1
|
Alimoghadam S, Eslami A, Alimoghadam R, Bahrami Mianrood I, Azizmohammad Looha M, Khodadadi S, Shokouhi S, Alavi Darazam I. The frequency of AmpC overproduction, OprD downregulation and OprM efflux pump expression in Pseudomonas aeruginosa: A comprehensive meta-analysis. J Glob Antimicrob Resist 2024; 39:159-169. [PMID: 39303871 DOI: 10.1016/j.jgar.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa is a major opportunistic pathogen responsible for a wide range of infections. The emergence of antibiotic resistance in this pathogen poses a significant public health challenge. This study aims to conduct a comprehensive meta-analysis of studies conducted in Iran to determine the frequency of key antibiotic resistance mechanisms in Pseudomonas aeruginosa and their association with multidrug-resistant and extensively drug-resistant strains or pandrug-resistant strains. METHODS Systematic database searches encompassing literature up to June 2023 were undertaken. The selected studies centered on OprD downregulation, efflux pump (mexAB-OprM, mexXY-OprM) expression, and AmpC overproduction. Extracted data were synthesised in a meta-analysis for pooled frequency determination of each resistance mechanism. RESULTS In total, 24 studies were included. OprD downregulation exhibited a pooled frequency of 61%. Efflux pump component frequency ranged from 48% to 77.5%. AmpC overproduction was identified in 29.1% of isolates. Polymyxin B and colistin demonstrated lower antibiotic resistance rates, with pooled frequency of 1% and 1.6%, respectively. Conversely, resistance to other antibiotics ranged widely, with pooled frequency spanning 38.4% to 98.2%. CONCLUSIONS This study underscores the concerning frequency of diverse antibiotic resistance mechanisms in Pseudomonas aeruginosa strains from Iran. Concurrent OprD downregulation, mexAB, mexXY, OprM expression, and AmpC overproduction highlight the urgent need for stringent infection control and prudent antibiotic usage to curb the dissemination of these resistant strains. PROSPERO CRD42022379311.
Collapse
Affiliation(s)
- Shaya Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arvin Eslami
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rojina Alimoghadam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ibrahim Bahrami Mianrood
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sanaz Khodadadi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shervin Shokouhi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Patra S, Biswas P, Karmakar S, Biswas K. Repression of resistance mechanisms of Pseudomonas aeruginosa: implications of the combination of antibiotics and phytoconstituents. Arch Microbiol 2024; 206:294. [PMID: 38850339 DOI: 10.1007/s00203-024-04012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/10/2024]
Abstract
Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.
Collapse
Affiliation(s)
- Susmita Patra
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Poulomi Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Kaushik Biswas
- Eminent College of Pharmaceutical Technology, Barbaria, Barasat, North 24 Parganas, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
3
|
Behzadi P, Gajdács M, Pallós P, Ónodi B, Stájer A, Matusovits D, Kárpáti K, Burián K, Battah B, Ferrari M, Doria C, Caggiari G, Khusro A, Zanetti S, Donadu MG. Relationship between Biofilm-Formation, Phenotypic Virulence Factors and Antibiotic Resistance in Environmental Pseudomonas aeruginosa. Pathogens 2022; 11:1015. [PMID: 36145447 PMCID: PMC9503712 DOI: 10.3390/pathogens11091015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of a protective biofilm by Pseudomonas aeruginosa (PA) is one of the hallmarks of their survival both in vivo and in harsh environmental conditions, thus, biofilm-eradication has relevance from therapeutic perspectives and for infection control. The aim of our study was to investigate the possible relationship between antibiotic resistance, biofilm-forming capacity and virulence factors in n = 166 PA isolates of environmental origin. Antimicrobial susceptibility testing and the phenotypic detection of resistance determinants were carried out using standard protocols. The biofilm-forming capacity of PA was tested using a standardized crystal violet microtiter plate-based method. Motility (swimming, swarming, and twitching) and siderophore production of the isolates were also assessed. Resistance rates were highest for ciprofloxacin (46.98%), levofloxacin (45.18%), ceftazidime (31.92%) and cefepime (30.12%); 19.28% of isolates met the criteria to be classified as multidrug-resistant (MDR). Efflux pump overexpression, AmpC overexpression, and modified Hodge-test positivity were noted in 28.31%, 18.07% and 3.61%, respectively. 22.89% of isolates were weak/non-biofilm producers, while 27.71% and 49.40% were moderate and strong biofilm producers, respectively. Based on MDR status of the isolates, no significant differences in biofilm-production were shown among environmental PA (non-MDR OD570 [mean ± SD]: 0.416 ± 0.167 vs. MDR OD570: 0.399 ± 0.192; p > 0.05). No significant association was observed between either motility types in the context of drug resistance or biofilm-forming capacity (p > 0.05). 83.13% of isolates tested were positive for siderophore production. The importance of PA as a pathogen in chronic and healthcare-associated infections has been described extensively, while there is increasing awareness of PA as an environmental agent in agriculture and aquaculture. Additional studies in this field would be an important undertaking to understand the interrelated nature of biofilm production and antimicrobial resistance, as these insights may become relevant bases for developing novel therapeutics and eradication strategies against PA.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary
| | - Péter Pallós
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary
| | - Boglárka Ónodi
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62–64, 6720 Szeged, Hungary
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62–64, 6720 Szeged, Hungary
| | - Danica Matusovits
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 62–64, 6720 Szeged, Hungary
| | - Krisztina Kárpáti
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Carlo Doria
- Orthopaedic Department, Sassari University Hospital, 07100 Sassari, Italy
| | | | - Ameer Khusro
- Centre for Research and Development, Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai 603103, India
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Qader GM, Jarjees KK, Jarjees RK, Jarjees RK, Department of Food Technology, College of Agricultural Engineering Sciences, University of Salahaddin-Erbil, Kurdistan Region, Iraq, Khanzad Khudhur Jarjees, Department of Food Technology, College of Agriculture, University of Salahaddin, Erbil, Iraq. E-mail: khanzad.jarjees@su.edu.krd, Department of Pharmacy, Erbil Medical Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq. Molecular detection of Metallo-Beta-Lactamase and alginate in multidrug resistance Pseudomonas aeruginosa isolated from the clinical specimen. J Med Life 2022; 15:1105-1109. [PMID: 36415531 PMCID: PMC9635232 DOI: 10.25122/jml-2021-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa pathogen is opportunistic. Several virulence factors and biofilms can cause its pathogenicity. Furthermore, infections triggered via multidrug-resistant P. aeruginosa among hospitalized patients are a public health concern. The primary antimicrobial agents in treating Gram-negative infection include Meropenem and Imipenem. Moreover, the spread of Carbapenem-resistant P. aeruginosa is a focal concern worldwide. The present research aims to determine the spread of Carbapenem-resistant P. aeruginosa, and the distribution of the Alginate and Metallo-beta-lactamase encoding gene in clinical isolates. In the present cross-sectional descriptive research, 50 wound and sputum clinical specimens were obtained. Isolates were all identified by applying cultural characteristics and biochemical tests. The Polymerase Chain Reaction (PCR) was conducted to distinguish algD, BLA-VIM, BLA-IMP, and 16SrRNA genes. Moreover, the phenotypic method was used to detect hemolysin. The disk diffusion technique was applied to screen clinical isolates for eight antimicrobial agents. The PCR results showed all isolates to be positive for algD and negative for BLA-VIM and BLA-IMP genes. Hemolysin and multidrug resistance prevalence was 100% and 76%, respectively. Furthermore, Meropenem proved to be the most efficient antibiotic against clinical isolates. Alginate and hemolysin are considered significant virulence factors for P. aeruginosa, playing a key role in triggering diseases and tissue or skin lesions. The emergence of Multidrug Resistant (MDR) isolates indicates that developing antibiotic stewardship in our regional community hospital is a top priority. Infection control measures could help control the distribution of virulence genes in P. aeruginosa isolates. Moreover, regular observation is needed to decrease public health threats, distributing virulence factors and Imipenem-resistance patterns in clinical isolates of P. aeruginosa.
Collapse
Affiliation(s)
- Govend Musa Qader
- Department of Biology, College of Science, University of Salahaddin-Erbil, Kurdistan Region, Iraq
| | - Khanzad Khudhur Jarjees
- Department of Food Technology, College of Agricultural Engineering Sciences, University of Salahaddin-Erbil, Kurdistan Region, Iraq,Corresponding Author: Khanzad Khudhur Jarjees, Department of Food Technology, College of Agriculture, University of Salahaddin, Erbil, Iraq. E-mail:
| | - Rozhhalat Khudhur Jarjees
- Department of Pharmacy, Erbil Medical Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | | | | | | | | |
Collapse
|
5
|
Li L, Huang Y, Tang Q, Zheng Y. Risk Factors for Carbapenem-resistant Pseudomonas aeruginosa Infection in Children. Pediatr Infect Dis J 2022; 41:642-647. [PMID: 35446814 DOI: 10.1097/inf.0000000000003563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is rapidly emerging as a life-threatening nosocomial infection. The study aimed to identify the risk factors for CRPA infection in children, especially antimicrobials use and invasive procedures. METHODS A retrospective study was conducted in the Children's Hospital of Chongqing Medical University, which involved a cohort of patients with PA infection from January 2016 to December 2020. Patients were assigned to a carbapenem-susceptible PA group or to a CRPA group and matched using propensity-score matching. Univariate analysis and multivariate analysis were performed to estimate the risk factors of CRPA. RESULTS One-thousand twenty-five patients were included in the study but 172 children were analyzed. Several factors were associated with CRPA infection according to univariate analysis ( P < 0.05), such as prior treatment with some antimicrobials and invasive procedures. However, only prior exposure to carbapenems (odds ratio [OR]: 0.102; confidence interval [CI]: 0.033-0.312; P < 0.001) and bronchoscopy (OR: 0.147; CI: 0.032-0.678; P = 0.014) during time at risk, previous invasive therapy in the last year (OR: 0.353; CI: 0.159-0.780; P = 0.013), and previous use of β-lactams/β-lactamase inhibitors within the last 90 days (OR: 0.327; CI: 0.121-0.884; P = 0.03) were considered independent risk factors by multivariate analysis. CONCLUSIONS Those who had prior exposure to carbapenems and bronchoscopy were high-risk population to develop CRPA infection. The spread of CRPA could be influenced by invasive therapy, and we need pay attention to it. Moreover, we should take restrictions in the clinical use of carbapenems into account.
Collapse
Affiliation(s)
- Lu Li
- From the Department of Infectious Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yanfeng Huang
- From the Department of Infectious Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiqin Tang
- From the Department of Infectious Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuqiang Zheng
- Department of Clinical Laboratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
6
|
Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa isolated from four medical centres in Iran. Mol Biol Rep 2022; 49:8281-8289. [PMID: 35657451 DOI: 10.1007/s11033-022-07640-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Understanding the mechanisms of antibiotic resistance is important for designing new therapeutic options and controlling resistant strains. The goal of this study was to look at the molecular epidemiology and mechanisms of resistance in carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates from Tabriz, Iran. METHODS One hundred and forty P. aeruginosa were isolated and antibiotic susceptibility patterns were determined. Overproduction of AmpC and efflux pumps were discovered using phenotypic techniques. Polymerase chain reaction (PCR) was used to determine the presence of carbapenemase-encoding genes. In addition, the expressions of OprD and efflux pumps were evaluated by the Real-Time PCR. Random amplified polymorphic DNA typing (RAPD) was performed for genotyping. RESULTS Among 140 P. aeruginosa isolates, 74 (52.8%) were screened as CRPA. Overexpression of efflux systems was observed in 81% of isolates, followed by decreased expression of OprD (62.2%), presence of carbapenemase genes (14.8%), and overproduction of AmpC (13.5%). In most isolates, carbapenem resistance was multifactorial (60.8%). According to our results, the prevalence of CRPA is at alarming levels. Overexpression of efflux systems was the most common mechanism of carbapenem resistance. CONCLUSION Most isolates may originate in patients themselves, but cross-infection is possible. Therefore, we suggest a pattern shift in the strategy of CRPA in our setting.
Collapse
|
7
|
Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, Donadu MG. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics (Basel) 2021; 10:1134. [PMID: 34572716 PMCID: PMC8471826 DOI: 10.3390/antibiotics10091134] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) possesses a plethora of virulence determinants, including the production of biofilm, pigments, exotoxins, proteases, flagella, and secretion systems. The aim of our present study was to establish the relationship between biofilm-forming capacity, the expression of some important virulence factors, and the multidrug-resistant (MDR) phenotype in P. aeruginosa. A total of three hundred and two (n = 302) isolates were included in this study. Antimicrobial susceptibility testing and phenotypic detection of resistance determinants were carried out; based on these results, isolates were grouped into distinct resistotypes and multiple antibiotic resistance (MAR) indices were calculated. The capacity of isolates to produce biofilm was assessed using a crystal violet microtiter-plate based method. Motility (swimming, swarming, and twitching) and pigment-production (pyoverdine and pyocyanin) were also measured. Pearson correlation coefficients (r) were calculated to determine for antimicrobial resistance, biofilm-formation, and expression of other virulence factors. Resistance rates were the highest for ceftazidime (56.95%; n = 172), levofloxacin (54.97%; n = 166), and ciprofloxacin (54.64%; n = 159), while lowest for colistin (1.66%; n = 5); 44.04% (n = 133) of isolates were classified as MDR. 19.87% (n = 60), 20.86% (n = 63) and 59.27% (n = 179) were classified as weak, moderate, and strong biofilm producers, respectively. With the exception of pyocyanin production (0.371 ± 0.193 vs. non-MDR: 0.319 ± 0.191; p = 0.018), MDR and non-MDR isolates did not show significant differences in expression of virulence factors. Additionally, no relevant correlations were seen between the rate of biofilm formation, pigment production, or motility. Data on interplay between the presence and mechanisms of drug resistance with those of biofilm formation and virulence is crucial to address chronic bacterial infections and to provide strategies for their management.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 63, 6720 Szeged, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Krisztina Kárpáti
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Donatella Usai
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
8
|
Hashemizadeh Z, Mansouri S, Pahlavanzadeh F, Morones-Ramírez JR, Tabatabaeifar F, Motamedifar M, Gholizadeh A, Kalantar-Neyestanaki D. Evaluation of chromosomally and acquired mechanisms of resistance to carbapenem antibiotics among clinical isolates of Pseudomonas aeruginosa in Kerman, Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Gajdács M. Carbapenem-Resistant but Cephalosporin-Susceptible Pseudomonas aeruginosa in Urinary Tract Infections: Opportunity for Colistin Sparing. Antibiotics (Basel) 2020; 9:E153. [PMID: 32244694 PMCID: PMC7235726 DOI: 10.3390/antibiotics9040153] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
This paper briefly reports the occurrence and epidemiology of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) Pseudomonas aeruginosa isolates from urinary tract infections (UTIs) in a tertiary-care hospital in the Southern Region of Hungary, and the phenotypic characterization of the possible resistance mechanisms in these isolates. Isolates and data were collected regarding P. aeruginosa UTIs corresponding to the period between 2008 and 2017. Susceptibility testing was performed using the Kirby-Bauer disk diffusion method; minimum inhibitory concentrations (MICs) of the isolates were determined using E-tests. The phenotypic detection of ampicillin C-type (AmpC) β-lactamases, efflux pump overexpression and carbapenemase production was also performed. P. aeruginosa represented n = 575 (2.72% ± 0.64%) from outpatient, and n = 1045 (5.43% ± 0.81%) from inpatient urinary samples, respectively. Based on the disk diffusion test, n = 359 (22.16%) were carbapenem-resistant; in addition to carbapenems, n = (64.34%) were also resistant to ciprofloxacin; n = (60.17%) to gentamicin/tobramycin; n = (58.51%) to levofloxacin; and n = (27.57%) to amikacin. From among the carbapenem-resistant isolates, n = 56 (15.59%) isolates were multidrug-resistant, while n = 16 (4.46%) were extensively drug-resistant. From among the Car-R/Ceph-S isolates (n = 57), overexpression of AmpC was observed in n = 7 cases (12.28%); carbapenemase production in n = 4 (7.02%); while overexpression of efflux pumps was present in n = 31 (54.39%) isolates. To spare last-resort agents, e.g., colistin, the use of broad-spectrum cephalosporins or safe, alternative agents should be considered in these infections.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary; ; Tel.: +36-62-341-330
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
10
|
Araújo Lima AV, da Silva SM, do Nascimento Júnior JAA, Correia MDS, Luz AC, Leal-Balbino TC, da Silva MV, Lima JLDC, Maciel MAV, Napoleão TH, Oliveira MBMD, Paiva PMG. Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Drug Resist 2020; 26:802-814. [PMID: 31916896 DOI: 10.1089/mdr.2019.0214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are the most relevant Gram-negative bacteria associated with hospital and opportunistic infections. This study aimed to evaluate the dynamics of drug-resistant A. baumannii and P. aeruginosa and biofilm formers from two public hospitals in northeastern Brazil. One hundred isolates (35 from A. baumannii and 65 from P. aeruginosa) were identified using the automated Vitek®2 Compact method (bioMérieux) and confirmed using the MALDI-TOF (MS) mass spectrometry technique. Molecular experiments were performed by polymerase chain reaction (PCR) to detect the frequency of blaKPC, blaIMP, blaVIM, and blaSHV genes. The biofilm formation potential was evaluated using crystal violet in Luria Bertani Miller and trypticase soy broth culture media under the following conditions: at standard concentration, one quarter (25%) of the standard concentration and supplemented with 1% glucose. In addition, the genetic diversity of the isolates was verified by the ERIC-PCR technique. Isolates presented distinct resistance profiles with a high level of beta-lactam resistance. The highest index of genes detected was blaKPC (60%), followed by blaSHV (39%), blaVIM (8%), and blaIMP (1%). All the isolates were sensitive to the polymyxins tested and formed biofilms at different intensities. Twelve clones of A. baumannii and eight of P. aeruginosa were identified, of which few were indicative of intra- and interhospital dissemination. This study reveals the dispersion dynamics of these isolates in the hospital environment. The results demonstrate the importance of monitoring programs to combat the spread of these pathogens.
Collapse
Affiliation(s)
- Ana Vitoria Araújo Lima
- Departamento de Bioquímica, Centro de Biociências/Universidade Federal de Pernambuco, Recife, Brazil
| | - Sivoneide Maria da Silva
- Departamento de Bioquímica, Centro de Biociências/Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Ana Carolina Luz
- Departamento de Microbiologia, FIOCRUZ Aggeu Magalhães, Recife, Brazil
| | | | - Márcia Vanusa da Silva
- Departamento de Bioquímica, Centro de Biociências/Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências/Universidade Federal de Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
11
|
Khalili Y, Yekani M, Goli HR, Memar MY. Characterization of carbapenem-resistant but cephalosporin-susceptible Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 2019; 66:529-540. [PMID: 31707785 DOI: 10.1556/030.66.2019.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, mechanisms of carbapenem resistance in carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) Pseudomonas aeruginosa were investigated. A total of 243 P. aeruginosa isolates were studied. The disk diffusion and agar dilution methods were used for determination of antibiotic susceptibility patterns. AmpC and efflux pump overproductions were detected by phenotypic methods. The presence of carbapenemase-encoding genes was detected by polymerase chain reaction (PCR). The expression of OprD, MexAB-OprM, and MexXY-OprM efflux pumps was assessed by real-time PCR. According to disk diffusion method, altogether 116 P. aeruginosa isolates (47.7%) were carbapenem-resistant and among them, 23 isolates (19.8%) were cephalosporin-susceptible. Carbapenemase producer was not detected. Overexpression of AmpC was detected in one (4.3%) isolate that was ceftazidime-susceptible but cefepime-resistant. Overexpression of MexAB-OprM and MexXY-OprM efflux pumps was detected in 12 (60.9%) and 16 (68.8%) of isolates, respectively. A total of 16 (68.8%) isolates showed decreased expression of OprD. The Car-R/Ceph-S P. aeruginosa did not develop by carbapenemase production. The resistance to carbapenem was mediated in our clinical isolates by decreased expression of OprD and overexpression of MexAB-OprM and MexXY-OprM efflux systems or the combination of these mechanisms.
Collapse
Affiliation(s)
- Younes Khalili
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- 2 Iranian Social Security Organization, Urmia, Iran
| | - Mina Yekani
- 3 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- 4 Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Goli
- 5 Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Yousef Memar
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- 6 Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
13
|
Benmahmod AB, Said HS, Ibrahim RH. Prevalence and Mechanisms of Carbapenem Resistance Among Acinetobacter baumannii Clinical Isolates in Egypt. Microb Drug Resist 2018; 25:480-488. [PMID: 30394846 DOI: 10.1089/mdr.2018.0141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The increasing number of carbapenem-resistant Acinetobacter baumannii clinical isolates is a major concern, which restricts therapeutic options for treatment of serious infections caused by this emerging pathogen. The aim of this work is to assess the antimicrobial resistance profile and identify the molecular mechanisms involved in carbapenem resistance in A. baumannii isolated from different clinical sources in Mansoura University Hospitals, Egypt. Antimicrobial susceptibility testing has shown that resistance to carbapenem has dramatically increased (98%) with concomitant elevated levels of resistance to quinolones, trimethoprim/sulfamethoxazole, and aminoglycosides. Polymyxin B and colistin are considered the last resort. Random amplified polymorphic DNA (RAPD) typing method revealed great diversity among A. baumannii isolates. Coexistence of diverse intrinsic and acquired carbapenem-hydrolyzing β-lactamases has been detected in the tested isolates: Ambler class A: blaKPC (56%) and blaGES (48%), and Ambler class B: blaNDM (30%), blaSIM (28%), blaVIM (20%), and blaIMP (10%). Most isolates (94%) carried blaOXA-23-like and blaOXA-51-like simultaneously. blaOXA-23-like was preceded by ISAba1 providing a potent promoter activity for its expression. Sequencing analysis revealed that ISAba1 has been also inserted in carbapenem resistance-associated outer membrane protein (OMP) (carO) gene in three isolates, two of which were clonal based on RAPD typing, leading to interruption of its expression as confirmed by SDS-PAGE analysis of OMP fractions. Carbapenem resistance genes are widely distributed among A. baumannii clinical isolates from different clinical sources. Therefore, enhanced infection control measures, effective barriers, and rational use of antimicrobials should be enforced in hospitals for minimizing the widespread resistance to carbapenems and all other antibiotics.
Collapse
Affiliation(s)
| | - Heba Shehta Said
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ramdan Hassan Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Zamanlou S, Ahangarzadeh Rezaee M, Aghazadeh M, Ghotaslou R, Babaie F, Khalili Y. Characterization of integrons, extended-spectrum β-lactamases, AmpC cephalosporinase, quinolone resistance, and molecular typing of Shigella spp. from Iran. Infect Dis (Lond) 2018; 50:616-624. [PMID: 29595080 DOI: 10.1080/23744235.2018.1455222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
INTRODUCTION The wide distribution of extended-spectrum β-lactamase (ESBL) producing Shigella spp., along with the emergence of fluoroquinolone resistant isolates, is a serious threat to public health, posing a new challenge for the effective treatment of shigellosis. The purpose of this study was to determine the level of antimicrobial resistance, the presence of genes encoding resistance to cephalosporins, and plasmid-mediated quinolone resistance (PMQR) among the clinical isolates of Shigella spp. in Iran. MATERIALS AND METHODS A total of 142 Shigella isolates were collected from different parts of Iran. All of the cephalosporin resistant Shigella strains were selected based on ESBL and AmpC production. The presence of PMQR regions was assessed in ciprofloxacin-resistant isolates, and genetic relatedness in the isolates was determined. RESULTS Seventy-eight Shigella isolates were found to be resistant to extended-spectrum cephalosporin (ESC). The blaCTX-M15 was the most prevalent cephalosporinase. Four ESBL-producing isolates were also resistant to ciprofloxacin. Among the PMQR regions, aac(6')-lb-cr gene was the most prevalent, as it was seen in 83.3% of the ciprofloxacin resistant isolates, while qnrA was positive in 16.7%. Clonal relatedness showed a limited variety of clones was responsible for Shigella infection in the region studied. CONCLUSION Overall, our findings indicated that a large number of ESBL producing Shigella spp. were mediated mainly by blaCTX-M15. This study is the first report on ciprofloxacin-resistant ESBL-producing Shigella isolates from patients in Iran.
Collapse
Affiliation(s)
- Sajjad Zamanlou
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Microbiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,c Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Ahangarzadeh Rezaee
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Microbiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran.,d Infectious and Tropical Diseases Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Aghazadeh
- d Infectious and Tropical Diseases Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Reza Ghotaslou
- b Department of Microbiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farhad Babaie
- a Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Younes Khalili
- b Department of Microbiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|