1
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
2
|
Szczygielski J, Müller A, Mautes AE, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Selective Brain Hypothermia Mitigates Brain Damage and Improves Neurological Outcome after Post-Traumatic Decompressive Craniectomy in Mice. J Neurotrauma 2017; 34:1623-1635. [PMID: 27799012 DOI: 10.1089/neu.2016.4615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|
3
|
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142:45-67. [PMID: 27166858 DOI: 10.1016/j.pneurobio.2016.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
4
|
Jin Y, Lei J, Lin Y, Gao GY, Jiang JY. Autophagy Inhibitor 3-MA Weakens Neuroprotective Effects of Posttraumatic Brain Injury Moderate Hypothermia. World Neurosurg 2015; 88:433-446. [PMID: 26547006 DOI: 10.1016/j.wneu.2015.10.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The role of autophagy in moderate hypothermia in posttraumatic brain injury (post-TBI) remains elusive. In this study, we evaluated the protective role of autophagy in post-TBI moderate hypothermia. METHODS Adult male Sprague-Dawley rats were randomly divided into 3 groups (n = 36/group): TBI with hypothermia group (sham), TBI with hypothermia and a single intracerebroventricular injection of saline (saline, 5 μL), and TBI with hypothermia and a single intracerebroventricular injection of 3-methyladenine (600 nmol, diluted in 0.9% saline to a final volume of 5 μL). All rats, except those in the behavioral tests, were killed at 24 hours after fluid percussion TBI. Immunohistochemistry staining, western blot, and transmission electron microscopy were performed to assess changes in apoptosis and autophagy after injection of 3-methyladenine. Motor function (beam-walk test) and spatial learning/memory (Morris water maze) were assessed on postoperative days 1-5 and 11-15, respectively. RESULTS Our results showed downregulation of the expression level of microtubule-associated protein 1 light chain 3 and Beclin-1, aggravation of behavioral outcome, and increase of apoptosis. CONCLUSION Our results suggest that the autophagy pathway is involved in the neuroprotective effect of post-TBI hypothermia and negative modulation of apoptosis may be 1 possible mechanism.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Jin Lei
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Guo-Yi Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China
| | - Ji-Yao Jiang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
5
|
Jin Y, Lin Y, Feng JF, Jia F, Gao G, Jiang JY. Attenuation of Cell Death in Injured Cortex After Post-Traumatic Brain Injury Moderate Hypothermia: Possible Involvement of Autophagy Pathway. World Neurosurg 2015; 84:420-30. [DOI: 10.1016/j.wneu.2015.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/20/2023]
|
6
|
Jin Y, Lin Y, Feng JF, Jia F, Gao GY, Jiang JY. Moderate Hypothermia Significantly Decreases Hippocampal Cell Death Involving Autophagy Pathway after Moderate Traumatic Brain Injury. J Neurotrauma 2015; 32:1090-100. [PMID: 25942484 DOI: 10.1089/neu.2014.3649] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we evaluated changes in autophagy after post-traumatic brain injury (TBI) followed by moderate hypothermia in rats. Adult male Sprague-Dawley rats were randomly divided into four groups: sham injury with normothermia group (37 °C); sham injury with hypothermia group (32 °C); TBI with normothermia group (TNG; 37 °C); and TBI with hypothermia group (THG; 32 °C). Injury was induced by a fluid percussion TBI device. Moderate hypothermia (32 °C) was achieved by partial immersion in a water bath (0 °C) under general anesthesia for 4 h. All rats were killed at 24 h after fluid percussion TBI. The ipsilateral hippocampus in all rats was analyzed with hematoxylin and eosin staining; terminal deoxynucleoitidyl transferase-mediated nick end labeling staining was used to determine cell death in ipsilateral hippocampus. Immunohistochemistry and western blotting of microtubule-associated protein light chain 3 (LC3), Beclin-1, as well as transmission electron microscopy performed to assess changes in autophagy. At 24 h after TBI, the cell death index was 27.90 ± 2.36% in TNG and 14.90 ± 1.52% in THG. Expression level of LC3 and Beclin-1 were significantly increased after TBI and were further up-regulated after post-TBI hypothermia. Further, ultrastructural observations showed that there was a marked increase of autophagosomes and autolysosomes in ipsilateral hippocampus after post-TBI hypothermia. Our data demonstrated that moderate hypothermia significantly attenuated cell death and increased autophagy in ipsilateral hippocampus after fluid percussion TBI. In conclusion, autophagy pathway may participate in the neuroprotective effect of post-TBI hypothermia.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Yingying Lin
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Jun-feng Feng
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Feng Jia
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Guo-yi Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| | - Ji-yao Jiang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University , School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Girisgin AS, Kalkan E, Ergin M, Keskin F, Dundar ZD, Kebapcioglu S, Kocak S, Cander B. An experimental study: does the neuroprotective effect increase when hypothermia deepens after traumatic brain injury? IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e21233. [PMID: 26023335 PMCID: PMC4443303 DOI: 10.5812/ircmj.17(4)2015.21233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/16/2014] [Accepted: 11/09/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Experimental approaches have been promising with the use of therapeutic hypothermia after Traumatic Brain Injury (TBI) whereas clinical data have not supported its efficacy. OBJECTIVES This study aimed to investigate whether using selective deeper brain cooling correlates with a more neuroprotective effect on Intracranial Pressure (ICP) increments following TBI in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats (mean weight = 300 g; n = 25) were subjected to brain injury using a modified Marmarou method. Immediately after the onset of TBI, rats were randomized into three groups. Selective brain cooling was applied around the head using ice packages. Intracranial Temperature (ICT) and ICP were continuously measured at 0, 30, 60, 120, and 180 minutes and recorded for all groups. Group 1 (n = 5) was normothermia and was assigned as the control group. Group 2 (n = 10) received moderate hypothermia with a target ICT of between 32°C - 33°C and Group 3 (n = 10) was given a deeper hypothermia with a target ICT of below 32°C. RESULTS All subjects reached the target ICT by the 30th minute of hypothermia induction. The ICT was significantly different in Group 2 compared to Group 1 only at the 120th minute (P = 0.017), while ICP was significantly lower starting from the 30th minute (P = 0.015). The ICT was significantly lower in Group 3 compared to Groups 1 and 2 starting from the 30th minute (P = 0.001 and P = 0.003, respectively). The ICP was significantly lower in Group 3 compared to Group 1 starting from 30th minute (P = 0.001); however, a significant difference in ICP between Group 3 and Group 2 was observed only at the 180th minute (P = 0.047). CONCLUSIONS Results of this study indicate that selective brain cooling is an effective method of decreasing ICP in rats; however, the deeper hypothermia caused a greater decrease in ICP three hours after hypothermia induction.
Collapse
Affiliation(s)
- Abdullah Sadik Girisgin
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Erdal Kalkan
- Department of Neurosurgery, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Ergin
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Fatih Keskin
- Department of Neurosurgery, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Zerrin Defne Dundar
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sedat Kebapcioglu
- Department of Emergency Medicine, Medicine Faculty, Mevlana University, Konya, Turkey
| | - Sedat Kocak
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Basar Cander
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
8
|
Gao XY, Huang JO, Hu YF, Gu Y, Zhu SZ, Huang KB, Chen JY, Pan SY. Combination of mild hypothermia with neuroprotectants has greater neuroprotective effects during oxygen-glucose deprivation and reoxygenation-mediated neuronal injury. Sci Rep 2014; 4:7091. [PMID: 25404538 PMCID: PMC4665348 DOI: 10.1038/srep07091] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/29/2014] [Indexed: 12/02/2022] Open
Abstract
Co-treatment of neuroprotective reagents may improve the therapeutic efficacy of hypothermia in protecting neurons during ischemic stroke. This study aimed to find promising drugs that enhance the neuroprotective effect of mild hypothermia (MH). 26 candidate drugs were selected based on different targets. Primary cultured cortical neurons were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) to induce neuronal damage, followed by either single treatment (a drug or MH) or a combination of a drug and MH. Results showed that, compared with single treatment, combination of MH with brain derived neurotrophic factor, glibenclamide, dizocilpine, human urinary kallidinogenase or neuroglobin displayed higher proportion of neuronal cell viability. The latter three drugs also caused less apoptosis rate in combined treatment. Furthermore, co-treatment of those three drugs and MH decreased the level of reactive oxygen species (ROS) and intracellular calcium accumulation, as well as stabilized mitochondrial membrane potential (MMP), indicating the combined neuroprotective effects are probably via inhibiting mitochondrial apoptosis pathway. Taken together, the study suggests that combined treatment with hypothermia and certain neuroprotective reagents provide a better protection against OGD/R-induced neuronal injury.
Collapse
Affiliation(s)
- Xiao-Ya Gao
- 1] Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China [2] Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jian-Ou Huang
- 1] Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China [2] Department of Neurology, the 421 Hospital, Guangzhou, Guangdong, P. R. China
| | - Ya-Fang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Shu-Zhen Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Kai-Bin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jin-Yu Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Su-Yue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
9
|
Doll H, Maegele M, Bohl J, Störkel S, Kipfmueller F, Schaefer U, Angelov D, Wirth S, Truebel H. Pharyngeal selective brain cooling is associated with reduced CNS cortical lesion after experimental traumatic brain injury in rats. J Neurotrauma 2011; 27:2245-54. [PMID: 20939694 DOI: 10.1089/neu.2010.1505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia (TH) is still being explored as a therapeutic option after traumatic brain injury (TBI) but clinical data has not supported its efficacy. Experimental approaches were promising, but clinical data did not support its efficacy in the treatment of TBI. A novel approach of pharyngeal selective brain cooling (pSBC), recently introduced by our group, has been accompanied by superior neurofunctional, sensorimotor, and cognitive outcomes. This work is now extended by data on histomorphological and physical outcomes after pSBC in a model of experimental TBI. Male Sprague-Dawley rats were subjected to lateral fluid-percussion (LFP) brain injury, and randomized to the following experimental groups: (1) TBI with pSBC, (2) TBI without pSBC, and (3) sham animals. On day post-injury (DPI) 14, the animals were sacrificed and their brains were harvested for immunohistochemistry using the following antibodies: (1) glial fibrillary acidic protein (GFAP), (2) neurofilament (NF), and (3) synaptophysin (SY). In pSBC animals brain temperature was selectively lowered to 33 ± 0.5°C within 15 min post-injury, and maintained for 180 min after induction, while keeping rectal temperatures at physiological levels. Animals that had undergone pSBC showed a significantly faster recovery of body weight starting on DPI 3, and had gained substantially more weight than TBI-only animals on DPI 14 (p < 0.001), indicating superior physical recovery. Areas of cortical damage were significantly smaller in pSBC animals compared to TBI-only animals (p < 0.01). pSBC was associated with preservation of cortical tissue ipsilateral to the lesion, and superior physical recovery after experimental TBI. These results complement earlier reports in which pSBC was associated with superior neurofunctional and cognitive outcomes using the same experimental model.
Collapse
Affiliation(s)
- Hinnerk Doll
- Institute for Research in Operative Medicine (IFOM), University of Witten-Herdecke, Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jia F, Pan YH, Mao Q, Liang YM, Jiang JY. Matrix Metalloproteinase-9 Expression and Protein Levels after Fluid Percussion Injury in Rats: The Effect of Injury Severity and Brain Temperature. J Neurotrauma 2010; 27:1059-68. [PMID: 20233042 DOI: 10.1089/neu.2009.1067] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Feng Jia
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Yixing People's Hospital, Yixing City, Jiangsu, China
| | - Yao-hua Pan
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
- Co-first author
| | - Qing Mao
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Yu-min Liang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Ji-yao Jiang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Han RZ, Hu JJ, Weng YC, Li DF, Huang Y. NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 2010; 25:367-75. [PMID: 19927173 DOI: 10.1007/s12264-009-0608-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE NMDA receptor channel plays an important role in the pathophysiological process of traumatic brain injury (TBI). The present study aims to study the pathological mechanism of TBI and the impairment of learning and memory after TBI, and to investigate the mechanism of the protective effect of NMDA receptor antagonist MK-801 on learning and memory disorder after TBI. METHODS Forty Sprague-Dawley rats (weighing approximately 200 g) were randomized into 5 groups (n = 8 in each group): control group, model group, low-dose group (MK-801 0.5 mg/kg), middle-dose group (MK-801 2 mg/kg), and high-dose group (MK-801 10 mg/kg). TBI model was established using a weight-drop head injury mode. After 2-month drug treatment, learning and memory ability was evaluated by using Morris water maze test. Then the animals were sacrificed, and brain tissues were taken out for morphological and immunohistochemical assays. RESULTS The ability of learning and memory was significantly impaired in the TBI model animals. Besides, the neuronal caspase-3 expression, neuronal nitric oxide synthase (nNOS)-positive neurons and OX-42-positive microglia were all increased in TBI animals. Meanwhile, the number of neuron synapses was decreased, and vacuoles degeneration could be observed in mitochondria. After MK-801 treatment at 3 different dosages, the ability of learning and memory was markedly improved, as compared to that of the TBI model animals. Moreover, neuronal caspase-3 expression, OX-42-positive microglia and nNOS-positive neurons were all significantly decreased. Meanwhile, the mitochondria degeneration was greatly inhibited. CONCLUSION MK-801 could significantly inhibit the degeneration and apoptosis of neurons in damaged brain areas. It could also inhibit TBI-induced increase in nNOS-positive neurons and OX-42-positive microglia. Impairment in learning and memory in TBI animals could be repaired by treatment with MK-801.
Collapse
Affiliation(s)
- Rui-Zhang Han
- Medical College of Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
12
|
Jia F, Mao Q, Liang YM, Jiang JY. Effect of post-traumatic mild hypothermia on hippocampal cell death after traumatic brain injury in rats. J Neurotrauma 2009; 26:243-52. [PMID: 19236165 DOI: 10.1089/neu.2008.0670] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this investigation, we evaluated the effect of post-traumatic mild hypothermia on cell death in the hippocampus after fluid percussion traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n = 40/group): TBI with hypothermia treatment (32 degrees C), TBI with normothermia (37 degrees C), and sham injury. The TBI model was induced by a fluid percussion TBI device. Mild hypothermia (32 degrees C) was achieved by partial immersion in a water bath (0 degrees C) under general anesthesia for 4h. All rats were killed at 24 or 72h after TBI. The ipsilateral hippocampal CA1 in all rats were analyzed by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL), and 4',6-diamidino-2-phenylindole (DAPI) staining for determining cell death. Caspase-3 expression was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. At 24h, based on TUNEL and DAPI results, the cell death index was 28.80 +/- 2.60% and 32.10 +/- 1.40% in the normothermia TBI group, while reaching only 14.30 +/- 2.70% and 18.40 +/- 2.10% in the hypothermic TBI group (p < 0.01). Based on RT-PCR and Western blotting results, the expression of caspase-3 was 210.20 +/- 5.30% and 170.30 +/- 4.80% in the normothermic TBI group, while reaching only 165.10 +/- 3.70% and 130.60 +/- 4.10% in the hypothermic TBI group (p < 0.05). At 72h, based on TUNEL and DAPI results, the cell death index was 20.80 +/- 2.50% and 25.50 +/- 1.80% in the normothermic TBI group, while reaching only 10.20 +/- 2.60% and 15.50 +/- 2.10% in the hypothermic TBI group (p < 0.01). Based on RT-PCR and Western blotting results, the expression of caspase-3 was 186.20 +/- 6.20% and 142.30 +/- 5.10% in the normothermic TBI group, versus only 152.10 +/- 3.60% and 120.60 +/- 3.90% in the hypothermic TBI group (p < 0.05). Based on our findings, we conclude that post-traumatic hypothermia significantly attenuates cell death within the hippocampus following fluid percussion injury. Taken together with other studies, these observations support the premise that post-traumatic mild hypothermia can provide cerebral protection for patients with TBI.
Collapse
Affiliation(s)
- Feng Jia
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
13
|
Olson DM, Kelly AP, Washam NC, Thoyre SM. Critical care nurses' workload estimates for managing patients during induced hypothermia. Nurs Crit Care 2009; 13:305-9. [PMID: 19128314 DOI: 10.1111/j.1478-5153.2008.00298.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The purpose of this study was to provide an initial foundation for exploring how induced hypothermia impacts nursing workload in an intensive care unit setting. METHODS This descriptive study used a questionnaire to obtain input from critical care nurses. RESULTS The results represent 107 returned surveys from 120 surveys distributed to seven different critical care units. Nurses estimate a mean time of 9.27 min (95% CI = 5.63-12.92 min) per shift for each intervention. Nurses indicate that they typically consider employing over 10 interventions to reduce temperature or induce hypothermia (95% CI = 9.67-10.81). CONCLUSIONS Nurses are open to using a variety of different interventions to manage temperature in critically ill patients. The time required to complete any one intervention varies significantly, but the combination of interventions most certainly has a significant impact on the workload for bedside nurses.
Collapse
Affiliation(s)
- DaiWai M Olson
- Medicine/Neurology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|