates how metagenomic sequencing within a spatial epidemiology framework can be used to address questions surrounding AMR complexity in natural ecosystems.
Collapse
|
8
|
Jung WK, Shin S, Park YK, Noh SM, Shin SR, Yoo HS, Park SC, Park YH, Park KT. Distribution and antimicrobial resistance profiles of bacterial species in stray dogs, hospital-admitted dogs, and veterinary staff in South Korea. Prev Vet Med 2020; 184:105151. [PMID: 33011559 DOI: 10.1016/j.prevetmed.2020.105151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022]
Abstract
Transferring antimicrobial-resistant bacteria from companion animals to human hosts has become increasingly common. Data regarding antimicrobial susceptibility could help veterinarians to select the most appropriate antibiotic treatment. However, standardized and ongoing surveys regarding antimicrobial resistance remain limited. In this study, we investigated the antimicrobial-susceptibility patterns and trends of bacteria isolated from stray dogs, hospital-admitted dogs, and veterinary staff in South Korea from 2018 to 2019. The minimum inhibitory concentrations of different antimicrobials for Staphylococcus spp., Enterobacterales, and Enterococcus spp. were determined to establish representatives of different antibiotic classes relevant for treatment or surveillance. For coagulase-positive and -negative Staphylococci, resistance to gentamicin was <27 %, while that to ampicillin and penicillin was high (33-80 %). The mecA-detection rates among staphylococcal isolates were 28.5 %, 42.6 %, and 32 % from stray dogs, hospital-admitted dogs, and veterinary staffs, respectively. For Enterobacterales, resistance to carbapenems was low (0-6%). A total of 31.2 % and 18.9 % of Enterobacterales isolates from stray dogs and hospital-admitted dogs were confirmed to possess at least one of blaCTX-M, blaSHV, or blaTEM. Additionally, Enterococcus spp. isolates showed no resistance to vancomycin. These results demonstrate that dogs are commonly colonized with antimicrobial-resistant bacteria and highlight the need for further investigation.
Collapse
Affiliation(s)
- Woo Kyung Jung
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Sook Shin
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Young Kyung Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Seong Mi Noh
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Se Ra Shin
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Yong Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea.
| | - Kun Taek Park
- Department of Biotechnology, Inje University, 197 Injero, Gimhae 50834, South Korea.
| |
Collapse
|
9
|
Lim SK, Kim D, Moon DC, Cho Y, Rho M. Antibiotic resistomes discovered in the gut microbiomes of Korean swine and cattle. Gigascience 2020; 9:5829833. [PMID: 32369165 PMCID: PMC7317084 DOI: 10.1093/gigascience/giaa043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Antibiotics administered to farm animals have led to increasing prevalence of resistance genes in different microbiomes and environments. While antibiotic treatments help cure infectious diseases in farm animals, the possibility of spreading antibiotic resistance genes into the environment and human microbiomes raises significant concerns. Through long-term evolution, antibiotic resistance genes have mutated, thereby complicating the resistance problems. Results In this study, we performed deep sequencing of the gut microbiomes of 36 swine and 41 cattle in Korean farms, and metagenomic analysis to understand the diversity and prevalence of antibiotic resistance genes. We found that aminoglycoside, β-lactam, lincosamide, streptogramin, and tetracycline were the prevalent resistance determinants in both swine and cattle. Tetracycline resistance was abundant and prevalent in cattle and swine. Specifically, tetQ, tetW, tetO, tet32, and tet44 were the 5 most abundant and prevalent tetracycline resistance genes. Their prevalence was almost 100% in swine and cattle. While tetQ was similarly abundant in both swine and cattle, tetW was more abundant in swine than in cattle. Aminoglycoside was the second highest abundant resistance determinant in swine, but not in cattle. In particular, ANT(6) and APH(3′′) were the dominant resistance gene families in swine. β-lactam was also an abundant resistance determinant in both swine and cattle. Cfx was the major contributing gene family conferring resistance against β-lactams. Conclusions Antibiotic resistome was more pervasive in swine than in cattle. Specifically, prevalent antibiotic resistance genes (prevalence >50%) were found more in swine than in cattle. Genomic investigation of specific resistance genes from the gut microbiomes of swine and cattle in this study should provide opportunities to better understand the exchange of antibiotic resistance genes in farm animals.
Collapse
Affiliation(s)
- Suk-Kyung Lim
- Animal and Plant Quarantine Agency, Bacterial Disease Division, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Dongjun Kim
- Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea, Department of Computer Science and Engineering
| | - Dong-Chan Moon
- Animal and Plant Quarantine Agency, Bacterial Disease Division, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Youna Cho
- Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea, Department of Computer Science and Engineering
| | - Mina Rho
- Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea, Department of Computer Science and Engineering.,Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea, Department of Biomedical Informatics
| |
Collapse
|
10
|
Jung WK, Shin S, Park YK, Lim SK, Moon DC, Park KT, Park YH. Distribution and antimicrobial resistance profiles of bacterial species in stray cats, hospital-admitted cats, and veterinary staff in South Korea. BMC Vet Res 2020; 16:109. [PMID: 32272916 PMCID: PMC7147017 DOI: 10.1186/s12917-020-02326-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antimicrobial resistance is becoming increasingly important in both human and veterinary medicine. According to the One Health concept, an important step is to monitor the resistance patterns of pathogenic bacteria. In this study, the antimicrobial susceptibility patterns and trends of bacteria isolated from stray cats, hospital-admitted cats, and veterinary staff in South Korea between 2017 and 2018 were investigated. RESULTS The minimum inhibitory concentrations of different antibiotics for Staphylococcus spp., Enterobacteriaceae, and Enterococcus spp. were determined to establish representatives of different antibiotic classes relevant for treatment or surveillance. For Coagulase-positive and Coagulase-negative Staphylococci, resistance to fluoroquinolones was below 13%, but resistance to ampicillin and penicillin was high (20-88%). A total of 9.5, 12.1, and 40.3% of staphylococcal isolates from stray cats, hospital-admitted cats, and veterinary staff, respectively, were confirmed to be mecA positive. For Enterobacteriaceae, resistance to carbapenems, fluoroquinolones, and 3rd generation cephalosporins was low (0-11.1%). The Enterococcus spp. isolates showed no resistance to vancomycin. The antimicrobial resistance rates of the Staphylococcus spp. and Enterobacteriaceae isolates from stray cats were usually lower than those of isolates from hospital-admitted cats and veterinary staff, but the Enterococcus spp. isolates revealed the opposite. Thus, the antimicrobial resistance varied across bacterial species according to the source from which they were isolated. CONCLUSIONS Resistance to critically important compounds were low. However, the presence of antimicrobial resistance in cat isolates is of both public health and animal health concern.
Collapse
Affiliation(s)
- Woo Kyung Jung
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Sook Shin
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Young Kyung Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, South Korea
| | - Dong-Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, South Korea
| | - Kun Taek Park
- Department of Biotechnology, Inje University, 197 Injero, Gimhae-si, Gyeongsangnam-do, 50834, South Korea
| | - Yong Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
11
|
Amadi VA, Hariharan H, Amadi OA, Matthew-Belmar V, Nicholas-Thomas R, Perea ML, Carter K, Rennie E, Kalasi K, Alhassan A, Kabuusu RM, Alozie GU, Fields PJ, Pinckney R, Sharma R. Antimicrobial resistance patterns of commensal Escherichia coli isolated from feces of non-diarrheic dogs in Grenada, West Indies. Vet World 2019; 12:2070-2075. [PMID: 32095061 PMCID: PMC6989324 DOI: 10.14202/vetworld.2019.2070-2075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/25/2019] [Indexed: 12/04/2022] Open
Abstract
Background and Aim: There is currently no published information on the prevalence and antimicrobial susceptibility patterns of commensal Escherichia coli in dogs of Grenada origin. Monitoring antimicrobial resistance helps in the empirical selection of antibiotics. This study determined the occurrence of E. coli including the O157:H7 serotype in feces of non-diarrheic dogs of Grenada origin and the antibiotic resistance pattern of the E. coli isolates. Materials and Methods: Fecal samples from 142 of the 144 (98.6%) dogs were culture positive for E. coli. Selection of up to three colonies from each of the 142 E. coli-positive samples yielded a total of 402 E. coli isolates, which were analyzed for the presence of non-sorbitol fermenting colonies, and O157-agglutination. Results: Of the 402 E. coli isolates, 30 (7.5%) were non-sorbitol fermenters. However, none of the 402 isolates gave a positive reaction (O157:H7) to the E. coli O157:H7 latex kit. Antimicrobial susceptibility tests against 12 antibiotics revealed low resistance rates to all the tested antibiotics except for tetracycline (Te) (23.4%), cephalothin (CF) (13.2%), and ampicillin (AM) (7.7%). Thirty-nine out of the 402 (9.7%), E. coli isolates were resistant to two or more antibiotics of different classes. Conclusion: This is the first report of isolation and antimicrobial susceptibilities of commensal E. coli from non-diarrheic dogs in Grenada. Some of the isolates (39/402 isolates, 9.7%) were resistant to multiple antibiotics. This study showed that presently, dogs in Grenada should not be considered a reservoir for the E. coli O157:H7 serotype and for multiple antibiotic-resistant E. coli strains. Among the 402 E. coli isolates, the resistance rate to drugs other than Te, CF, and AM was very low.
Collapse
Affiliation(s)
- Victor A Amadi
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Harry Hariharan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Ozioma A Amadi
- Department of Public Health and Preventative Medicine, School of Medicine, St. George's University, Grenada, West Indies
| | - Vanessa Matthew-Belmar
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Roxanne Nicholas-Thomas
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Marta Lanza Perea
- Department of Small Animal Medicine and Surgery, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Kenrith Carter
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Eugene Rennie
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Keith Kalasi
- Department of Small Animal Clinic, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Andy Alhassan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Richard M Kabuusu
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Grant Ugochukwu Alozie
- Department of Neuroscience, Physiology and Behavioral Science, School of Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Paul J Fields
- Office of Research, School of Graduate Studies, St. George's University, St. George's, Grenada, West Indies
| | - Rhonda Pinckney
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Ravindra Sharma
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, St. George's, Grenada, West Indies
| |
Collapse
|
12
|
Na SH, Moon DC, Choi MJ, Oh SJ, Jung DY, Sung EJ, Kang HY, Hyun BH, Lim SK. Antimicrobial Resistance and Molecular Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Ducks in South Korea. Foodborne Pathog Dis 2019; 16:799-806. [PMID: 31305137 DOI: 10.1089/fpd.2019.2644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ducks are potential carriers of pathogenic bacteria, which are capable of transmitting zoonotic diseases to humans. The global spread of Enterobacteriaceae carrying extended-spectrum β-lactamase (ESBL) genes is a public health concern. This study investigated the prevalence of antimicrobial resistance in Escherichia coli isolated from ducks in Korea and described the molecular characteristics of the ESBLs they produced. A total of 146 E. coli isolates from 404 duck fecal and carcass samples in 85 duck farms were tested for antimicrobial resistance using the broth dilution method and were further characterized using molecular methods. We observed high resistance rates to tetracycline, trimethoprim/sulfamethoxazole, nalidixic acid, ampicillin, and ciprofloxacin. In total, six ceftiofur-resistant isolates (4.1%) were observed, which produced CTX-M-55 (n = 3) or CTX-M-65 β-lactamase (n = 3). All CTX-M-producing E. coli isolates were also resistant to ciprofloxacin, with mutations in the quinolone resistance determining region of GyrA (S83L with or without D87N) and ParC (S80I), and three CTX-M-producing E. coli isolates carried plasmid-mediated quinolone resistance (PMQR) genes, qepA (n = 1), qnrS, and acc(6')-Ib-cr (n = 2). The transfer of blaCTX-M genes was observed in one isolate mediated by IncF-family plasmids but not in the co-resistant isolates carrying both blaCTX-M and PMQR genes. Pulsed-field gel electrophoresis and multilocus sequence typing demonstrated that CTX-M-producing isolates were heterogeneous; however, identical isolates were found in different farms and slaughterhouses. This study presents baseline data on antimicrobial resistance of E. coli derived from duck samples and is the first report of CTX-M-55 and CTX-M-65 β-lactamase-producing E. coli isolated from ducks in Korea. The dissemination of ESBL-producing E. coli poses a potential risk to public health and therefore should be monitored.
Collapse
Affiliation(s)
- Seok Hyeon Na
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Dong Chan Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Myeong-Ja Choi
- Jeonnam National Veterinary Service Laboratory, Gangjingun, Republic of Korea
| | - Sun-Joo Oh
- Jeonnam National Veterinary Service Laboratory, Gangjingun, Republic of Korea
| | - Dae-Young Jung
- Jeonnam National Veterinary Service Laboratory, Gangjingun, Republic of Korea
| | - Eun Ji Sung
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Hee Young Kang
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Bang-Hun Hyun
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| |
Collapse
|
13
|
Bourne JA, Chong WL, Gordon DM. Genetic structure, antimicrobial resistance and frequency of human associated Escherichia coli sequence types among faecal isolates from healthy dogs and cats living in Canberra, Australia. PLoS One 2019; 14:e0212867. [PMID: 30830915 PMCID: PMC6398920 DOI: 10.1371/journal.pone.0212867] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/11/2019] [Indexed: 11/24/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) cause clinical infections in humans. Understanding the evolution and dissemination of ExPEC strains via potential reservoirs is important due to associated morbidity, health care costs and mortality. To further understanding this survey has examined isolates recovered from the faeces of 221 healthy dogs and 427 healthy cats. The distribution of phylogroups varied with host species, and depended on whether the animal was living in a shelter or a home. The human associated STs 69, 73, 95, 131 and 127 were prevalent, with 30.5% of cat isolates and 10.3% of dog isolates representing these ExPEC sequence types. Resistance to the antibiotics ampicillin and tetracycline was common, but resistance to other antimicrobials was negligible.
Collapse
Affiliation(s)
- Judith A. Bourne
- Ecology and Evolution, Research School of Biology, the Australian National University, Acton, Australian Capital Territory, Australia
| | - Wye Li Chong
- RSPCA Veterinary Clinic, Wright, Australian Capital Territory, Australia
| | - David M. Gordon
- Ecology and Evolution, Research School of Biology, the Australian National University, Acton, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
14
|
Assessing Transmission of Antimicrobial-Resistant Escherichia coli in Wild Giraffe Contact Networks. Appl Environ Microbiol 2018; 85:AEM.02136-18. [PMID: 30413480 DOI: 10.1128/aem.02136-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022] Open
Abstract
There is growing evidence that anthropogenic sources of antibiotics and antimicrobial-resistant bacteria can spill over into natural ecosystems, raising questions about the role wild animals play in the emergence, maintenance, and dispersal of antibiotic resistance genes. In particular, we lack an understanding of how resistance genes circulate within wild animal populations, including whether specific host characteristics, such as social associations, promote interhost transmission of these genes. In this study, we used social network analysis to explore the forces shaping population-level patterns of resistant Escherichia coli in wild giraffe (Giraffa camelopardalis) and assess the relative importance of social contact for the dissemination of resistant E. coli between giraffe. Of 195 giraffe sampled, only 5.1% harbored E. coli isolates resistant to one or more tested antibiotics. Whole-genome sequencing on a subset of resistant isolates revealed a number of acquired resistance genes with linkages to mobile genetic elements. However, we found no evidence that the spread of resistance genes among giraffe was facilitated by interhost associations. Giraffe with lower social degree were more likely to harbor resistant E. coli, but this relationship was likely driven by a correlation between an individual's social connectedness and age. Indeed, resistant E. coli was most frequently detected in socially isolated neonates, indicating that resistant E. coli may have a selective advantage in the gastrointestinal tracts of neonates compared to other age classes. Taken together, these results suggest that the maintenance of antimicrobial-resistant bacteria in wild populations may, in part, be determined by host traits and microbial competition dynamics within the host.IMPORTANCE Antimicrobial resistance represents a significant threat to human health, food security, and the global economy. To fully understand the evolution and dissemination of resistance genes, a complete picture of antimicrobial resistance in all biological compartments, including natural ecosystems, is required. The environment and wild animals may act as reservoirs for anthropogenically derived resistance genes that could be transferrable to clinically relevant bacteria of humans and domestic animals. Our study investigated the possible transmission mechanisms for antimicrobial-resistant bacteria within a wild animal population and, more broadly, contributes to our understanding of how resistance genes are spread and maintained in natural ecosystems.
Collapse
|
15
|
Tuerena I, Williams NJ, Nuttall T, Pinchbeck G. Antimicrobial-resistant Escherichia coli in hospitalised companion animals and their hospital environment. J Small Anim Pract 2017; 57:339-47. [PMID: 27385621 DOI: 10.1111/jsap.12525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Antimicrobial resistance is a growing concern with implications for animal health. This study investigated the prevalence of antimicrobial resistance among commensal and environmental Escherichia coli isolated from animals sampled in referral hospitals in the UK. MATERIALS AND METHODS Resistant Escherichia coli isolated from animal faeces and practice environments were tested for susceptibility to antimicrobial agents. PCR and sequencing techniques were used to identify extended spectrum beta-lactamase and AmpC-producer genotypes. RESULTS In total, 333 faecal and 257 environmental samples were collected. Multi-drug resistant Escherichia coli were found in 13·1% of faecal and 8·9% of environmental samples. Extended spectrum beta-lactamase and AmpC genes were identified 14% and 7·7% of faecal samples and 8·6% and 8·6% of environmental samples, respectively. The most common extended spectrum beta-lactamase gene type detected was blaCTX-M -15 , although blaTEM-158 was detected in faecal and environmental samples from one practice. CLINICAL SIGNIFICANCE Escherichia coli resistant to key antimicrobials were isolated from hospitalised animals and the practice environment. We identified the emergence of the inhibitor resistant and extended spectrum beta-lactamase blaTEM-158 in companion animals. Further investigation to determine risk factors for colonisation with antimicrobial-resistant bacteria is needed to provide evidence for antimicrobial stewardship and infection control programmes.
Collapse
Affiliation(s)
- I Tuerena
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston, CH64 7TE
| | - N J Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston, CH64 7TE
| | - T Nuttall
- School of Veterinary Science, Faculty of Health and Life Sciences, University of Liverpool, Neston, CH64 7TE
| | - G Pinchbeck
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston, CH64 7TE
| |
Collapse
|
16
|
Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz J Microbiol 2016; 47:150-8. [PMID: 26887238 PMCID: PMC4822764 DOI: 10.1016/j.bjm.2015.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 10/09/2014] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial resistance in Escherichia coli isolated from pet dogs can be considered a potential threat of infection for the human population. Our objective was to characterize the resistance pattern, extended spectrum beta-lactamase production and genetic relatedness of multiresistant E. coli strains isolated from dogs (n = 134), their owners (n = 134), and humans who claim to have no contact with dogs (n = 44, control), searching for sharing of strains. The strains were assessed for their genetic relatedness by phylogenetic grouping and pulsed-field gel electrophoresis. Multiresistant E. coli strains were isolated from 42 (31.3%) fecal samples from pairs of dogs and owners, totaling 84 isolates, and from 19 (43.1%) control group subjects. The strains showed high levels of resistance to ampicillin, streptomycin, tetracycline, trimethoprim and sulfamethoxazole regardless of host species or group of origin. The blaTEM, blaCTX-M, and blaSHV genes were detected in similar proportions in all groups. All isolates positive for bla genes were ESBL producers. The phylogenetic group A was the most prevalent, irrespective of the host species. None of the strains belonging to the B2 group contained bla genes. Similar resistance patterns were found for strains from dogs, owners and controls; furthermore, identical PFGE profiles were detected in four (9.5%) isolate pairs from dogs and owners, denoting the sharing of strains. Pet dogs were shown to be a potential household source of multiresistant E. coli strains.
Collapse
|
17
|
Leite-Martins LR, Mahú MIM, Costa AL, Mendes A, Lopes E, Mendonça DMV, Niza-Ribeiro JJR, de Matos AJF, da Costa PM. Prevalence of antimicrobial resistance in enteric Escherichia coli from domestic pets and assessment of associated risk markers using a generalized linear mixed model. Prev Vet Med 2014; 117:28-39. [PMID: 25294317 DOI: 10.1016/j.prevetmed.2014.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022]
Abstract
Antimicrobial resistance (AMR) is a growing global public health problem, which is caused by the use of antimicrobials in both human and animal medical practice. The objectives of the present cross-sectional study were as follows: (1) to determine the prevalence of resistance in Escherichia coli isolated from the feces of pets from the Porto region of Portugal against 19 antimicrobial agents and (2) to assess the individual, clinical and environmental characteristics associated with each pet as risk markers for the AMR of the E. coli isolates. From September 2009 to May 2012, rectal swabs were collected from pets selected using a systematic random procedure from the ordinary population of animals attending the Veterinary Hospital of Porto University. A total of 78 dogs and 22 cats were sampled with the objective of isolating E. coli. The animals' owners, who allowed the collection of fecal samples from their pets, answered a questionnaire to collect information about the markers that could influence the AMR of the enteric E. coli. Chromocult tryptone bile X-glucuronide agar was used for E. coli isolation, and the disk diffusion method was used to determine the antimicrobial susceptibility. The data were analyzed using a multilevel, univariable and multivariable generalized linear mixed model (GLMM). Several (49.7%) of the 396 isolates obtained in this study were multidrug-resistant. The E. coli isolates exhibited resistance to the antimicrobial agent's ampicillin (51.3%), cephalothin (46.7%), tetracycline (45.2%) and streptomycin (43.4%). Previous quinolone treatment was the main risk marker for the presence of AMR for 12 (ampicillin, cephalothin, ceftazidime, cefotaxime, nalidixic acid, ciprofloxacin, gentamicin, tetracycline, streptomycin, chloramphenicol, trimethoprim-sulfamethoxazole and aztreonam) of the 15 antimicrobials assessed. Coprophagic habits were also positively associated with an increased risk of AMR for six drugs, ampicillin, amoxicillin-clavulanic acid, cephamycin, ciprofloxacin, streptomycin, and trimethoprim-sulfamethoxazole. In summary, pets with a record of one or more previous quinolone treatments and exhibiting coprophagic habits were at an increased risk of harboring multidrug-resistant E. coli strains in their feces compared to pets without these characteristics. AMR is a serious global problem, and assessing the risk markers for the presence of drug-resistant bacteria in pets, a very close source of resistance determinants to humans, is essential for the implementation of safe handling procedures for companion animals and for the prudent selection of antimicrobial compounds in veterinary practice.
Collapse
Affiliation(s)
- Liliana R Leite-Martins
- Veterinary Clinics Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal.
| | - Maria I M Mahú
- Microbiology and Food Technology Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal
| | - Ana L Costa
- Microbiology and Food Technology Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal
| | - Angelo Mendes
- Microbiology and Food Technology Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal
| | - Elisabete Lopes
- Microbiology and Food Technology Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal
| | - Denisa M V Mendonça
- Population Studies Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal; Public Health Institute (ISPUP), Porto University (UP), Portugal
| | - João J R Niza-Ribeiro
- Population Studies Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal; Public Health Institute (ISPUP), Porto University (UP), Portugal
| | - Augusto J F de Matos
- Veterinary Clinics Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal
| | - Paulo Martins da Costa
- Microbiology and Food Technology Department, Abel Salazar Institute for the Biomedical Sciences (ICBAS), Porto University (UP), Portugal
| |
Collapse
|
18
|
Baker SA, Van-Balen J, Lu B, Hillier A, Hoet AE. Antimicrobial drug use in dogs prior to admission to a veterinary teaching hospital. J Am Vet Med Assoc 2012; 241:210-7. [DOI: 10.2460/javma.241.2.210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother 2012; 56:2705-12. [PMID: 22354297 DOI: 10.1128/aac.05598-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 47 extended-spectrum-cephalosporin-resistant Escherichia coli strains isolated from stray dogs in 2006 and 2007 in the Republic of Korea were investigated using molecular methods. Extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase phenotypes were identified in 12 and 23 E. coli isolates, respectively. All 12 ESBL-producing isolates carried bla(CTX-M) genes. The most common CTX-M types were CTX-M-14 (n = 5) and CTX-M-24 (n = 3). Isolates producing CTX-M-3, CTX-M-55, CTX-M-27, and CTX-M-65 were also identified. Twenty-one of 23 AmpC β-lactamase-producing isolates were found to carry bla(CMY-2) genes. TEM-1 was associated with CTX-M and CMY-2 β-lactamases in 4 and 15 isolates, respectively. In addition to bla(TEM-1), two isolates carried bla(DHA-1), and one of them cocarried bla(CMY-2). Both CTX-M and CMY-2 genes were located on large (40 to 170 kb) conjugative plasmids that contained the insertion sequence ISEcp1 upstream of the bla genes. Only in the case of CTX-M genes was there an IS903 sequence downstream of the gene. The spread of ESBLs and AmpC β-lactamases occurred via both horizontal gene transfer, accounting for much of the CTX-M gene dissemination, and clonal spread, accounting for CMY-2 gene dissemination. The horizontal dissemination of bla(CTX-M) and bla(CMY-2) genes was mediated by IncF and IncI1-Iγ plasmids, respectively. The clonal spread of bla(CMY-2) was driven mainly by E. coli strains of virulent phylogroup D lineage ST648. To our knowledge, this is the first report of bla(DHA-1) in E. coli strains isolated from companion animals. This study also represents the first report of CMY-2 β-lactamase-producing E. coli isolates from dogs in the Republic of Korea.
Collapse
|
20
|
Leonard EK, Pearl DL, Finley RL, Janecko N, Reid-Smith RJ, Peregrine AS, Weese JS. Comparison of antimicrobial resistance patterns of Salmonella spp. and Escherichia coli recovered from pet dogs from volunteer households in Ontario (2005-06). J Antimicrob Chemother 2011; 67:174-81. [PMID: 22016151 DOI: 10.1093/jac/dkr430] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To compare the antimicrobial resistance (AMR) patterns of Salmonella spp. and Escherichia coli in the faeces of pet dogs from volunteer households in Southwestern Ontario, Canada. METHODS From October 2005 to May 2006, 138 dogs from 84 Ontario households were recruited to participate in a cross-sectional study. Five consecutive daily faecal samples were collected from each dog and cultured for Salmonella spp. and E. coli. A panel of 15 antimicrobials from seven antimicrobial classes was used for susceptibility testing. RESULTS E. coli and Salmonella spp. were recovered from 96.4% and 23.2% of dogs, respectively. In total, 515 bacterial isolates from 136 dogs from 83 households were sent for antimicrobial susceptibility testing with 80.4% of isolates being pan-susceptible. The most common resistance pattern was to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur and ceftriaxone, present in 13.3% of Salmonella isolates and 1.3% of E. coli isolates. Fifty-eight of the isolates were resistant to two or more drug classes, with 70.7% and 29.3% being E. coli and Salmonella, respectively. Based on multilevel logistic regression, the odds of resistance were greater in E. coli than Salmonella [odds ratio = 3.2; 95% confidence interval (CI) = 1.22-8.43]. Agreement in resistance between E. coli and Salmonella isolates from the same dog was low [prevalence-adjusted, bias-adjusted kappa (PABAK) = 0.38; 95% CI = 0.30-0.46]. CONCLUSIONS Pet dogs are a potential household source of antimicrobial-resistant Salmonella spp. and E. coli. However, extrapolating the epidemiology of antimicrobial resistance in pathogens, like Salmonella, from E. coli should be done with caution.
Collapse
Affiliation(s)
- Erin K Leonard
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
21
|
Characterization of multidrug-resistant Escherichia coli isolates from animals presenting at a university veterinary hospital. Appl Environ Microbiol 2011; 77:7104-12. [PMID: 21856835 DOI: 10.1128/aem.00599-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we examined molecular mechanisms associated with multidrug resistance (MDR) in a collection of Escherichia coli isolates recovered from hospitalized animals in Ireland. PCR and DNA sequencing were used to identify genes associated with resistance. Class 1 integrons were prevalent (94.6%) and contained gene cassettes recognized previously and implicated mainly in resistance to aminoglycosides, β-lactams, and trimethoprim (aadA1, dfrA1-aadA1, dfrA17-aadA5, dfrA12-orfF-aadA2, bla(OXA-30)-aadA1, aacC1-orf1-orf2-aadA1, dfr7). Class 2 integrons (13.5%) contained the dfrA1-sat1-aadA1 gene array. The most frequently occurring phenotypes included resistance to ampicillin (97.3%), chloramphenicol (75.4%), florfenicol (40.5%), gentamicin (54%), neomycin (43.2%), streptomycin (97.3%), sulfonamide (98.6%), and tetracycline (100%). The associated resistance determinants detected included bla(TEM), cat, floR, aadB, aphA1, strA-strB, sul2, and tet(B), respectively. The bla(CTX-M-2) gene, encoding an extended-spectrum β-lactamase (ESβL), and bla(CMY-2), encoding an AmpC-like enzyme, were identified in 8 and 18 isolates, respectively. The mobility of the resistance genes was demonstrated using conjugation assays with a representative selection of isolates. High-molecular-weight plasmids were found to be responsible for resistance to multiple antimicrobial compounds. The study demonstrated that animal-associated commensal E. coli isolates possess a diverse repertoire of transferable genetic determinants. Emergence of ESβLs and AmpC-like enzymes is particularly significant. To our knowledge, the bla(CTX-M-2) gene has not previously been reported in Ireland.
Collapse
|