1
|
Mao SS, Huang W, Luo JQ. Positive Association Between the Cardiometabolic Index and the Risk of Male Biochemical Androgen Deficiency in Adults. Kaohsiung J Med Sci 2025:e70024. [PMID: 40205698 DOI: 10.1002/kjm2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/30/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic disorders are associated with testosterone deficiency, and the cardiometabolic index (CMI) is a recently identified metabolic indicator. The relationship between male biochemical androgen deficiency (MBAD), a precursor to testosterone deficiency, and CMI remains unclear. In this cross-sectional study, we analyzed data from the National Health and Nutrition Examination Survey (NHANES) 2013-2016 to investigate the relationship between MBAD and CMI in men. This study included 1229 participants; among which, 209 participants had MBAD. Machine learning models identified that the importance of CMI on MBAD was in the top three. After adjusting for all covariates, we found a positive association between CMI and MBAD. Restricted cubic spline (RCS) curves validated this association both in age and body mass index subgroups. Trend regression showed that participants with a higher CMI tended to have a higher risk of MBAD. The positive association between CMI and MBAD persisted after multiple interpolations, validating the robustness of the results. Altogether, this study suggests that CMI exhibits a stable positive relationship with MBAD.
Collapse
Affiliation(s)
- Shuai-Shuai Mao
- Endocrine Department, Changxing People's Hospital, Huzhou, Zhejiang, China
| | - Wei Huang
- General Surgery, Changxing People's Hospital, Huzhou, Zhejiang, China
| | - Jia-Qing Luo
- General Surgery, Changxing People's Hospital, Huzhou, Zhejiang, China
| |
Collapse
|
2
|
Topriceanu CC, Dev E, Ahmad M, Hughes R, Shiwani H, Webber M, Direk K, Wong A, Ugander M, Moon JC, Hughes AD, Maddock J, Schlegel TT, Captur G. Accelerated DNA methylation age plays a role in the impact of cardiovascular risk factors on the human heart. Clin Epigenetics 2023; 15:164. [PMID: 37853450 PMCID: PMC10583368 DOI: 10.1186/s13148-023-01576-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND DNA methylation (DNAm) age acceleration (AgeAccel) and cardiac age by 12-lead advanced electrocardiography (A-ECG) are promising biomarkers of biological and cardiac aging, respectively. We aimed to explore the relationships between DNAm age and A-ECG heart age and to understand the extent to which DNAm AgeAccel relates to cardiovascular (CV) risk factors in a British birth cohort from 1946. RESULTS We studied four DNAm ages (AgeHannum, AgeHorvath, PhenoAge, and GrimAge) and their corresponding AgeAccel. Outcomes were the results from two publicly available ECG-based cardiac age scores: the Bayesian A-ECG-based heart age score of Lindow et al. 2022 and the deep neural network (DNN) ECG-based heart age score of Ribeiro et al. 2020. DNAm AgeAccel was also studied relative to results from two logistic regression-based A-ECG disease scores, one for left ventricular (LV) systolic dysfunction (LVSD), and one for LV electrical remodeling (LVER). Generalized linear models were used to explore the extent to which any associations between biological cardiometabolic risk factors (body mass index, hypertension, diabetes, high cholesterol, previous cardiovascular disease [CVD], and any CV risk factor) and the ECG-based outcomes are mediated by DNAm AgeAccel. We derived the total effects, average causal mediation effects (ACMEs), average direct effects (ADEs), and the proportion mediated [PM] with their 95% confidence intervals [CIs]. 498 participants (all 60-64 years) were included, with the youngest ECG heart age being 27 and the oldest 90. When exploring the associations between cardiometabolic risk factors and Bayesian A-ECG cardiac age, AgeAccelPheno appears to be a partial mediator, as ACME was 0.23 years [0.01, 0.52] p = 0.028 (i.e., PM≈18%) for diabetes, 0.34 [0.03, 0.74] p = 0.024 (i.e., PM≈15%) for high cholesterol, and 0.34 [0.03, 0.74] p = 0.024 (PM≈15%) for any CV risk factor. Similarly, AgeAccelGrim mediates ≈30% of the relationship between diabetes or high cholesterol and the DNN ECG-based heart age. When exploring the link between cardiometabolic risk factors and the A-ECG-based LVSD and LVER scores, it appears that AgeAccelPheno or AgeAccelGrim mediate 10-40% of these associations. CONCLUSION By the age of 60, participants with accelerated DNA methylation appear to have older, weaker, and more electrically impaired hearts. We show that the harmful effects of CV risk factors on cardiac age and health, appear to be partially mediated by DNAm AgeAccelPheno and AgeAccelGrim. This highlights the need to further investigate the potential cardioprotective effects of selective DNA methyltransferases modulators.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Eesha Dev
- UCL Medical School, Gower Street, London, UK
| | - Mahmood Ahmad
- Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, UK
| | - Rebecca Hughes
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Hunain Shiwani
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Matthew Webber
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
| | - Kenan Direk
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
| | - Andrew Wong
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
| | - Martin Ugander
- Kolling Institute Royal North Shore Hospital, and Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK
| | - Alun D Hughes
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
| | - Jane Maddock
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK
| | - Todd T Schlegel
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
- Nicollier-Schlegel SARL, Trélex, Switzerland
| | - Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, University College London, 1-19 Torrington Place, London, UK.
- UCL Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6BT, UK.
- Centre for Inherited Heart Muscle Conditions, The Royal Free Hospital, Pond Street, Hampstead, London, UK.
| |
Collapse
|