1
|
Shams R, Banik NL, Haque A. Calpain in the cleavage of alpha-synuclein and the pathogenesis of Parkinson's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:107-124. [PMID: 31601400 PMCID: PMC8434815 DOI: 10.1016/bs.pmbts.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) devastates 6.3 million people, ranking it as one of the most prevalent neurodegenerative motor disorders worldwide. PD patients may manifest symptoms of postural instability, bradykinesia, and resting tremors as a result of increasing α-synuclein aggregation and neuron death with disease progression. Therapy options are limited, and those available to patients may worsen their condition. Thus, investigations to understand disease progression may help develop therapeutic strategies for improvement of quality of life for patients suffering from PD. This review provides an overview of α-synuclein, a presynaptic neuronal protein whose function in the healthy brain and PD pathology remains a mystery. This review also focuses on calcium-induced activation of calpain, a neutral protease, and the subsequent cascade of cellular processing of α-synuclein and emerging defense responses observed in experimental models of PD: microglial activation, dysregulation of T cells, and inflammatory responses in the brain. In addition, this review discusses the events of cross presentation of synuclein peptides by professional antigen presenting cells and microglia, induction of inflammatory responses in the periphery and brain, and emerging calpain-targeted therapeutic strategies to attenuate neuronal death in PD.
Collapse
Affiliation(s)
- Ramsha Shams
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Naren L Banik
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States; Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
2
|
Baquedano E, García-Cáceres C, Diz-Chaves Y, Lagunas N, Calmarza-Font I, Azcoitia I, Garcia-Segura LM, Argente J, Chowen JA, Frago LM. Prenatal stress induces long-term effects in cell turnover in the hippocampus-hypothalamus-pituitary axis in adult male rats. PLoS One 2011; 6:e27549. [PMID: 22096592 PMCID: PMC3212572 DOI: 10.1371/journal.pone.0027549] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 10/19/2011] [Indexed: 11/24/2022] Open
Abstract
Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations.
Collapse
Affiliation(s)
- Eva Baquedano
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina García-Cáceres
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Natalia Lagunas
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Calmarza-Font
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cellular Biology, School of Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis M. Garcia-Segura
- Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M. Frago
- Department of Pediatrics, Universidad Autónoma de Madrid-Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- CIBER Fisiopatología de Obesidad y Nutrición (CIBERobn), Instituto de Investigación Sanitaria Princesa, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Rao MV, Mohan PS, Peterhoff CM, Yang DS, Schmidt SD, Stavrides PH, Campbell J, Chen Y, Jiang Y, Paskevich PA, Cataldo AM, Haroutunian V, Nixon RA. Marked calpastatin (CAST) depletion in Alzheimer's disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression. J Neurosci 2008; 28:12241-54. [PMID: 19020018 PMCID: PMC2819018 DOI: 10.1523/jneurosci.4119-08.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/02/2008] [Indexed: 11/21/2022] Open
Abstract
Increased activity of calpains is implicated in synaptic dysfunction and neurodegeneration in Alzheimer's disease (AD). The molecular mechanisms responsible for increased calpain activity in AD are not known. Here, we demonstrate that disease progression is propelled by a marked depletion of the endogenous calpain inhibitor, calpastatin (CAST), from AD neurons, which is mediated by caspase-1, caspase-3, and calpains. Initial CAST depletion focally along dendrites coincides topographically with calpain II and ERK 1/2 activation, tau cleavage by caspase-3, and tau and neurofilament hyperphosphorylation. These same changes, together with cytoskeletal proteolysis and neuronal cell death, accompany CAST depletion after intrahippocampal kainic acid administration to mice, and are substantially reduced in mice overexpressing human CAST. Moreover, CAST reduction by shRNA in neuronal cells causes calpain-mediated death at levels of calcium-induced injury that are sublethal to cells normally expressing CAST. Our results strongly support a novel hypothesis that CAST depletion by multiple abnormally activated proteases accelerates calpain dysregulation in AD leading to cytoskeleton disruption and neurodegeneration. CAST mimetics may, therefore, be neuroprotective in AD.
Collapse
Affiliation(s)
- Mala V. Rao
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
- Departments of Psychiatry
| | - Panaiyur S. Mohan
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
- Departments of Psychiatry
| | | | - Dun-Sheng Yang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
- Departments of Psychiatry
| | - Stephen D. Schmidt
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
| | - Philip H. Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
| | - Jabbar Campbell
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
| | - Yuanxin Chen
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
| | - Peter A. Paskevich
- Departments of Psychiatry and
- Neuropathology and
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, and
| | - Anne M. Cataldo
- Departments of Psychiatry and
- Neuropathology and
- McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, and
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York 10962
- Departments of Psychiatry
- Cell Biology, and
- Pathology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
4
|
Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekström P, Paquet-Durand F. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 2008; 38:253-69. [PMID: 18982459 DOI: 10.1007/s12035-008-8045-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/16/2008] [Indexed: 02/24/2023]
Abstract
Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.
Collapse
Affiliation(s)
- Javier Sancho-Pelluz
- Institute for Ophthalmic Research, University of Tübingen, Centre for Ophthalmology, Röntgenweg 11, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Retinoids induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to taxol for apoptosis in human glioblastoma T98G and U87MG cells. J Neurooncol 2007; 87:9-22. [PMID: 17987264 DOI: 10.1007/s11060-007-9485-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
We hypothesized that induction of differentiation with retinoid could increase sensitivity to microtubule-binding drug taxol (TXL) for apoptosis in human glioblastoma T98G and U87MG cells. Treatment of cells with 1 microM all-trans retinoic acid (ATRA) or 1 microM 13-cis retinoic acid (13-CRA) for 7 days induced astrocytic differentiation, overexpression of glial fibrillary acidic protein (GFAP), and also down regulated telomerase expression and activity, thereby increased sensitivity to TXL for apoptosis. Treatment of glioblastoma cells with TXL triggered production of reactive oxygen species (ROS), induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and activated the redox-sensitive c-Jun NH(2)-terminal kinase 1 (JNK1) pathway. Moreover, TXL activated Raf-1 kinase for phosphorylation and inactivation of anti-apoptotic Bcl-2 protein. The events of apoptosis included increase in expression of Bax, down regulation of Bcl-2 and baculoviral inhibitor-of-apoptosis protein (IAP) repeat containing (BIRC) proteins, mitochondrial release of cytochrome c and Smac into the cytosol, increase in intracellular free [Ca(2+)], and activation of calpain, caspase-9, and caspase-3. Increased activity of caspase-3 cleaved inhibitor of caspase-activated DNase (ICAD) to release and translocate CAD to the nucleus for DNA fragmentation. Involvement of stress signaling kinases and proteolytic activities of calpain and caspase-3 in apoptosis was confirmed by pretreating cells with specific inhibitors. Taken together, our results suggested that retinoid (ATRA or 13-CRA) induced astrocytic differentiation with down regulation of telomerase activity to increase sensitivity to TXL to enhance apoptosis in glioblastoma cells. Thus, combination of retinoid and TXL could be an effective therapeutic strategy for controlling the growth of glioblastoma.
Collapse
|
6
|
García-Bonilla L, Burda J, Piñeiro D, Ayuso I, Gómez-Calcerrada M, Salinas M. Calpain-induced proteolysis after transient global cerebral ischemia and ischemic tolerance in a rat model. Neurochem Res 2006; 31:1433-41. [PMID: 17089194 DOI: 10.1007/s11064-006-9195-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/05/2006] [Indexed: 12/16/2022]
Abstract
The activation of the [Ca(2+)]-dependent cysteine protease calpain plays an important role in ischemic injury. Here, the levels of two calpain-specific substrates, p35 protein and eukaryotic initiation factor 4G (eIF4G), as well as its physiological regulator calpastatin, were investigated in a rat model of transient global cerebral ischemia with or without ischemic tolerance (IT). Extracts of the cerebral cortex, whole hippocampus and hippocampal subregions after 30 min of ischemia and different reperfusion times (30 min and 4 h) were used. In rats without IT, the p35 levels slightly decreased after ischemia or reperfusion, whereas the levels of p25 (the truncated form of p35) were much higher than those in sham control rats after ischemia and remained elevated during reperfusion. The eIF4G levels deeply diminished after reperfusion and the decrease was significantly greater in CA1 and the rest of the hippocampus than in the cortex. By contrast, the calpastatin levels did not significantly decrease during ischemia or early reperfusion, but were upregulated after 4 h of reperfusion in the cortex. Although IT did not promote significant changes in p35 and p25 levels, it induced a slight increase in calpastatin and eIF4G levels in the hippocampal subregions after 4 h of reperfusion.
Collapse
Affiliation(s)
- L García-Bonilla
- Servicio de Bioquímica, Departamento de Investigación, Hospital Ramón y Cajal, Ctra Colmenar Km 9, 28034, Madrid, Spain
| | | | | | | | | | | |
Collapse
|