1
|
Shelenkov A, Akimkin V, Mikhaylova Y. International Clones of High Risk of Acinetobacter Baumannii-Definitions, History, Properties and Perspectives. Microorganisms 2023; 11:2115. [PMID: 37630675 PMCID: PMC10459012 DOI: 10.3390/microorganisms11082115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative coccobacillus with exceptional survival skills in an unfavorable environment and the ability to rapidly acquire antibiotic resistance, making it one of the most successful hospital pathogens worldwide, representing a serious threat to public health. The global dissemination of A. baumannii is driven by several lineages named 'international clones of high risk' (ICs), two of which were first revealed in the 1970s. Epidemiological surveillance is a crucial tool for controlling the spread of this pathogen, which currently increasingly involves whole genome sequencing. However, the assignment of a particular A. baumannii isolate to some IC based on its genomic sequence is not always straightforward and requires some computational skills from researchers, while the definitions found in the literature are sometimes controversial. In this review, we will focus on A. baumannii typing tools suitable for IC determination, provide data to easily determine IC assignment based on MLST sequence type (ST) and intrinsic blaOXA-51-like gene variants, discuss the history and current spread data of nine known ICs, IC1-IC9, and investigate the representation of ICs in public databases. MLST and cgMLST profiles, as well as OXA-51-like presence data are provided for all isolates available in GenBank. The possible emergence of a novel A. baumannii international clone, IC10, will be discussed.
Collapse
Affiliation(s)
- Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | | | | |
Collapse
|
2
|
Fursova NK, Fursov MV, Astashkin EI, Fursova AD, Novikova TS, Kislichkina AA, Sizova AA, Fedyukina GN, Savin IA, Ershova ON. Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Causing Nosocomial Meningitis in the Neurological Intensive Care Unit. Microorganisms 2023; 11:2020. [PMID: 37630581 PMCID: PMC10458171 DOI: 10.3390/microorganisms11082020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Acinetobacter baumannii is one of the significant healthcare-associated meningitis agents characterized by multidrug resistance and a high mortality risk. Thirty-seven A. baumannii strains were isolated from thirty-seven patients of Moscow neuro-ICU with meningitis in 2013-2020. The death rate was 37.8%. Strain susceptibility to antimicrobials was determined on the Vitek-2 instrument. Whole-genome sequencing was conducted using Illumina technology; the sequence types (ST), capsular types (KL), lipooligosaccharide outer core locus (OCL), antimicrobial resistance genes, and virulence genes were identified. The prevalent ST was ST2, belonging to the international clone IC2, and rarer, ST1, ST19, ST45, ST78, ST106, and ST400, with prevalence of KL9 and OCL1. Twenty-nine strains belonged to multidrug-resistant (MDR) and eight extensively drug-resistant (XDR) categories. Genes conferring resistance to beta-lactams (blaPER, blaGES, blaADC, blaCARB, blaCTX-M, blaTEM, and blaOXA-types), aminoglycosides (aac, aad, ant, aph, and arm), tetracyclines (tet), macrolides (msr and mph), phenicols (cml, cat, and flo), sulfonamides (dfr and sul), rifampin (arr), and antiseptics (qac) were identified. Virulence genes of nine groups (Adherence, Biofilm formation, Enzymes, Immune evasion, Iron uptake, Regulation, Serum resistance, Stress adaptation, and Antiphagocytosis) were detected. The study highlights the heterogeneity in genetic clones, antimicrobial resistance, and virulence genes variability among the agents of A. baumannii meningitis, with the prevalence of the dominant international clone IC2.
Collapse
Affiliation(s)
- Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (A.D.F.); (T.S.N.)
| | - Mikhail V. Fursov
- Department of Training and Improvement of Specialists, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Evgeny I. Astashkin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (A.D.F.); (T.S.N.)
| | - Anastasiia D. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (A.D.F.); (T.S.N.)
| | - Tatiana S. Novikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (E.I.A.); (A.D.F.); (T.S.N.)
| | - Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (A.A.K.); (A.A.S.)
| | - Angelika A. Sizova
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia; (A.A.K.); (A.A.S.)
| | - Galina N. Fedyukina
- Department of Immunochemistry of Pathogenic Microorganisms, State Research Center for Applied Microbiology and Biotechnology, Territory “Kvartal A”, 142279 Obolensk, Russia;
| | - Ivan A. Savin
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (I.A.S.); (O.N.E.)
| | - Olga N. Ershova
- Department of Clinical Epidemiology, National Medical Research Center of Neurosurgery Named after Academician N.N. Burdenko, 125047 Moscow, Russia; (I.A.S.); (O.N.E.)
| |
Collapse
|
3
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Pace MC, Corrente A, Passavanti MB, Sansone P, Petrou S, Leone S, Fiore M. Burden of severe infections due to carbapenem-resistant pathogens in intensive care unit. World J Clin Cases 2023; 11:2874-2889. [PMID: 37215420 PMCID: PMC10198073 DOI: 10.12998/wjcc.v11.i13.2874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Intensive care units (ICU) for various reasons, including the increasing age of admitted patients, comorbidities, and increasingly complex surgical procedures (e.g., transplants), have become "the epicenter" of nosocomial infections, these are characterized by the presence of multidrug-resistant organisms (MDROs) as the cause of infection. Therefore, the perfect match of fragile patients and MDROs, as the cause of infection, makes ICU mortality very high. Furthermore, carbapenems were considered for years as last-resort antibiotics for the treatment of infections caused by MDROs; unfortunately, nowadays carbapenem resistance, mainly among Gram-negative pathogens, is a matter of the highest concern for worldwide public health. This comprehensive review aims to outline the problem from the intensivist's perspective, focusing on the new definition and epidemiology of the most common carbapenem-resistant MDROs (Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacterales) to emphasize the importance of the problem that must be permeating clinicians dealing with these diseases.
Collapse
Affiliation(s)
- Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Antonio Corrente
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Stephen Petrou
- Department of Emergency Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Sebastiano Leone
- Division of Infectious Diseases, “San Giuseppe Moscati” Hospital, Avellino 83100, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| |
Collapse
|
5
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
6
|
Liu H, Hu D, Wang D, Wu H, Pan Y, Chen X, Qi L, Li L, Liang R. In vitro analysis of synergistic combination of polymyxin B with 12 other antibiotics against MDR Acinetobacter baumannii isolated from a Chinese tertiary hospital. J Antibiot (Tokyo) 2023; 76:20-26. [PMID: 36307731 DOI: 10.1038/s41429-022-00573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022]
Abstract
In clinical practice, polymyxins are suggested to be used in combination with other antibiotics for improving their antibacterial efficacy and preventing the emergency of antibiotic-resistant strains. However, even though synergistic combination of polymyxin B with many antibiotics have been confirmed in various studies with different bacterial species and analyzing methods, which antibiotic is the best option for combination therapy of polymyxin B against MDR A. baumannii remains uncertain. In this study, we systematically analyzed the synergistic combination of polymyxin B with 12 other antibiotics against MDR A. baumannii isolated from a Chinese tertiary hospital using the checkerboard assay. The results suggest that, for polymyxin B-based combination therapy against MDR A. baumannii as characterized in this hospital, cefperazone-sulbactam may be the best partner, since it has the highest synergistic rate and the best synergistic effect with polymyxin B. Minocycline, imipenem, meropenem, ceftazidime, cefepime, amikacin and sulfamethoxazole also have some synergistic effects with polymyxin B, but piperacillin-tazobactam, ciprofloxacin, levofloxacin and tobramycin show no synergism. None of these 12 antibiotics has an antagonistic effect when combined with polymyxin B.
Collapse
Affiliation(s)
- Hui Liu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Dan Hu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Dongxin Wang
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Han Wu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Yunjun Pan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Xin Chen
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Lin Qi
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.,Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Lian Li
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.,Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Rongxin Liang
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China.
| |
Collapse
|
7
|
Genomic Analysis of a Strain Collection Containing Multidrug-, Extensively Drug-, Pandrug-, and Carbapenem-Resistant Modern Clinical Isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2022; 66:e0089222. [PMID: 35969073 PMCID: PMC9487538 DOI: 10.1128/aac.00892-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we characterize a new collection that comprises multidrug-resistant (MDR), extensively drug-resistant (XDR), pandrug-resistant (PDR), and carbapenem-resistant modern clinical isolates of Acinetobacter baumannii collected from hospitals through national microbiological surveillance in Belgium. Bacterial isolates (n = 43) were subjected to whole-genome sequencing (WGS), combining Illumina (MiSeq) and Nanopore (MinION) technologies, from which high-quality genomes (chromosome and plasmids) were de novo assembled. Antimicrobial susceptibility testing was performed along with genome analyses, which identified intrinsic and acquired resistance determinants along with their genetic environments and vehicles. Furthermore, the bacterial isolates were compared to the most prevalent A. baumannii sequence type 2 (ST2) (Pasteur scheme) genomes available from the BIGSdb database. Of the 43 strains, 40 carried determinants of resistance to carbapenems; blaOXA-23 (n = 29) was the most abundant acquired antimicrobial resistance gene, with 39 isolates encoding at least two different types of OXA enzymes. According to the Pasteur scheme, the majority of the isolates were globally disseminated clones of ST2 (n = 25), while less frequent sequence types included ST636 (n = 6), ST1 (n = 4), ST85 and ST78 (n = 2 each), and ST604, ST215, ST158, and ST10 (n = 1 each). Using the Oxford typing scheme, we identified 22 STs, including two novel types (ST2454 and ST2455). While the majority (26/29) of blaOXA-23 genes were chromosomally carried, all blaOXA-72 genes were plasmid borne. Our results show the presence of high-risk clones of A. baumannii within Belgian health care facilities with frequent occurrences of genes encoding carbapenemases, highlighting the crucial need for constant surveillance.
Collapse
|
8
|
Borges Duarte DF, Gonçalves Rodrigues A. Acinetobacter baumannii: insights towards a comprehensive approach for the prevention of outbreaks in health-care facilities. APMIS 2022; 130:330-337. [PMID: 35403751 DOI: 10.1111/apm.13227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/07/2022] [Indexed: 12/14/2022]
Abstract
Acinetobacter baumannii is known to be an opportunistic pathogen frequently responsible for outbreaks in health-care facilities, particularly in Intensive Care Units (ICU). It can easily survive in the hospital setting for long periods and can be transmitted throughout the hospital in a variety of ways, explored in this review. It can also easily acquire antibiotic resistance determinants rendering several antibiotic drugs useless. In 2019, the US Centre for Disease Control (CDC) considered the organism as an urgent threat. The aim of this review was to raise the awareness of the medical community about the relevance of this pathogen and discuss how it may impact seriously the healthcare institutions particularly in the aftermath of the recent COVID-19 pandemic. PubMed was searched, and articles that met inclusion criteria were reviewed. We conclude by the need to raise awareness to this pathogen's relevance and to encourage the implementation of preventive measures in order to mitigate its consequences namely the triage of specific high-risk patients.
Collapse
Affiliation(s)
- Diogo Filipe Borges Duarte
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Acácio Gonçalves Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,RISE - Health Research Network, Porto, Portugal.,Burn Unit, Department of Plastic and Reconstructive Surgery, S. Joao University Center Hospital, Porto, Portugal
| |
Collapse
|
9
|
Vuillemenot JB, Bour M, Beyrouthy R, Bonnet R, Laaberki MH, Charpentier X, Ruimy R, Plésiat P, Potron A. Genomic analysis of CTX-M-115 and OXA-23/-72 co-producing Acinetobacter baumannii, and their potential to spread resistance genes by natural transformation. J Antimicrob Chemother 2022; 77:1542-1552. [PMID: 35412620 DOI: 10.1093/jac/dkac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To characterize Acinetobacter baumannii strains co-producing the ESBL CTX-M-115 and carbapenem-hydrolysing class D β-lactamases (CHDLs), and to assess the potential diffusion of their resistance genes by horizontal transfer. METHODS Nineteen CTX-M-115/CHDL-positive A. baumannii were collected between 2015 and 2019 from patients hospitalized in France. Their whole-genome sequences were determined on Illumina and Oxford Nanopore platforms and were compared through core-genome MLST (cgMLST) and SNP analyses. Transferability of resistance genes was investigated by natural transformation assays. RESULTS Eighteen strains were found to harbour CHDL OXA-72, and another one CHDL OXA-23, in addition to CTX-M-115, narrow-spectrum β-lactamases and aminoglycoside resistance determinants including ArmA. cgMLST typing, as well as Oxford Scheme ST and K locus typing, confirmed that 17 out of the 18 CTX-M-115/OXA-72 isolates belonged to new subclades within clonal complex 78 (CC78). The chromosomal region carrying the blaCTX-M-115 gene appeared to vary greatly both in gene content and in length (from 20 to 79 kb) among the strains, likely because of IS26-mediated DNA rearrangements. The blaOXA-72 gene was localized on closely related plasmids showing structural variations that occurred between pdif sites. Transfer of all the β-lactamase genes, as well as aminoglycoside resistance determinants to a drug-susceptible A. baumannii recipient, was easily obtained in vitro by natural transformation. CONCLUSIONS This work highlights the propensity of CC78 isolates to collect multiple antibiotic resistance genes, to rearrange and to pass them to other A. baumannii strains via natural transformation. This process, along with mobile genetic elements, likely contributes to the considerable genomic plasticity of clinical strains, and to the diversity of molecular mechanisms sustaining their multidrug resistance.
Collapse
Affiliation(s)
- Jean-Baptiste Vuillemenot
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, France.,Laboratoire de Bactériologie, UMR 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| | - Maxime Bour
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, France
| | - Racha Beyrouthy
- UMR INSERM 1071 USC INRA2018, Université Clermont Auvergne, Clermont-Ferrand, France.,Laboratoire associé Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, France
| | - Richard Bonnet
- UMR INSERM 1071 USC INRA2018, Université Clermont Auvergne, Clermont-Ferrand, France.,Laboratoire associé Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, France
| | - Maria-Halima Laaberki
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raymond Ruimy
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Nice, UMR INSERM C3M, Université Côte d'Azur, Nice, France
| | - Patrick Plésiat
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, France.,Laboratoire de Bactériologie, UMR 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| | - Anaïs Potron
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, France.,Laboratoire de Bactériologie, UMR 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
10
|
Adjei AY, Vasaikar SD, Apalata T, Okuthe EG, Songca SP. Phylogenetic analysis of carbapenem-resistant Acinetobacter baumannii isolated from different sources using Multilocus Sequence Typing Scheme. INFECTION GENETICS AND EVOLUTION 2021; 96:105132. [PMID: 34775079 DOI: 10.1016/j.meegid.2021.105132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/10/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023]
Abstract
The emergence and worldwide distribution of carbapenem-resistant Acinetobacter baumannii strains has become a major public health threat. The objective of this study was to investigate the clonal relatedness of A. baumannii isolates collected from clinical and extra-hospital environments in Mthatha, South Africa. Forty carbapenem-resistant isolates comprising of clinical (20) and extra-hospital (20) were identified and tested for antimicrobial susceptibility. Detection of carbapenemase encoding genes was performed by Real-time PCR. The clonal relationship of clinical isolates relative to extra-hospital isolates was determined via multilocus sequence typing (MLST). All isolates (clinical and extra-hospital) were resistant to most common antibiotics including carbapenems (imipenem; MIC ≥32 μg/mL and meropenem; MIC ≥32 μg/mL) with the only exception being amikacin (with 3 isolates susceptible), tigecycline (14 isolates susceptible) and colistin (all isolates susceptible). The bla OXA-23-like and the intrinsic bla OXA-51 -like genes were detected in all the isolates tested. The bla OXA-58-like and bla IMP-type genes were detected in 2 clinical isolates whilst the bla OXA-24-like, bla VIM-type, bla NDM-1, bla SIM, and bla AmpC were not detected. The bla OXA-24-like, bla OXA-58-like, bla IMP-type, bla VIM-type, bla NDM-1, bla SIM, and bla AmpC were negative in the extra-hospital isolates. Co-occurrence of bla OXA-23 -like, bla OXA-58-like and bla IMP-type was observed in 2 clinical isolates. The MLST performed on 33 isolates identified 5 existing sequence types (ST) (ST1, ST2, ST25, ST85 and ST215) in clinical isolates and 2 existing STs (ST1 and ST2) in extra-hospital isolates. The most dominant ST was ST2 accounting for 68.8% of the clinical isolates and 82.4% of the extra-hospital isolates. The study demonstrated high prevalence and potential clonal spread of globally-disseminated clonal complex 2 carrying bla OXA-23-like within our local settings. However, ST25 might be an emerging lineage carrying the bla OXA-23-like . Continuous monitoring is important in limiting the spread of these strains in other healthcare settings and the community.
Collapse
Affiliation(s)
- Anane Yaw Adjei
- Water Research Institute, Council for Scientific and Industrial Research-CSIR-Ghana, P. O. Box M 32. Accra Ghana 2nd CSIR Close, Accra, Ghana.
| | - Sandeep D Vasaikar
- Division of Medical Microbiology, Department of Laboratory Medicine & Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha - 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa..
| | - Teke Apalata
- Division of Medical Microbiology, Department of Laboratory Medicine & Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha - 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa..
| | - Emily Grace Okuthe
- Department of Biological and Environmental Sciences, Walter Sisulu University, Private Bag: X1, Mthatha - 5117 Eastern Cape Province, South Africa.
| | - Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, 2nd floor, Francis Stock Building, Howard College campus, UKZN, Durban 4041, South Africa.
| |
Collapse
|
11
|
Diversity of International High-Risk Clones of Acinetobacter baumannii Revealed in a Russian Multidisciplinary Medical Center during 2017-2019. Antibiotics (Basel) 2021; 10:antibiotics10081009. [PMID: 34439060 PMCID: PMC8389025 DOI: 10.3390/antibiotics10081009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii is a dangerous bacterial pathogen possessing the ability to persist on various surfaces, especially in clinical settings, and to rapidly acquire the resistance to a broad spectrum of antibiotics. Thus, the epidemiological surveillance of A. baumannii within a particular hospital, region, and across the world is an important healthcare task that currently usually includes performing whole-genome sequencing (WGS) of representative isolates. During the past years, the dissemination of A. baumannii across the world was mainly driven by the strains belonging to two major groups called the global clones or international clones (ICs) of high risk (IC1 and IC2). However, currently nine ICs are already considered. Although some clones were previously thought to spread in particular regions of the world, in recent years this is usually not the case. In this study, we determined five ICs, as well as three isolates not belonging to the major ICs, in one multidisciplinary medical center within the period 2017-2019. We performed WGS using both short- and long-read sequencing technologies of nine representative clinical A. baumannii isolates, which allowed us to determine the antibiotic resistance and virulence genomic determinants, reveal the CRISPR/Cas systems, and obtain the plasmid structures. The phenotypic and genotypic antibiotic resistance profiles are compared, and the possible ways of isolate and resistance spreading are discussed. We believe that the data obtained will provide a better understanding of the spreading and resistance acquisition of the ICs of A. baumannii and further stress the necessity for continuous genomic epidemiology surveillance of this problem-causing bacterial species.
Collapse
|
12
|
Shan W, Zhang H, Kan J, Yin M, Zhang J, Wan L, Chang R, Li M. Acquired mucoid phenotype of Acinetobacter baumannii: Impact for the molecular characteristics and virulence. Microbiol Res 2021; 246:126702. [PMID: 33465557 DOI: 10.1016/j.micres.2021.126702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Mucoid phenotype is an important adaptive defense response for Acinetobacter baumannii (A. baumannii). The aim of this study was to analyze the impact of mucoid phenotype for the molecular characteristics and virulence of A. baumannii. We observed that the colonies of mucoid A. baumannii were moist, with an elevated surface, and the wire drawing result was positive. Transmission electron microscopy data showed that the outer wall of the mucoid colonies was not smooth, had protruding pseudopodia, and was surrounded by a layer of unknown material. Antibiotic susceptibility testing showed that the mucoid strains were multidrug resistant. Notably, the mucoid phenotype and antibiotic resistance were not correlated with the amount of biofilm produced by A. baumannii. MLST data demonstrated that the mucoid A. baumannii strains belonged to type ST2. Most (82.6 %, 38/46) of the multidrug-resistant nonmucoid strains also belonged to the molecular type ST2 and to other types, including ST129, ST158, ST195, ST80 and ST3. Moreover, mucoid A. baumannii strains were more virulent than nonmucoid isolates in a mouse model. The comparative transcriptomic data indicated that 15 genes, especially IX87_RS16955 (acnA), IX87_RS10800 (XanP), IX87_RS12875 (GlmM), IX87_RS00885 and IX87_RS12395 (bfr), were possibly associated with the phenotype and virulence of mucoid A. baumannii. In conclusions, the study comprehensively describes the molecular characteristics and virulence regulatory mechanism of mucoid A. baumannii, and provides novel insights for the prevention and treatment of infections associated with these strains.
Collapse
Affiliation(s)
- Wulin Shan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China.
| | - Huanhuan Zhang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Jinsong Kan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Meiling Yin
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Jiayun Zhang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Lingling Wan
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Renliang Chang
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Ming Li
- Department of Laboratory Diagnostics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| |
Collapse
|
13
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|
14
|
Çağlan E, Nigiz Ş, Sancak B, Gür D. Resistance and heteroresistance to colistin among clinical isolates of Acinetobacter baumannii. Acta Microbiol Immunol Hung 2020; 67:107-111. [PMID: 31813259 DOI: 10.1556/030.66.2019.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
Colistin is one of the most effective alternatives for treating Acinetobacter baumannii infections. The aim of this study was to determine colistin resistance and heteroresistance rates in A. baumannii from clinical samples in Hacettepe University clinical microbiology laboratory between June 2016 and January 2017. A total of 200 isolates were included in the study. In vitro susceptibility to amikacin, gentamicin, ceftazidime, piperacillin/tazobactam, meropenem, ciprofloxacin, and tigecycline were determined by disk diffusion test. Most isolates were multiresistant as they exhibited resistance to aminoglycosides, β-lactams, and fluoroquinolones. Colistin susceptibility was determined by broth microdilution (BMD) test (EUCAST standards) and was compared with E-test (bioMérieux, France) in 120 isolates. In 14 blood isolates that were susceptible to colistin (MIC ≤ 2 mg/L), heteroresistance was investigated with the population analysis profile (PAP) method. Overall resistance (n = 200) to colistin was 28% by BMD. Among the 120 isolates where the two tests were compared, resistance to colistin was 25.8% versus 4.2% with BMD and E-test, respectively. Three blood isolates (21.4%) were heteroresistant to colistin. With E-test, a majority of the resistant isolates are overlooked and in vitro susceptibility to colistin should be determined with broth dilution method. This is the first study in Turkey reporting heteroresistance in A. baumannii isolates by the PAP method and emphasizes the need to test for heteroresistance in relation to clinical outcome in serious infections due to A. baumannii.
Collapse
Affiliation(s)
- Ecem Çağlan
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Şeyma Nigiz
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Banu Sancak
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Deniz Gür
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics (Basel) 2020; 9:antibiotics9030119. [PMID: 32178356 PMCID: PMC7148516 DOI: 10.3390/antibiotics9030119] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.
Collapse
Affiliation(s)
- Carole Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai P.O. Box 144534, UAE
- Correspondence: ; Tel.: +971-4-402-1745
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Beirut, Bekaa Campuses 1103, Lebanon;
| |
Collapse
|
16
|
Fonseca ÉL, Caldart RV, Freitas FS, Morgado SM, Rocha LT, dos Santos RC, Vicente ACP. Emergence of extensively drug-resistant international clone IC-6 Acinetobacter baumannii carrying blaOXA-72 and blaCTX-M-115 in the Brazilian Amazon region. J Glob Antimicrob Resist 2020; 20:18-21. [DOI: 10.1016/j.jgar.2019.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 06/17/2019] [Indexed: 11/26/2022] Open
|
17
|
Comparative genomic analysis of four multidrug-resistant isolates of Acinetobacter baumannii from Georgia. J Glob Antimicrob Resist 2019; 21:363-368. [PMID: 31730823 DOI: 10.1016/j.jgar.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study reports the draft genomes of four newly isolated multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) isolates (0830, 0365, 4022, and 2846) from western Georgia to identify putative antimicrobial resistance genes (ARGs) and to determine the clonal subtypes of local clinical isolates. METHODS An Illumina MiSeq sequencer was used to perform whole-genome sequencing (WGS). The Vitek 2 automated system was used for microbial identification and antimicrobial resistance profiling. RESULTS Taxonomical identification as A. baumannii was confirmed by WGS. In silico analyses resolved their ARG content and clonal relatedness using the Oxford (Oxf) and Pasteur (Pas) multi-locus sequence typing schemes. Isolates 0365 and 4022 displayed similar allelic profiles corresponding to ST944Oxf/ST78Pas. Isolate 2846 displayed a different allelic profile consistent with ST19Pas/IC 1 (International or European Clone I) and exhibited a novel Oxford ST that was designated as 1868. Isolate 0830 displayed the ST78Pas allelic profile, similar to isolates 0365 and 4022, and also possessed a single allelic mismatch in the gpi gene, resulting in an ST1104Oxf allele profile in the Oxford typing scheme. CONCLUSION Circulating MDR A. baumannii exhibited genetic heterogeneity with variations in the structure and content of genomic A. baumannii resistance islands and encoded multiple putative ARGs. This report represents the first clonal subtype information and genomic characterization of MDR A. baumannii in Georgia and may inform future epidemiological investigations.
Collapse
|
18
|
Zhao Y, Hu K, Zhang J, Guo Y, Fan X, Wang Y, Mensah SD, Zhang X. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in ICU of the eastern Heilongjiang Province, China. BMC Infect Dis 2019; 19:452. [PMID: 31113374 PMCID: PMC6530087 DOI: 10.1186/s12879-019-4073-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/02/2022] Open
Abstract
Background To investigate the carbapenem resistance mechanisms and clonal relationship of carbapenem-resistant Acinetobacter baumannii (CRAB) strains isolated in the intensive care unit (ICU) of the First Affiliated Hospital of Jiamusi University, management approaches to ICU clonal CRAB outbreaks were described. Methods The sensitivity of the antibiotic was determined using the VITEK-2 automated system. Carbapenemase genes (blaTEM, blaSHV, blaKPC, blaNDM, blaIMP-4, blaVIM, blaOXA-23, blaOXA-24, blaOXA-51, and blaOXA-58), AmpC enzyme genes (blaACC, blaDHA, blaADC), and ISAba1 were assessed for all collected isolates using polymerase chain reaction (PCR). The transfer of resistance genes was investigated via conjugation experiments. The clonal relationship of isolates was determined via enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus sequence typing (MLST). When the detection rate of CRAB increased from 25% in 2010 to 92% in 2014, a number of actions were initiated, including enhanced infection control, staff education, and the cleaning of the hospital environment. Results Clinical isolates were positive for the following genes: blaOXA23, blaOXA51, blaOXA24, blaADC, blaTEM, ISAba1, ISA-23, and ISA-ADC; however, blaOXA58, ISA-51, blaNDM, blaIMP, blaKPC, blaTEM, blaSHV, blaVIM, and blaACC were not detected. Four carbapenem-resistant isolates successfully transferred plasmids from A. baumannii isolates to E. coli J53. MLST showed that all strains belonged to ST2 except for one isolate, which belonged to the new genotype ST1199. The ERIC-PCR method found the following three genotypes: type A in 8, type B in 12, type C in 1, and two profiles (A, B) belonged to ST2. After taking control measures, the prevalence of CRAB isolates decreased, and the discovery rate of CRAB dropped to 11.4% in 2017. Conclusion The obtained result suggests that blaOXA-23-producing CC2 isolates were prevalent in the ICU of the First Affiliated Hospital of Jiamusi University. Targeted surveillance was implemented to identify the current situation of the ICU and the further implementation of infection control effectively prevented the spread of nosocomial infection.
Collapse
Affiliation(s)
- Yongxin Zhao
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Kewang Hu
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Jisheng Zhang
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Yuhang Guo
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Xuecai Fan
- Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yong Wang
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Sedzro Divine Mensah
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China.,Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiaoli Zhang
- Department of Microbiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China.
| |
Collapse
|