1
|
Pevec M, Medved T, Kovačič M, Žerjav N, Imperl J, Plavec J, Lah J, Loris R, Hadži S. Structural basis of G-quadruplex recognition by a camelid antibody fragment. Nucleic Acids Res 2025; 53:gkaf453. [PMID: 40433978 PMCID: PMC12117401 DOI: 10.1093/nar/gkaf453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/21/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Apart from the iconic Watson-Crick duplex, DNA can fold into different noncanonical structures, of which the most studied are G-quadruplexes (G4s). Despite mounting structural and biophysical evidence, their existence in cells was controversial until their detection using G4-specific antibodies. However, it remains unknown how antibodies recognize G4s at the molecular level and why G4-specific antibodies have low selectivity and are unable to distinguish different G4 sequences. Here, we present the crystal structure of a nanobody bound to the archetypical G4 structure, the thrombin-binding aptamer (TBA). The nanobody exhibits strong selectivity against different G4 sequences and utilizes an unusual scaffold-based paratope, with very limited involvement of complementarity-determining region. The nanobody effectively mimics the binding interface of thrombin, a natural binding partner of TBA, by using isosteric interactions at key positions. The presented structure sheds light on the molecular basis of how antibodies, essential G4-detection tools, recognize noncanonical G4 structures.
Collapse
Affiliation(s)
- Mojca Pevec
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Tadej Medved
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matic Kovačič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Neža Žerjav
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Imperl
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - San Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Gubu A, Zhang X, Lu A, Zhang B, Ma Y, Zhang G. Nucleic acid amphiphiles: Synthesis, properties, and applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:144-163. [PMID: 37456777 PMCID: PMC10345231 DOI: 10.1016/j.omtn.2023.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nucleic acid amphiphiles, referring to nucleic acids modified with large hydrophobic groups, have been widely used in programmable bioengineering. Since nucleic acids are intrinsically hydrophilic, the hydrophobic groups endow nucleic acid amphiphiles with unique properties, such as self-assembling, interactions with artificial or biological membranes, and transmembrane transport. Importantly, the hybridization or target binding capability of oligonucleotide itself supplies nucleic acid amphiphiles with excellent programmability. As a result, this type of molecule has attracted considerable attention in academic studies and has enormous potential for further applications. For a comprehensive understanding of nucleic acid amphiphiles, we review the reported research on nucleic acid amphiphiles from their molecular design to final applications, in which we summarize the synthetic strategies for nucleic acid amphiphiles and draw much attention to their unique properties in different contexts. Finally, a summary of the applications of nucleic acid amphiphiles in drug development, bioengineering, and bioanalysis are critically discussed.
Collapse
Affiliation(s)
- Amu Gubu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Aptacure Therapeutics Limited, Kowloon, Hong Kong SAR, China
| | - Xueli Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tsai, Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen 518000, China
| |
Collapse
|
3
|
Oblak D, Hadži S, Podlipnik Č, Lah J. Binding-Induced Diversity of a Human Telomeric G-Quadruplex Stability Phase Space. Pharmaceuticals (Basel) 2022; 15:ph15091150. [PMID: 36145371 PMCID: PMC9501445 DOI: 10.3390/ph15091150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
The structural polymorphism of G-quadruplex nucleic acids is an important factor in their recognition by proteins and small-molecule ligands. However, it is not clear why the binding of several ligands alters G-quadruplex topology. We addressed this question by following the (un)folding and binding of the human telomeric fragment 5′-(GGGTTA)3GGGT-3′ (22GT) by calorimetry (DSC, ITC) and spectroscopy (CD). A thermodynamic analysis of the obtained data led to a detailed description of the topological phase space of stability (phase diagram) of 22GT and shows how it changes in the presence of a specific bisquinolinium ligand (360A). Various 1:1 and 2:1 ligand–quadruplex complexes were observed. With increasing temperature, the 1:1 complexes transformed into 2:1 complexes, which is attributed to the preferential binding of the ligand to the folding intermediates. Overall, the dissection of the thermodynamic parameters in combination with molecular modelling clarified the driving forces of the topological quadruplex transformations in a wide range of ligand concentrations and temperatures.
Collapse
|
4
|
Abdelrahman A, Gouda AS, Jørgensen PT, Wengel J. Novel assemblies based on oligonucleotides containing intercalating nucleic acid monomers. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:82-96. [PMID: 31674270 DOI: 10.1080/15257770.2019.1683188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This is the first report exploring the capability of twisted intercalating nucleic acid (TINA) and naphthalene-functionalized non-nucleosidic linkers to stabilize and engage in double-helical structures. Four designs were studied with respect to the formation of duplexes and/or other types of self-assemblies. One of the constructs involving TINA provides a thermostable duplex. The biophysical properties of the individual constructs were investigated by UV thermal melting experiments, circular dichroism, and fluorescence emission spectroscopy. Molecular modeling studies were performed in attempts of explaining the biophysical measurements for the duplex based on the TINA-containing oligonucleotide strands.
Collapse
Affiliation(s)
- Asmaa Abdelrahman
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.,Department of Photochemistry, National Research Centre, Giza, Egypt
| | - Alaa S Gouda
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.,Department of Chemistry, Faculty of Science, Benha University, Benha, Egypt
| | - Per T Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
5
|
Appukutti N, Serpell CJ. High definition polyphosphoesters: between nucleic acids and plastics. Polym Chem 2018. [DOI: 10.1039/c8py00251g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleic acids and synthetic polyphosphoester materials have been distinct fields – this review shows how these areas now comprise a continuum.
Collapse
|
6
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
7
|
Zvereva MI, Zatsepin TS, Azhibek DM, Shubernetskaya OS, Shpanchenko OV, Dontsova OA. Oligonucleotide inhibitors of telomerase: prospects for anticancer therapy and diagnostics. BIOCHEMISTRY (MOSCOW) 2015; 80:251-9. [PMID: 25761680 DOI: 10.1134/s0006297915030013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The activity of telomerase allows eukaryotic cells to have unlimited division potential. On its functioning, telomerase synthesizes short DNA repeats at the 3'-end of DNA within chromosomes that ensures genome stability during cell division. Telomerase is active in the majority of cancer cell types and is virtually absent in somatic cells with rare exceptions. This difference allows us to consider inhibition of telomerase activity as a possible approach to antitumor therapy. Telomerase is a nucleoprotein composed of two main components: the reverse transcriptase (hTERT), which is a catalytic subunit, and telomerase RNA (hTR), which encodes a template for synthesis of repeats. The biogenesis and features of telomerase seem very promising for its inhibition due to complementary interactions. In this review, we analyze putative pathways of oligonucleotide influence on telomerase and consider the known native and modified oligonucleotide inhibitors of telomerase, as well as possible mechanisms of their action. We also discuss the application of telomerase-targeted oligonucleotide conjugates for in vivo imaging of tumor cells.
Collapse
Affiliation(s)
- M I Zvereva
- Lomonosov Moscow State University, Chemistry Faculty, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
8
|
Yaku H, Murashima T, Miyoshi D, Sugimoto N. In vitro assays predictive of telomerase inhibitory effect of G-quadruplex ligands in cell nuclei. J Phys Chem B 2013; 118:2605-14. [PMID: 24328194 DOI: 10.1021/jp410669t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-quadruplex-binding and telomerase-inhibiting capacities of G-quadruplex ligands were examined under a cell nuclei-mimicking condition including excess double-stranded DNA (λ DNA) and molecular crowding cosolute (PEG 200). Under the cell nuclei-mimicking condition, a cationic porphyrin (TMPyP4) did not bind to the G-quadruplex despite the high affinity (Ka = 3.6 × 10(6) M(-1)) under a diluted condition without λ DNA and PEG 200. Correspondingly, TMPyP4 inhibited telomerase activity under the diluted condition (IC50 = 1.6 μM) but not under the cell nuclei-mimicking condition. In contrast, the Ka and IC50 values of an anionic copper phthalocyanine (Cu-APC) under the diluted (2.8 × 10(4) M(-1) and 0.86 μM) and the cell nuclei-mimicking (2.8 × 10(4) M(-1) and 2.1 μM) conditions were similar. In accordance with these results, 10 μM TMPyP4 did not affect the proliferation of HeLa cells, while Cu-APC efficiently inhibited the proliferation (IC50 = 1.4 μM). These results show that the cell nuclei-mimicking condition is effective to predict capacities of G-quadruplex ligands in the cell. In addition, the antiproliferative effect of Cu-APC on normal cells was smaller than that on HeLa cells, indicating that the cell nuclei-mimicking condition is also useful to predict side effects of ligands.
Collapse
Affiliation(s)
- Hidenobu Yaku
- Advanced Technology Research Laboratories, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | | | | | | |
Collapse
|