1
|
Torkan A, Askari Badouei M. Investigating the virulence-associated genes and antimicrobial resistance of Escherichia fergusonii Isolated from diseased ostrich chicks. Comp Immunol Microbiol Infect Dis 2024; 112:102226. [PMID: 39168034 DOI: 10.1016/j.cimid.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
This study investigates the presence of virulence-associated genes and antimicrobial resistance (AMR) in Escherichia fergusonii isolates obtained from ostrich chicks. A total of 287 isolates were recovered from 106 fecal samples from ostrich chicks suffering from diarrhea and subjected to molecular identification and biochemical characterization. E. fergusonii was detected in 10 samples (9.4 %) using two PCR-detection protocols. Notably, the isolates lacked various virulence genes commonly associated with pathogenic E. coli including elt, est, stx, eae, ehly, cdt, iss, iutA, iroN, hlyA, ompT, except for one isolate harboring the astA gene. Antimicrobial susceptibility testing revealed that all isolates were susceptible to ciprofloxacin, while high resistance was observed against amoxicillin clavulanate (AMC), trimethoprim-sulfamethoxazole (SXT), and doxycycline (D). Moreover, eight isolates displayed multidrug resistance (MDR) and four exhibited resistance to 9-11 antimicrobials. The most frequent resistance gene was sul2, which was present in all isolates; the other resistance genes detected consisted of int1 (4/10), int2 (3/10), blaCMY (2/10), and qnrS, blaTEM, blaCMY, blaCTX-M, and flo each were detected only in one E. fergusonii Isolate. Plasmid replicon typing identified the presence of I1 (7/10), N (5/10), and Y (1/10). This study provides valuable insights into the virulence and antimicrobial resistance of E. fergusonii isolates from ostrich chicks, highlighting the complexity of antimicrobial resistance mechanisms exhibited by these bacteria. Further research is essential to understand the transmission dynamics and clinical implications of these findings in veterinary and public health settings.
Collapse
Affiliation(s)
- Afagh Torkan
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
2
|
Algarni S, Gudeta DD, Han J, Nayak R, Foley SL. Genotypic analyses of IncHI2 plasmids from enteric bacteria. Sci Rep 2024; 14:9802. [PMID: 38684834 PMCID: PMC11058233 DOI: 10.1038/s41598-024-59870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Incompatibility (Inc) HI2 plasmids are large (typically > 200 kb), transmissible plasmids that encode antimicrobial resistance (AMR), heavy metal resistance (HMR) and disinfectants/biocide resistance (DBR). To better understand the distribution and diversity of resistance-encoding genes among IncHI2 plasmids, computational approaches were used to evaluate resistance and transfer-associated genes among the plasmids. Complete IncHI2 plasmid (N = 667) sequences were extracted from GenBank and analyzed using AMRFinderPlus, IntegronFinder and Plasmid Transfer Factor database. The most common IncHI2-carrying genera included Enterobacter (N = 209), Escherichia (N = 208), and Salmonella (N = 204). Resistance genes distribution was diverse, with plasmids from Escherichia and Salmonella showing general similarity in comparison to Enterobacter and other taxa, which grouped together. Plasmids from Enterobacter and other taxa had a higher prevalence of multiple mercury resistance genes and arsenic resistance gene, arsC, compared to Escherichia and Salmonella. For sulfonamide resistance, sul1 was more common among Enterobacter and other taxa, compared to sul2 and sul3 for Escherichia and Salmonella. Similar gene diversity trends were also observed for tetracyclines, quinolones, β-lactams, and colistin. Over 99% of plasmids carried at least 25 IncHI2-associated conjugal transfer genes. These findings highlight the diversity and dissemination potential for resistance across different enteric bacteria and value of computational-based approaches for the resistance-gene assessment.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Dereje D Gudeta
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Rajesh Nayak
- Office of Regulatory Compliance and Risk Management, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
3
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
4
|
Talat A, Miranda C, Poeta P, Khan AU. Farm to table: colistin resistance hitchhiking through food. Arch Microbiol 2023; 205:167. [PMID: 37014461 DOI: 10.1007/s00203-023-03476-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Colistin is a high priority, last-resort antibiotic recklessly used in livestock and poultry farms. It is used as an antibiotic for treating multi-drug resistant Gram-negative bacterial infections as well as a growth promoter in poultry and animal farms. The sub-therapeutic doses of colistin exert a selection pressure on bacteria leading to the emergence of colistin resistance in the environment. Colistin resistance gene, mcr are mostly plasmid-mediated, amplifying the horizontal gene transfer. Food products such as chicken, meat, pork etc. disseminate colistin resistance to humans through zoonotic transfer. The antimicrobial residues used in livestock and poultry often leaches to soil and water through faeces. This review highlights the recent status of colistin use in food-producing animals, its association with colistin resistance adversely affecting public health. The underlying mechanism of colistin resistance has been explored. The prohibition of over-the-counter colistin sales and as growth promoters for animals and broilers has exhibited effective stewardship of colistin resistance in several countries.
Collapse
Affiliation(s)
- Absar Talat
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- Toxicology Research Unit (TOXRUN), IUCS, CESPU, CRL, Gandra, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD)UTAD, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Asad U Khan
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Costa-Júnior SD, Ferreira YLA, Agreles MAA, Alves ÁEF, Melo de Oliveira MB, Cavalcanti IMF. Gram-negative bacilli carrying mcr gene in Brazil: a pathogen on the rise. Braz J Microbiol 2023:10.1007/s42770-023-00948-w. [PMID: 36943639 PMCID: PMC10028778 DOI: 10.1007/s42770-023-00948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023] Open
Abstract
The incidence of infections caused by resistant Gram-negative pathogens has become a critical factor in public health due to the limitation of therapeutic options for the control of infections caused, especially, by Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae), Pseudomonas spp., and Acinetobacter spp. Thus, given the increase in resistant pathogens and the reduction of therapeutic options, polymyxins were reintroduced into the clinic. As the last treatment option, polymyxins were regarded as the therapeutic key, since they were one of the few classes of antimicrobials that had activity against multidrug-resistant Gram-negative bacilli. Nonetheless, over the years, the frequent use of this antimicrobial has led to reports of resistance cases. In 2015, mcr (mobile colistin resistance), a colistin resistance gene, was described in China. Due to its location on carrier plasmids, this gene is characterized by rapid spread through conjugation. It has thus been classified as a rising threat to public health worldwide. In conclusion, based on several reports that show the emergence of mcr in different regional and climatic contexts and species of isolates, this work aims to review the literature on the incidence of the mcr gene in Brazil in different regions, types of samples identified, species of isolates, and type of carrier plasmid.
Collapse
Affiliation(s)
- Sérgio Dias Costa-Júnior
- Department of Physiology and Pathology, Federal University of Paraíba (UFPB), 58.051-900, João Pessoa, Brazil
| | | | | | | | - Maria Betânia Melo de Oliveira
- Department of Bio of Biochemistry, Center for Biosciences, Federal University of Pernambuco (UFPE), Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute, Federal University of Pernambuco (iLIKA/UFPE), 50.670-901, Recife, Brazil.
- Microbiology and Immunology Laboratory, Academic Center of Vitória, Federal University of Pernambuco (CAV/UFPE), Centro Acadêmico de Vitória, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil.
| |
Collapse
|
6
|
Srinivas K, Ghatak S, Pyngrope DA, Angappan M, Milton AAP, Das S, Lyngdoh V, Lamare JP, Prasad MCB, Sen A. Avian strains of emerging pathogen Escherichia fergusonii are phylogenetically diverse and harbor the greatest AMR dissemination potential among different sources: Comparative genomic evidence. Front Microbiol 2023; 13:1080677. [PMID: 36741902 PMCID: PMC9895846 DOI: 10.3389/fmicb.2022.1080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction Escherichia fergusonii is regarded as an emerging pathogen with zoonotic potential. In the current study, we undertook source-wise comparative genomic analyses (resistome, virulome, mobilome and pangenome) to understand the antimicrobial resistance, virulence, mobile genetic elements and phylogenetic diversity of E. fergusonii. Methods Six E. fergusonii strains (5 multidrug resistant strains and 1 biofilm former) were isolated from poultry (duck faeces and retail chicken samples). Following confirmation by phenotypic and molecular methods, the isolates were further characterized and their genomes were sequenced. Comparative resisto-virulo-mobilome analyses and pangenomics were performed for E. fergusonii genomes, while including 125 other E. fergusonii genomes available from NCBI database. Results and discussion Avian and porcine strains of E. fergusonii were found to carry significantly higher number of antimicrobial resistance genes (p < 0.05) and mobile genetic elements (plasmids, transposons and integrons) (p < 0.05), while the pathogenic potential of bovine strains was significantly higher compared to other strains (p < 0.05). Pan-genome development trends indicated open pan-genome for all strains (0 < γ < 1). Genomic diversity of avian strains was found to be greater than that from other sources. Phylogenetic analysis revealed close clustering among isolates of similar isolation source and geographical location. Indian isolates of E. fergusonii clustered closely with those from Chinese and a singleton Australian isolate. Overall, being the first pangenomic study on E. fergusonii, our analysis provided important cues on genomic features of the emerging pathogen E. fergusonii while highlighting the potential role of avian strains in dissemination of AMR.
Collapse
Affiliation(s)
- Kandhan Srinivas
- Division of Veterinary Public Health, ICAR – Indian Veterinary Research Institute, Bareilly, India,Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India,*Correspondence: Sandeep Ghatak,
| | - Daniel Aibor Pyngrope
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Madesh Angappan
- Division of Veterinary Public Health, ICAR – Indian Veterinary Research Institute, Bareilly, India,Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Arockiasamy Arun Prince Milton
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India,Arockiasamy Arun Prince Milton,
| | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - John Pynhun Lamare
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Mosuri Chendu Bharat Prasad
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Arnab Sen
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| |
Collapse
|
7
|
Liu R, Xu H, Guo X, Liu S, Qiao J, Ge H, Zheng B, Gou J. Genomic Characterization of Two Escherichia fergusonii Isolates Harboring mcr-1 Gene From Farm Environment. Front Cell Infect Microbiol 2022; 12:774494. [PMID: 35719362 PMCID: PMC9204285 DOI: 10.3389/fcimb.2022.774494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
The prevalence and transmission of mobile colistin resistance (mcr) genes have led to a severe threat to humans and animals. Escherichia fergusonii is an emerging pathogen which is closely related to a variety of diseases. However, the report of mcr genes harboring E. fergusonii is still rare. One study in Brazil reported the E. fergusonii isolates with IncHI2-type plasmids harboring mcr-1. A Chinese study reported two strains carrying mcr-1 gene with the same plasmid type IncI2. Here, we identified two strains of E. fergusonii carrying mcr-1 gene from farm environments with IncX4-type and IncI2-type plasmids, respectively. To our best knowledge, this is the first report about mcr-1 gene located on IncX4-type plasmid in E. fergusonii. We investigate the resistance mechanism of colistin-resistant Escherichia fergusonii strains 6S41-1 and 5ZF15-2-1 and elucidate the genetic context of plasmids carrying mcr-1 genes. In addition, we also investigated chromosomal mutations mediated colistin resistance in these two strains. Species identification was performed using MALDI-TOF MS and 16S rRNA gene sequencing. The detection of mcr-1 gene was determined by PCR and Sanger sequencing. S1-pulsed-field gel electrophoresis (PFGE), Southern blotting, antimicrobial susceptibility testing, conjugation experiments, complete genome sequencing, and core genome analysis were conducted to investigate the characteristics of isolates harboring mcr-1. The mcr-1 genes on two strains were both plasmids encoded and the typical IS26-parA-mcr-1-pap2 cassette was identified in p6S41-1 while a nikA-nikB-mcr-1 locus sites on the conjugative plasmid p5ZF15-2-1. In addition, Core genome analysis reveals that E. fergusonii 6S41-1 and 5ZF15-2-1 have close genetic relationships. The mcr-1 gene is located on conjugative IncI2-type plasmid p5ZF15-2-1, which provides support for its further transmission. In addition, there’s the possibility of mcr-1 spreading to humans through farm environments and thereby threatening public health. Therefore, continuous monitoring and investigations of mcr-1 among Enterobacteriaceae in farm environments are necessary to control the spread.
Collapse
Affiliation(s)
- Ruishan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuxiu Liu
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6528371. [DOI: 10.1093/femsle/fnac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
|
9
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
10
|
Paiva Y, Nagano DS, Cotia ALF, Guimarães T, Martins RCR, Perdigão Neto LV, Côrtes MF, Marchi AP, Corscadden L, Machado AS, Paula AID, Franco LAM, Neves PR, Levin AS, Costa SF. Colistin-resistant Escherichia coli belonging to different sequence types: genetic characterization of isolates responsible for colonization, community- and healthcare-acquired infections. Rev Inst Med Trop Sao Paulo 2021; 63:e38. [PMID: 33909852 PMCID: PMC8075621 DOI: 10.1590/s1678-9946202163038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
The plasmid-mediated colistin-resistance gene named mcr-1 has
been recently described in different countries and it became a public health
challenge. Of note, few studies have addressed the spread of Escherichia
coli harboring the mcr-1 gene in both, community
and hospital settings. A total of seven colistin-resistant E.
coli carrying mcr-1, collected from 2016 to 2018,
from community (n=4), healthcare-acquired infections (n=2) and colonization
(n=1) were identified in three high complexity hospitals in Sao Paulo, Brazil.
These colistin-resistant isolates were screened for mcr genes
by PCR and all strains were submitted to Whole Genome Sequencing and the
conjugation experiment. The seven strains belonged to seven distinct sequence
types (ST744, ST131, ST69, ST48, ST354, ST57, ST10), and they differ regarding
the resistance profiles. Transference of mcr-1 by conjugation
to E. coli strain C600 was possible in five of the seven
isolates. The mcr-1 gene was found in plasmid types IncX4 or
IncI2. Three of the isolates have ESBL-encoding genes (blaCTX-M-2, n=2; blaCTX-M-8, n=1). We hereby report genetically distinct E.
coli isolates, belonging to seven STs, harboring the
mcr-1 gene, associated to community and healthcare-acquired
infections, and colonization in patients from three hospitals in Sao Paulo.
These findings point out for the potential spread of plasmid-mediated
colistin-resistance mechanism in E. coli strains in Brazil.
Collapse
Affiliation(s)
- Yrving Paiva
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Debora Satie Nagano
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Andre Luis Franco Cotia
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Thais Guimarães
- Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo, São Paulo, Brazil
| | | | | | - Marina Farrel Côrtes
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Paula Marchi
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | | | - Patricia Regina Neves
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Anna Sara Levin
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Silvia Figueiredo Costa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|