1
|
He F, Wen N, Xiao D, Yan J, Xiong H, Cai S, Liu Z, Liu Y. Aptamer-Based Targeted Drug Delivery Systems: Current Potential and Challenges. Curr Med Chem 2020; 27:2189-2219. [PMID: 30295183 DOI: 10.2174/0929867325666181008142831] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/04/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Aptamers are single-stranded DNA or RNA with 20-100 nucleotides in length that can specifically bind to target molecules via formed three-dimensional structures. These innovative targeting molecules have attracted an increasing interest in the biomedical field. Compared to traditional protein antibodies, aptamers have several advantages, such as small size, high binding affinity, specificity, good biocompatibility, high stability and low immunogenicity, which all contribute to their wide application in the biomedical field. Aptamers can bind to the receptors on the cell membrane and mediate themselves or conjugated nanoparticles to enter into cells. Therefore, aptamers can be served as ideal targeting ligands for drug delivery. Since their excellent properties, different aptamer-mediated drug delivery systems had been developed for cancer therapy. This review provides a brief overview of recent advances in drug delivery systems based on aptamers. The advantages, challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Fen He
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Nachuan Wen
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Daipeng Xiao
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Shundong Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
2
|
Kiaie SH, Mojarad-Jabali S, Khaleseh F, Allahyari S, Taheri E, Zakeri-Milani P, Valizadeh H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int J Pharm 2020; 581:119269. [PMID: 32234427 DOI: 10.1016/j.ijpharm.2020.119269] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
Evaluation of axial properties including preparation, surface functionalization, and pharmacokinetics for delivery of pharmacologically active molecules and genes lead to pharmaceutical development of liposome in cancer therapy. Here, analysis of effects of the axial properties of liposome based on cancer treatment modalities as individually and coherently is vital and shows deserving further investigation for the future. In this review, recent progress in the analysis of preparation approaches, optimizing pharmacokinetic parameters, functionalization and targeting improvement and modulation of biological factors and components resulting in a better function of liposome in cancer for drug/gene delivery and immunotherapy are discussed. Here, recent developments on liposome with vaccines and immunoadjuvant carriers, and antigen-carrier system to cancer immunotherapy are introduced.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Khaleseh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Allahyari
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Taheri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
3
|
Shrivastava G, Bakshi HA, Aljabali AA, Mishra V, Hakkim FL, Charbe NB, Kesharwani P, Chellappan DK, Dua K, Tambuwala MM. Nucleic Acid Aptamers as a Potential Nucleus Targeted Drug Delivery System. Curr Drug Deliv 2020; 17:101-111. [PMID: 31906837 DOI: 10.2174/1567201817666200106104332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nucleus targeted drug delivery provides several opportunities for the treatment of fatal diseases such as cancer. However, the complex nucleocytoplasmic barriers pose significant challenges for delivering a drug directly and efficiently into the nucleus. Aptamers representing singlestranded DNA and RNA qualify as next-generation highly advanced and personalized medicinal agents that successfully inhibit the expression of certain proteins; possess extraordinary gene-expression for manoeuvring the diseased cell's fate with negligible toxicity. In addition, the precisely directed aptamers to the site of action present a tremendous potential to reach the nucleus by escaping the ensuing barriers to exhibit a better drug activity and gene expression. OBJECTIVE This review epigrammatically highlights the significance of targeted drug delivery and presents a comprehensive description of the principal barriers faced by the nucleus targeted drug delivery paradigm and ensuing complexities thereof. Eventually, the progress of nucleus targeting with nucleic acid aptamers and success achieved so far have also been reviewed. METHODS Systematic literature search was conducted of research published to date in the field of nucleic acid aptamers. CONCLUSION The review specifically points out the contribution of individual aptamers as the nucleustargeting agent rather than aptamers in conjugated form.
Collapse
Affiliation(s)
- Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Hamid A Bakshi
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry BT52 1SA Northern Ireland, United Kingdom
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab), India
| | - Faruck L Hakkim
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Oman
| | - Nitin B Charbe
- Departamento de Quimica Organica, Facultad de Quimicay de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuña McKenna 4860, Macul, Santiago 7820436, Chile
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, County Londonderry BT52 1SA Northern Ireland, United Kingdom
| |
Collapse
|
4
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
5
|
Cheng Y, Ou Z, Li Q, Yang J, Hu M, Zhou Y, Zhuang X, Zhang ZJ, Guan S. Cabazitaxel liposomes with aptamer modification enhance tumor‑targeting efficacy in nude mice. Mol Med Rep 2018; 19:490-498. [PMID: 30483775 PMCID: PMC6297770 DOI: 10.3892/mmr.2018.9689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/25/2018] [Indexed: 01/28/2023] Open
Abstract
The present study investigated the feasibility of improving the tumor-targeting efficacy and decreasing the toxicity of liposomal cabazitaxel (Cab) with aptamer modification. The process involved preparing aptamer (TLS1c)-modified liposomes and studying the behavior of the liposomes in vitro and in vivo. TLS1c as an aptamer, which has high specificity for BNL 1ME A.7R.1 (MEAR) cells, was conjugated with Cab liposomes (Cab/lipo) to enhance MEAR tumor tissue targeting. Confocal laser scanning microscopy and flow cytometry analyses demonstrated that the fluorescence of the liposomes modified with the aptamer was notably stronger compared with that of the unmodified liposomes. Furthermore, the biodistribution data of the modified liposomes tested in tumor-bearing mice revealed high specificity of biotinylated TLS1c-modified Cab/lipo (BioTL-Cab/lipo) for tumor tissues. Furthermore, the modified liposomes demonstrated decreased cytotoxicity and simultaneously retained potent inhibition against tumor growth. It is likely that the specific binding of the aptamer (TLS1c) to the targeted cells (MEAR) facilitates the binding of the liposomes to the targeted cells. Therefore, BioTL-Cab/lipo may be considered as a promising delivery system to improve cell targeting and reduce drug toxicity in the treatment of cancer.
Collapse
Affiliation(s)
- Yuzhu Cheng
- Department of Pharmacy, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhanlun Ou
- Department of Pharmacy, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Qingguo Li
- Department of Pharmacy, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Juan Yang
- Department of Pharmacy, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Min Hu
- Department of Pharmacy, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yubin Zhou
- School of Materials Science and Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Xiaodong Zhuang
- Target Discovery Institute NDM Research Building, University of Oxford, Oxford OX3 7FZ, UK
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Shixia Guan
- Department of Pharmacy, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|