1
|
de Lagarde M, Fairbrother JM, Archambault M, Dufour S, Francoz D, Massé J, Lardé H, Aenishaenslin C, Paradis ME, Terrat Y, Roy JP. Clonal and plasmidic dissemination of critical antimicrobial resistance genes through clinically relevant ExPEC and APEC-like lineages (ST) in the dairy cattle population of Québec, Canada. Front Microbiol 2024; 14:1304678. [PMID: 38304859 PMCID: PMC10830774 DOI: 10.3389/fmicb.2023.1304678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Antimicrobial resistance can be effectively limited by improving the judicious use of antimicrobials in food production. However, its effect on the spread of AMR genes in animal populations is not well described. In the province of Québec, Canada, a new legislation implemented in 2019 has led to an unprecedented reduction in the use of critical antimicrobials in dairy production. We aimed to investigate the potential link between ESBL/AmpC E. coli isolated before and after legislation and to determine the presence of plasmids carrying genes responsible for critical AMR. We collected fecal samples from calves, cows, and manure pit from 87 Québec dairy farms approximately 2 years before and 2 years after the legislation came into effect. The whole genomes of 183 presumptive ESBL/AmpC E. coli isolated after cefotaxime enrichment were sequenced. Their phylogenetic characteristics (MLST, serogroup, cgMLST) and the presence of virulence and resistance genes and replicons were examined. A maximum likelihood phylogenetic tree was constructed based on single nucleotide polymorphism (SNPs). We identified 10 clonal lineages (same cgMLST) and 7 clones (SNPs ≤ 52). Isolates belonging to these clones could be found on different farms before and after the legislation, strongly suggesting a clonal spread of AMR genes in the population during this 4-year period. All isolates were multidrug resistant (MDR), with clone 2 being notable for the presence of macrolide, fluoroquinolone, and third-generation cephalosporin resistance genes. We also identified clinically relevant ExPEC (ST10) and APEC-like lineages (ST117, ST58, ST88) associated with the presence of ExPEC and APEC virulence genes, respectively. Our data also suggests the presence of one epidemic plasmid belonging to the IncY incompatibility group and carrying qnrs1 and blaCTX-M-15. We demonstrated that AMR genes spread through farms and can persist over a 4-year period in the dairy cattle population through both plasmids and E. coli clones, despite the restriction of critical antimicrobial use. MDR ExPEC and APEC-like STs are present in the normal microbiota of cattle (more frequently in calves). These data increase our knowledge on gene dissemination dynamics and highlight the fact that biosecurity measures should be enhanced in this industry to limit such dissemination.
Collapse
Affiliation(s)
- Maud de Lagarde
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| | - John Morris Fairbrother
- World Organization of Animal Health Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marie Archambault
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FQRNT), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David Francoz
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| | - Jonathan Massé
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Hélène Lardé
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts, St. Kitts and Nevis
| | - Cécile Aenishaenslin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre de recherche en santé publique de l’Université de Montréal et du Centre Intégré Universitaire de Santé et de Service Sociaux (CIUSSS) du Centre-Sud-de-l’Île-de-Montréal, Montréal, QC, Canada
| | - Marie-Eve Paradis
- Association des médecins vétérinaires praticiens du Québec, Saint-Hyacinthe, QC, Canada
| | - Yves Terrat
- Consortium Santé Numérique de l’Université de Montréal, Montréal, QC, Canada
| | - Jean-Philippe Roy
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Regroupement Front de Recherche du Québec – Nature et Technologie (FRQNT) Op+lait, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
2
|
Cawez F, Mercuri PS, Morales-Yãnez FJ, Maalouf R, Vandevenne M, Kerff F, Guérin V, Mainil J, Thiry D, Saulmont M, Vanderplasschen A, Lafaye P, Aymé G, Bogaerts P, Dumoulin M, Galleni M. Development of Nanobodies as Theranostic Agents against CMY-2-Like Class C β-Lactamases. Antimicrob Agents Chemother 2023; 67:e0149922. [PMID: 36892280 PMCID: PMC10112224 DOI: 10.1128/aac.01499-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
Three soluble single-domain fragments derived from the unique variable region of camelid heavy-chain antibodies (VHHs) against the CMY-2 β-lactamase behaved as inhibitors. The structure of the complex VHH cAbCMY-2(254)/CMY-2 showed that the epitope is close to the active site and that the CDR3 of the VHH protrudes into the catalytic site. The β-lactamase inhibition pattern followed a mixed profile with a predominant noncompetitive component. The three isolated VHHs recognized overlapping epitopes since they behaved as competitive binders. Our study identified a binding site that can be targeted by a new class of β-lactamase inhibitors designed on the sequence of the paratope. Furthermore, the use of mono- or bivalent VHH and rabbit polyclonal anti-CMY-2 antibodies enables the development of the first generation of enzyme-linked immunosorbent assay (ELISA) for the detection of CMY-2 produced by CMY-2-expressing bacteria, irrespective of resistotype.
Collapse
Affiliation(s)
- Frédéric Cawez
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Paola Sandra Mercuri
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Francisco Javier Morales-Yãnez
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
| | - Rita Maalouf
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Marylène Vandevenne
- InBios, Center for Protein Engineering, ROBOTEIN, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Frederic Kerff
- InBioS, Center for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Virginie Guérin
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Jacques Mainil
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Damien Thiry
- Bacteriology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), Ciney, Belgium
| | - Alain Vanderplasschen
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
- Immunology-Vaccinology, FARAH and Faculty of Veterinary Medicine, Department of Infectious and Parasitic Diseases, University of Liège, Liège, Belgium
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 328, Paris, France
| | - Gabriel Aymé
- Institut Pasteur, Université Paris Cité, CNRS UMR 328, Paris, France
| | - Pierre Bogaerts
- National Reference Center for Antibiotic-Resistant Gram-Negative Bacilli, Department of Clinical Microbiology, CHU UCL Namur, Yvoir, Belgium
| | - Mireille Dumoulin
- InBioS, Center for Protein Engineering, NEPTUNS, Department of Life Sciences, University of Liège, Liège, Belgium
- ALPANANO, Center for Protein Engineering & FARAH, University of Liège, Liège, Belgium
| | - Moreno Galleni
- InBioS, Center for Protein Engineering, Biological Macromolecules, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Guérin V, Farchi A, Thiry D, Cawez F, Mercuri PS, Galleni M, Mainil J, Saulmont M. Seven-Year Evolution of β-Lactam Resistance Phenotypes in Escherichia coli Isolated from Young Diarrheic and Septicaemic Calves in Belgium. Vet Sci 2022; 9:vetsci9020045. [PMID: 35202298 PMCID: PMC8880553 DOI: 10.3390/vetsci9020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance is a major worldwide hazard. Therefore, the World Health Organization has proposed a classification of antimicrobials with respect to their importance for human medicine and advised some restriction of their use in veterinary medicine. In Belgium, this regulation has been implemented by a Royal Decree (RD) in 2016, which prohibits carbapenem use and enforces strict restrictions on the use of third- and fourth-generation cephalosporins (3 GC and 4 GC) for food-producing animals. Acquired resistance to β-lactam antibiotics is most frequently mediated by the production of β-lactamases in Gram-negative bacteria. This study follows the resistance to β-lactam antibiotics in Escherichia coli isolated from young diarrheic or septicaemic calves in Belgium over seven calving seasons in order to measure the impact of the RD. Phenotypic resistance to eight β-lactams was assessed by disk diffusion assay and isolates were assigned to four resistance profiles: narrow-spectrum β-lactamases (NSBL); extended-spectrum β-lactamases (ESBL); cephalosporinases (AmpC); and cephalosporinase-like, NSBL with cefoxitin resistance (AmpC-like). No carbapenemase-mediated resistance was detected. Different resistance rates were observed for each profile over the calving seasons. Following the RD, the number of susceptibility tests has increased, the resistance rate to 3 GC/4 GC has markedly decreased, while the observed resistance profiles have changed, with an increase in NSBL profiles in particular.
Collapse
Affiliation(s)
- Virginie Guérin
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, Uliège, 4000 Liège, Belgium; (D.T.); (J.M.)
- Correspondence:
| | - Alban Farchi
- CEREA, École des Ponts and EDF R&D, IPSL, Île-de-France, 77455 Champs-sur-Marne, France;
| | - Damien Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, Uliège, 4000 Liège, Belgium; (D.T.); (J.M.)
| | - Frédéric Cawez
- Biological Macromolecules, Center for Protein Engineering (CIP), InBioS, ULiège, 4000 Liège, Belgium; (F.C.); (P.S.M.); (M.G.)
| | - Paola Sandra Mercuri
- Biological Macromolecules, Center for Protein Engineering (CIP), InBioS, ULiège, 4000 Liège, Belgium; (F.C.); (P.S.M.); (M.G.)
| | - Moreno Galleni
- Biological Macromolecules, Center for Protein Engineering (CIP), InBioS, ULiège, 4000 Liège, Belgium; (F.C.); (P.S.M.); (M.G.)
| | - Jacques Mainil
- Bacteriology, Department of Infectious and Parasitic Diseases, FARAH and Faculty of Veterinary Medicine, Uliège, 4000 Liège, Belgium; (D.T.); (J.M.)
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), 5590 Ciney, Belgium;
| |
Collapse
|