1
|
Ben Ghorbal SK, Maalej L, Ouzari IH, Chatti A. Implication of Mn-cofactored superoxide dismutase in the tolerance of swarmer Pseudomonas aeruginosa to polymixin, ciprofloxacin and meropenem antibiotics. World J Microbiol Biotechnol 2023; 39:347. [PMID: 37856014 DOI: 10.1007/s11274-023-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
The protective role of superoxide dismutase (Sod) against oxidative stress, resulting from the common antibiotic pathway of action, has been studied in the wild type and mutant strains of swarmer Pseudomonas aeruginosa, lacking Cytosolic Mn-Sod (sodM), Fe-Sod (sodB) or both Sods (sodMB).Our results showed that inactivation of sodB genes leads to significant motility defects and tolerance to meropenem. This resistance is correlated with a greater membrane unsaturation as well as an effective intervention of Mn-Sod isoform, in antibiotic tolerance.Moreover, loss of Mn-Sod in sodM mutant, leads to polymixin intolerance and is correlated with membrane unsaturation. Effectivelty, sodM mutant showed an enhanced swarming motility and a conserved rhamnolipid production. Whereas, in the double mutant sodMB, ciprofloxacin tolerance would be linked to an increase in the percentage of saturated fatty acids in the membrane, even in the absence of superoxide dismutase activity.The overall results showed that Mn-Sod has a protective role in the tolerance to antibiotics, in swarmer P.aeruginosa strain. It has been further shown that Sod intervention in antibiotic tolerance is through change in membrane fatty acid composition.
Collapse
Affiliation(s)
- Salma Kloula Ben Ghorbal
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie.
| | - Lobna Maalej
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie
| | - Imene-Hadda Ouzari
- Laboratoire des Microorganismes et Biomolécules Actives (LMBA), Facult e des Sciences de Tunis Campus Universitaire, El Manar II, Tunisie
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie
- Unite de Biochimie des lipides et interactions des macromolécules en Biologie, Laboratoire de Biochimie et biologie moléculaire, Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| |
Collapse
|
2
|
Guo T, Sun X, Yang J, Yang L, Li M, Wang Y, Jiao H, Li G. Metformin reverse minocycline to inhibit minocycline-resistant Acinetobacter baumannii by destroy the outer membrane and enhance membrane potential in vitro. BMC Microbiol 2022; 22:215. [PMID: 36089583 PMCID: PMC9465895 DOI: 10.1186/s12866-022-02629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen and has emerged as one of the most troublesome pathogens. Drug resistance in A. baumannii has been reported on a global scale. Minocycline was found to be active against multi-drug resistant A. baumannii and was approved by the FDA for the infections caused by sensitive strains of A. baumannii. However, the emergence of minocycline resistance and its toxic effects still need to be addressed. Therefore, this study aimed to evaluate the synergistic effects of metformin combined with minocycline on minocycline-resistant A. baumannii. Results The effect of metformin on the antibacterial activity of minocycline was determined by checkerboard and time-killing assay. Further, it was observed by biofilm formation assay that metformin combination with minocycline can inhibit the formation of biofilm. Outer membrane integrity, membrane permeability, membrane potential and reactive oxygen species (ROS) were monitored to explore the underlying synergistic mechanisms of metformin on minocycline. And the results shown that metformin can destroy the outer membrane of A. baumannii, enhance its membrane potential, but does not affect the membrane permeability and ROS. Conclusion These findings suggested that the combination of metformin and minocycline has the potential for rejuvenating the activity of minocycline against minocycline-resistant A. baumannii.
Collapse
|
3
|
Sundaramoorthy NS, Shankaran P, Gopalan V, Nagarajan S. New tools to mitigate drug resistance in Enterobacteriaceae - Escherichia coli and Klebsiella pneumoniae. Crit Rev Microbiol 2022:1-20. [PMID: 35649163 DOI: 10.1080/1040841x.2022.2080525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Treatment to common bacterial infections are becoming ineffective of late, owing to the emergence and dissemination of antibiotic resistance globally. Escherichia coli and Klebsiella pneumoniae are the most notorious microorganisms and are among the critical priority pathogens listed by WHO in 2017. These pathogens are the predominant cause of sepsis, urinary tract infections (UTIs), pneumonia, meningitis and pyogenic liver abscess. Concern arises due to the resistance of bacteria to most of the beta lactam antibiotics like penicillin, cephalosporin, monobactams and carbapenems, even to the last resort antibiotics like colistin. Preventing influx by modulation of porins, extruding the antibiotics by overexpression of efflux pumps, mutations of drug targets/receptors, biofilm formation, altering the drug molecules and rendering them ineffective are few resistance mechanisms that are adapted by Enterobacteriaeceae upon exposure to antibiotics. The situation is exacerbated due to the process of horizontal gene transfer (HGT), wherein the genes encoding resistance mechanisms are transferred to the neighbouring bacteria through plasmids/phages/uptake of free DNA. Carbapenemases, other beta lactamases and mcr genes coding for colistin resistance are widely disseminated leading to limited/no therapeutic options against those infections. Development of new antibiotics can be viewed as a possible solution but it involves major investment, time and labour despite which, the bacteria can easily adapt to the new antibiotic and evolve resistance in a relatively short time. Targeting the resistance mechanisms can be one feasible alternative to tackle these multidrug resistant (MDR) pathogens. Removal of plasmid (plasmid curing) causing resistance, use of bacteriophages and bacteriotherapy can be other potential approaches to combat infections caused by MDR E. coli and K. pneumoniae. The present review discusses the efficacies of these therapies in mitigating these infections, which can be potentially used as an adjuvant therapy along with existing antibiotics.
Collapse
Affiliation(s)
- Niranjana Sri Sundaramoorthy
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| | - Prakash Shankaran
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| | - Vidhya Gopalan
- Department of Virology, Kings Institute of Preventative Medicine, Guindy, Chennai, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Center for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
4
|
Guo T, Li M, Sun X, Wang Y, Yang L, Jiao H, Li G. Synergistic Activity of Capsaicin and Colistin Against Colistin-Resistant Acinetobacter baumannii: In Vitro/Vivo Efficacy and Mode of Action. Front Pharmacol 2021; 12:744494. [PMID: 34603057 PMCID: PMC8484878 DOI: 10.3389/fphar.2021.744494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen predominantly associated with nosocomial infections. With emerging resistance against polymyxins, synergistic combinations of drugs are being investigated as a new therapeutic approach. Capsaicin is a common constituent of the human diet and is widely used in traditional alternative medicines. The present study evaluated the antibacterial activities of capsaicin in combination with colistin against three unrelated colistin-resistant Acinetobacter baumannii strains in vitro and in vivo, and then further studied their synergistic mechanisms. Using the checkerboard technique and time-kill assays, capsaicin and colistin showed a synergistic effect on colistin-resistant A. baumannii. A mouse bacteremia model confirmed the in vivo effects of capsaicin and colistin. Mechanistic studies shown that capsaicin can inhibit the biofilm formation of both colistin-resistant and non-resistant A. baumannii. In addition, capsaicin decreased the production of intracellular ATP and disrupted the outer membrane of A. baumannii. In summary, the synergy between these drugs may enable a lower concentration of colistin to be used to treat A. baumannii infection, thereby reducing the dose-dependent side effects. Hence, capsaicin–colistin combination therapy may offer a new treatment option for the control of A. baumannii infection.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Mengying Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Department of Pharmacy, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaoli Sun
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Yuhang Wang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Liying Yang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongmei Jiao
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guocai Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| |
Collapse
|