1
|
Gelinski Kempe PR, de Castro MV, Coser LDO, Cartarozzi LP, Barraviera B, Ferreira RS, de Oliveira ALR. Combination of Adult Mesenchymal Stem Cell Therapy and Immunomodulation with Dimethyl Fumarate Following Spinal Cord Ventral Root Repair. BIOLOGY 2024; 13:953. [PMID: 39596908 PMCID: PMC11591889 DOI: 10.3390/biology13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Spinal cord injury results in significant motor and sensory loss. In the experimental ventral root avulsion (VRA) model, the ventral (motor) roots are disconnected from the spinal cord surface, disrupting contact between spinal motoneurons and muscle fibers. Axotomized motoneurons typically degenerate within two to three weeks after avulsion, the situation being exacerbated by an increased glial response and chronic inflammation. Nevertheless, root reimplantation has been observed to stimulate regenerative potential in some motoneurons, serving as a model for CNS/PNS regeneration. We hypothesized that a combination of neuroprotective and immunomodulatory therapies is capable of enhancing regenerative responses following nerve root injury and repair. A heterologous fibrin biopolymer (HFB) was used for surgical repair; dimethyl fumarate (DMF) was used for neuroprotection and immunomodulation; and adipose tissue-derived mesenchymal stem cells (AT-MSCs) were used as a source of trophic factors and cytokines that may further enhance neuronal survival. Thus, adult female Lewis rats underwent unilateral VRA of the L4-L6 roots, followed by reimplantation with HFB, AT-MSCs transplantation, and daily DMF treatment for four weeks, with a 12-week postoperative survival period. An evaluation of the results focused on light microscopy, qRT-PCR, and the Catwalk motor function recovery system. Data were analyzed using one-way or two-way ANOVA (p < 0.05). The results indicate that the combined therapy resulted in a reduced glial response and a 70% improvement in behavioral motor recovery. Overall, the data support the potential of combined regenerative approaches after spinal cord root injury.
Collapse
Affiliation(s)
- Paula Regina Gelinski Kempe
- Laboratory of Nerve Regeneration, University of Campinas (UNICAMP), Campinas 13083-865, SP, Brazil; (P.R.G.K.); (M.V.d.C.); (L.d.O.C.); (L.P.C.)
| | - Mateus Vidigal de Castro
- Laboratory of Nerve Regeneration, University of Campinas (UNICAMP), Campinas 13083-865, SP, Brazil; (P.R.G.K.); (M.V.d.C.); (L.d.O.C.); (L.P.C.)
| | - Lilian de Oliveira Coser
- Laboratory of Nerve Regeneration, University of Campinas (UNICAMP), Campinas 13083-865, SP, Brazil; (P.R.G.K.); (M.V.d.C.); (L.d.O.C.); (L.P.C.)
| | - Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas (UNICAMP), Campinas 13083-865, SP, Brazil; (P.R.G.K.); (M.V.d.C.); (L.d.O.C.); (L.P.C.)
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (B.B.); (R.S.F.J.)
- Center for Translational Sciences and Biopharmaceuticals Development, Botucatu 18610-307, SP, Brazil
- Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu 01419-901, SP, Brazil; (B.B.); (R.S.F.J.)
- Center for Translational Sciences and Biopharmaceuticals Development, Botucatu 18610-307, SP, Brazil
| | | |
Collapse
|
2
|
Lee EY, Spinner RJ, Mortazavi MM, Angius D, Adeeb N, Bishop AT, Shin AY. Stem cell therapy for traumatic brachial plexus injury. Acta Neurochir (Wien) 2023; 165:2011-2014. [PMID: 37389748 DOI: 10.1007/s00701-023-05675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Stem cell therapy is rapidly evolving, with preclinical studies showing various stem cell types successfully promoting peripheral nerve regeneration. Despite the lack of clinical studies demonstrating efficacy and safety, the number of commercial entities marketing and promoting this treatment direct to patients is also increasing. We describe three adult traumatic brachial plexus injury (BPI) patients who had stem cell therapies prior to consultation in a multidisciplinary brachial plexus clinic. No functional improvement was noted at long-term follow-up despite claims reported by the commercial entities. Considerations and implications of stem cell application in BPI patients are reviewed.
Collapse
Affiliation(s)
- Ellen Y Lee
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Department of Hand and Reconstructive Microsurgery, National University Health System, Singapore, 119228, Singapore
| | - Robert J Spinner
- Department of Neurosurgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Martin M Mortazavi
- California Institute of Neuroscience, 2100 Lynn Rd, Suite 120, Thousand Oaks, CA, 91360, USA
| | - Diana Angius
- Fondazione Don Gnocchi, Piazza Castello 20-22, 20060 Pessano con Bornago, Milan, Italy
| | - Nimer Adeeb
- Department of Neurosurgery, Louisiana State University, Shreveport, LA, 71103, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Romaniyanto FNU, Prijosedjati A, Notobroto HB, Tinduh D, Prakoeswa CRS, Rantam FA, Rhatomy S. Prospect of Stem Cells as Promising Therapy for Brachial Plexus Injury: A Systematic Review. Stem Cells Cloning 2022; 15:29-42. [PMID: 35770243 PMCID: PMC9234311 DOI: 10.2147/sccaa.s363415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 12/09/2022] Open
Abstract
Background Brachial plexus injury is an advanced and devastating neurological injury, for which both nerve surgery and tendon transfers sometimes remain insufficient in restoring normal movement. Stem cell therapy may be applicable to rescue the injured motor neurons from degeneration which potentially improves muscle strength. Study Design Systematic Review; Level of evidence V. Data Sources A systematic literature search was conducted on PubMed (MEDLINE), EMBASE, the Cochrane Library, and Scopus using the terms ("stem cell") AND ("brachial plexus") as search keywords. Methods The process of study selection was summarized by PRISMA flow diagram. The study included in vivo and in vitro studies with English language, humans or animals with some brachial plexus injuries, interventions, some applications of stem cells to the groups of study, with functional, biomechanical, or safety outcomes. Results In total, there were 199 studies identified from the literature sources where 75 articles were qualified for forward evaluation following selecting the titles and abstracts. Ten studies were finally included in this systematic review after full-text assessment. Stem cells can produce neurotrophic factors in vitro and in vivo in rats, and their level was increased after injury. Electrophysiological measurement showed that the intervention group had distinctly higher CMAP amplitude and evidently shorter CMAP latency than the model group. Application of bone marrow stem cells (BMSCs) showed an elevation in the numbers of axons and density of myelinated fibers, the density of nerve fibers, the diameter of regenerating axons, and a decrease in axonal degeneration. A study in humans indicated an improvement of the movements in a patient with traumatic total BPI after injection of Ad-MSC. It is associated with increased muscle mass and sensory recovery and also suggested that mononuclear cell injection enhances muscle regeneration and reinnervation in the partly denervated muscle of brachial plexus injury. Various muscle groups had obtained strength together with restoration, the muscle strength attained after the previous transplantation were preserved. The results of this review support stem cell treatment in brachial plexus injury. Conclusion This review provides evidence of the positive effects of stem cell treatment in brachial plexus injury.
Collapse
Affiliation(s)
- Tito Sumarwoto
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital/Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Suroto
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - F N U Romaniyanto
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital/Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Andhi Prijosedjati
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital/Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | | | - Damayanti Tinduh
- Physical Medicine and Rehabilitation Department, Universitas Airlangga, Surabaya, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology and Venereology, Dr. Soetomo General Hospital/Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology Laboratory, Microbiology Department, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Sholahuddin Rhatomy
- Department of Orthopaedics and Traumatology, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia
- Faculty of medicine, public health and nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Sawada H, Kurimoto S, Tokutake K, Saeki S, Hirata H. Optimal conditions for graft survival and reinnervation of denervated muscles after embryonic motoneuron transplantation into peripheral nerves undergoing Wallerian degeneration. J Tissue Eng Regen Med 2021; 15:763-775. [PMID: 34030216 DOI: 10.1002/term.3223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
Motoneuron transplantation into peripheral nerves undergoing Wallerian degeneration may have applications in treating diseases causing muscle paralysis. We investigated whether functional reinnervation of denervated muscle could be achieved by early or delayed transplantation after denervation. Adult rats were assigned to six groups with increasing denervation periods (0, 1, 4, 8, 12, and 24 weeks) before inoculation with culture medium containing (transplantation group) or lacking (surgical control group) dissociated embryonic motoneurons into the peroneal nerve. Electrophysiological and tissue analyses were performed 3 months after transplantation. Reinnervation of denervated muscles significantly increased relative muscle weight in the transplantation group compared with the surgical control group for denervation periods of 1 week (0.042% ± 0.0031% vs. 0.032% ± 0.0020%, respectively; p = 0.009), 4 weeks (0.044% ± 0.0069% vs. 0.026% ± 0.0045%, respectively; p = 0.0023), and 8 weeks (0.044% ± 0.0029% vs. 0.026% ± 0.0008%, respectively; p = 0.0023). The ratios of reinnervated muscle contractile forces to naïve muscle in the 0, 1, 4, 8, and 12 weeks transplantation groups were 3.79%, 18.99%, 8.05%, 6.30%, and 5.80%, respectively, indicating that these forces were sufficient for walking. The optimal implantation time for transplantation of motoneurons into the peripheral nerve was 1 week after nerve transection. However, the neurons transplanted 24 weeks after denervation survived and regenerated axons. These results indicated that there is time for preparing cells for transplantation in regenerative medicine and suggested that our method may be useful for paralysed muscles that are not expected to recover with current treatment.
Collapse
Affiliation(s)
- Hideyoshi Sawada
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeru Kurimoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Tokutake
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sota Saeki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Zhang XL, Zhang XG, Huang YR, Zheng YY, Ying PJ, Zhang XJ, Lu X, Wang YJ, Zheng GQ. Stem Cell-Based Therapy for Experimental Ischemic Stroke: A Preclinical Systematic Review. Front Cell Neurosci 2021; 15:628908. [PMID: 33935650 PMCID: PMC8079818 DOI: 10.3389/fncel.2021.628908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell transplantation offers promise in the treatment of ischemic stroke. Here we utilized systematic review, meta-analysis, and meta-regression to study the biological effect of stem cell treatments in animal models of ischemic stroke. A total of 98 eligible publications were included by searching PubMed, EMBASE, and Web of Science from inception to August 1, 2020. There are about 141 comparisons, involving 5,200 animals, that examined the effect of stem cell transplantation on neurological function and infarct volume as primary outcome measures in animal models for stroke. Stem cell-based therapy can improve both neurological function (effect size, −3.37; 95% confidence interval, −3.83 to −2.90) and infarct volume (effect size, −11.37; 95% confidence interval, −12.89 to −9.85) compared with controls. These results suggest that stem cell therapy could improve neurological function deficits and infarct volume, exerting potential neuroprotective effect for experimental ischemic stroke, but further clinical studies are still needed.
Collapse
Affiliation(s)
- Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Ran Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
EphrinB/EphB forward signaling in Müller cells causes apoptosis of retinal ganglion cells by increasing tumor necrosis factor alpha production in rat experimental glaucomatous model. Acta Neuropathol Commun 2018; 6:111. [PMID: 30355282 PMCID: PMC6201539 DOI: 10.1186/s40478-018-0618-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/12/2018] [Indexed: 01/26/2023] Open
Abstract
It was previously shown that EphB/ephrinB reverse signaling in retinal ganglion cells (RGCs) is activated and involved in RGC apoptosis in a rat chronic ocular hypertension (COH) model. In the present work, we first show that ephrinB/EphB forward signaling was activated in COH retinas, and RGC apoptosis in COH retinas was reduced by PP2, an inhibitor of ephrinB/EphB forward signaling. We further demonstrate that treatment of cultured Müller cells with ephrinB1-Fc, an EphB1 activator, or intravitreal injection of ephrinB1-Fc in normal rats induced an increase in phosphorylated EphB levels in these cells, indicating the activation of ephrinB/EphB forward signaling, similar to those in COH retinas. The ephrinB1-Fc treatment did not induce Müller cell gliosis, as evidenced by unchanged GFAP expression, but significantly up-regulated mRNA and protein levels of tumor necrosis factor-α (TNF-α) in Müller cells, thereby promoting RGC apoptosis. Production of TNF-α induced by the activation of ephrinB/EphB forward signaling was mediated by the NR2B subunit of NMDA receptors, which was followed by a distinct PI3K/Akt/NF-κB signaling pathway, as pharmacological interference of each step of this pathway caused a reduction of TNF-α production, thus attenuating RGC apoptosis. Functional analysis of forward and reverse signaling in such a unique system, in which ephrin and Eph exist respectively in a glial element and a neuronal element, is of theoretical importance. Moreover, our results also raise a possibility that suppression of ephrinB/EphB forward signaling may be a new strategy for ameliorating RGC apoptosis in glaucoma.
Collapse
|
7
|
Gloviczki B, Török DG, Márton G, Gál L, Bodzay T, Pintér S, Nógrádi A. Delayed Spinal Cord–Brachial Plexus Reconnection after C7 Ventral Root Avulsion: The Effect of Reinnervating Motoneurons Rescued by Riluzole Treatment. J Neurotrauma 2017; 34:2364-2374. [DOI: 10.1089/neu.2016.4754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Balázs Gloviczki
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Sándor Péterfy Hospital, Budapest, Hungary
| | - Dénes G. Török
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Gábor Márton
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
| | - László Gál
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tamás Bodzay
- Department of Traumatology, Sándor Péterfy Hospital, Budapest, Hungary
| | - Sándor Pintér
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
- Department of Traumatology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | - Antal Nógrádi
- Laboratory of Neural Regeneration, Department of Anatomy, Histology, and Embryology, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Fang XY, Zhang WM, Zhang CF, Wong WM, Li W, Wu W, Lin JH. Lithium accelerates functional motor recovery by improving remyelination of regenerating axons following ventral root avulsion and reimplantation. Neuroscience 2016; 329:213-25. [PMID: 27185485 DOI: 10.1016/j.neuroscience.2016.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 05/06/2016] [Indexed: 01/14/2023]
Abstract
Brachial plexus injury (BPI) often involves the complete or partial avulsion of one or more of the cervical nerve roots, which leads to permanent paralysis of the innervated muscles. Reimplantation surgery has been attempted as a clinical treatment for brachial plexus root avulsion but has failed to achieve complete functional recovery. Lithium is a mood stabilizer drug that is used to treat bipolar disorder; however, its effects on spinal cord or peripheral nerve injuries have also been reported. The purpose of this study was to investigate whether lithium can improve functional motor recovery after ventral root avulsion and reimplantation in a rat model of BPI. The results showed that systemic treatment with a clinical dose of lithium promoted motor neuron outgrowth and increased the efficiency of motor unit regeneration through enhanced remyelination. An analysis of myelin-associated genes showed that the effects of lithium started during the early phase of remyelination and persisted through the late stage of the process. Efficient remyelination of the regenerated axons in the lithium-treated rats led to an earlier functional recovery. Therefore, we demonstrated that lithium might be a potential clinical treatment for BPI in combination with reimplantation surgery.
Collapse
Affiliation(s)
- Xin-Yu Fang
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wen-Ming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chao-Fan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China; Department of Orthopedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wai-Man Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wen Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region; Joint Laboratory for CNS Regeneration, Jinan University and The University of Hong Kong, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China.
| | - Jian-Hua Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Ye J, Yao JP, Wang X, Zheng M, Li P, He C, Wan JB, Yao X, Su H. Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury. Mol Med Rep 2016; 13:3083-91. [PMID: 26935530 PMCID: PMC4805061 DOI: 10.3892/mmr.2016.4914] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
Abstract
Ginsenosides exhibit various neuroprotective effects against oxidative stress. However, which ginsenoside provides optimal effects for the treatment of neurological disorders as a potent antioxidant remains to be elucidated. Therefore, the present study investigated and compared the neuroprotective effects of the Rb1, Rd, Rg1 and Re ginsenosides on neural progenitor cells (NPCs) following tert-Butylhydroperoxide (t-BHP)-induced oxidative injury. Primary rat embryonic cortical NPCs were prepared from E14.5 embryos of Sprague-Dawley rats. The oxidative injury model was established with t-BHP. A lactate dehydrogenase assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used to measure the viability of the NPCs pre-treated with ginsenosides under oxidative stress. Reverse transcription-quantitative polymerase chain reaction analysis was used to determine the activation of intracellular signaling pathways triggered by the pretreatment of ginsenosides. Among the four ginsenosides, only Rb1 attenuated t-BHP toxicity in the NPCs, and the nuclear factor (erythroizd-derived 2)-like 2/heme oxygenase-1 pathway was found to be key in the intracellular defense against oxidative stress. The present study demonstrated the anti-oxidative effects of ginsenoside Rb1 on NPCs, and suggested that Rb1 may offer potential as a potent antioxidant for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jun Ye
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zheijiang 310016, P.R. China
| | - Jian-Ping Yao
- Department of Cardiac Surgery II, The First Affiliated Hospital Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Minying Zheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, P.R. China
| |
Collapse
|
10
|
De Luca C, Savarese L, Colangelo AM, Bianco MR, Cirillo G, Alberghina L, Papa M. Astrocytes and Microglia-Mediated Immune Response in Maladaptive Plasticity is Differently Modulated by NGF in the Ventral Horn of the Spinal Cord Following Peripheral Nerve Injury. Cell Mol Neurobiol 2016; 36:37-46. [PMID: 26084599 PMCID: PMC11482470 DOI: 10.1007/s10571-015-0218-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 01/12/2023]
Abstract
Reactive astrocytes and activated microglia are the key players in several pathophysiologic modifications of the central nervous system. We used the spared nerve injury (SNI) of the sciatic nerve to induce glial maladaptive response in the ventral horn of lumbar spinal cord and examine its role in the remodeling of the tripartite synapse plasticity. Imaging the ventral horn revealed that SNI was associated with both an early microglial and astrocytic activation, assessed, respectively, by analysis of Iba1 and GFAP expression. Microglia, in particular, localized peculiarly surrounding the motor neurons somata. Perineuronal astrocytes, which play a key role in maintaining the homeostasis of neuronal circuitry, underwent a substantial phenotypic change following peripheral axotomy, producing reactive gliosis. The gliosis was associated with the reduction of glial aminoacid transporters (GLT1 and GlyT1) and increase of neuronal glutamate transporter EAAC1. Although the expression of GABAergic neuronal marker GAD65/67 showed no change, glutamate increase, as demonstrated by HPLC analysis, shifted the excitatory/inhibitory balance as showed by the net increase of the glutamate/GABA ratio. Moreover, endogenous NGF levels were altered in SNI animals and not restored by the intrathecal NGF administration. This treatment reverted phenotypic changes associated with reactive astrocytosis, but failed to modify microglia activation. These findings on one hand confirm the correlation between gliopathy and maladaptive plasticity of the spinal synaptic circuitry, on the other hand add new data concerning the complex peculiar behavior of different glial cells in neuronal degenerative processes, defining a special role of microglia in sustaining the inflammatory response.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, Via L. Armanni, 5, 80138, Naples, Italy
| | - Leonilde Savarese
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, Via L. Armanni, 5, 80138, Naples, Italy
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Maria Rosaria Bianco
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, Via L. Armanni, 5, 80138, Naples, Italy
| | - Giovanni Cirillo
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, Via L. Armanni, 5, 80138, Naples, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, Second University of Naples, Via L. Armanni, 5, 80138, Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
11
|
Eggers R, Tannemaat MR, De Winter F, Malessy MJA, Verhaagen J. Clinical and neurobiological advances in promoting regeneration of the ventral root avulsion lesion. Eur J Neurosci 2015; 43:318-35. [PMID: 26415525 DOI: 10.1111/ejn.13089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/31/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Root avulsions due to traction to the brachial plexus causes complete and permanent loss of function. Until fairly recent, such lesions were considered impossible to repair. Here we review clinical repair strategies and current progress in experimental ventral root avulsion lesions. The current gold standard in patients with a root avulsion is nerve transfer, whereas reimplantation of the avulsed root into the spinal cord has been performed in a limited number of cases. These neurosurgical repair strategies have significant benefit for the patient but functional recovery remains incomplete. Developing new ways to improve the functional outcome of neurosurgical repair is therefore essential. In the laboratory, the molecular and cellular changes following ventral root avulsion and the efficacy of intervention strategies have been studied at the level of spinal motoneurons, the ventral spinal root and peripheral nerve, and the skeletal muscle. We present an overview of cell-based pharmacological and neurotrophic factor treatment approaches that have been applied in combination with surgical reimplantation. These interventions all demonstrate neuroprotective effects on avulsed motoneurons, often accompanied with various degrees of axonal regeneration. However, effects on survival are usually transient and robust axon regeneration over long distances has as yet not been achieved. Key future areas of research include finding ways to further extend the post-lesion survival period of motoneurons, the identification of neuron-intrinsic factors which can promote persistent and long-distance axon regeneration, and finally prolonging the pro-regenerative state of Schwann cells in the distal nerve.
Collapse
Affiliation(s)
- Ruben Eggers
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Martijn R Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn J A Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognition research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Pajer K, Nemes C, Berzsenyi S, Kovács KA, Pirity MK, Pajenda G, Nógrádi A, Dinnyés A. Grafted murine induced pluripotent stem cells prevent death of injured rat motoneurons otherwise destined to die. Exp Neurol 2015; 269:188-201. [PMID: 25889458 DOI: 10.1016/j.expneurol.2015.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/02/2015] [Accepted: 03/24/2015] [Indexed: 12/23/2022]
Abstract
Human plexus injuries often include the avulsion of one or more ventral roots, resulting in debilitating conditions. In this study the effects of undifferentiated murine iPSCs on damaged motoneurons were investigated following avulsion of the lumbar 4 (L4) ventral root, an injury known to induce the death of the majority of the affected motoneurons. Avulsion and reimplantation of the L4 ventral root (AR procedure) were accompanied by the transplantation of murine iPSCs into the injured spinal cord segment in rats. Control animals underwent ventral root avulsion and reimplantation, but did not receive iPSCs. The grafted iPSCs induced an improved reinnervation of the reimplanted ventral root by the host motoneurons as compared with the controls (number of retrogradely labeled motoneurons: 503 ± 38 [AR+iPSCs group] vs 48 ± 6 [controls, AR group]). Morphological reinnervation resulted in a functional recovery, i.e. the grafted animals exhibited more motor units in their reinnervated hind limb muscles, which produced a greater force than that in the controls (50 ± 2.1% vs 11.9 ± 4.2% maximal tetanic tension [% ratio of operated/intact side]). Grafting of undifferentiated iPSCs downregulated the astroglial activation within the L4 segment. The grafted cells differentiated into neurons and astrocytes in the injured cord. The grafted iPSCs, host neurons and glia were found to produce the cytokines and neurotrophic factors MIP-1a, IL-10, GDNF and NT-4. These findings suggest that, following ventral root avulsion injury, iPSCs are able to induce motoneuron survival and regeneration through combined neurotrophic and cytokine modulatory effects.
Collapse
Affiliation(s)
- Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | | - Gholam Pajenda
- Department for Trauma Surgery, Medical University Vienna, Vienna, Austria
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - András Dinnyés
- Biotalentum Ltd., Gödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, Hungary.
| |
Collapse
|
13
|
Cytokine signaling by grafted neuroectodermal stem cells rescues motoneurons destined to die. Exp Neurol 2014; 261:180-9. [DOI: 10.1016/j.expneurol.2014.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
|
14
|
Pajenda G, Hercher D, Márton G, Pajer K, Feichtinger GA, Maléth J, Redl H, Nógrádi A. Spatiotemporally limited BDNF and GDNF overexpression rescues motoneurons destined to die and induces elongative axon growth. Exp Neurol 2014; 261:367-76. [DOI: 10.1016/j.expneurol.2014.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/30/2014] [Accepted: 05/18/2014] [Indexed: 01/09/2023]
|
15
|
Lithium enhances axonal regeneration in peripheral nerve by inhibiting glycogen synthase kinase 3β activation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:658753. [PMID: 24967390 PMCID: PMC4055222 DOI: 10.1155/2014/658753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/02/2014] [Accepted: 04/16/2014] [Indexed: 12/12/2022]
Abstract
Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS.
Collapse
|
16
|
Omega-3 polyunsaturated fatty acids protect neural progenitor cells against oxidative injury. Mar Drugs 2014; 12:2341-56. [PMID: 24786451 PMCID: PMC4052293 DOI: 10.3390/md12052341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 01/26/2023] Open
Abstract
The omega-3 polyunsaturated fatty acids (ω-3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), derived mainly from fish oil, play important roles in brain development and neuroplasticity. Here, we reported that application of ω-3 PUFAs significantly protected mouse neural progenitor cells (NPCs) against H2O2-induced oxidative injury. We also isolated NPCs from transgenic mice expressing the Caenorhabditis elegans fat-1 gene. The fat-1 gene, which is absent in mammals, can add a double bond into an unsaturated fatty acid hydrocarbon chain and convert ω-6 to ω-3 fatty acids. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining showed that a marked decrease in apoptotic cells was found in fat-1 NPCs after oxidative injury with H2O2 as compared with wild-type NPCs. Quantitative RT-PCR and Western blot analysis demonstrated a much higher expression of nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor for antioxidant genes, in fat-1 NPCs. The results of the study provide evidence that ω-3 PUFAs resist oxidative injury to NPCs.
Collapse
|
17
|
Ni N, Liu Q, Ren H, Wu D, Luo C, Li P, Wan JB, Su H. Ginsenoside Rb1 protects rat neural progenitor cells against oxidative injury. Molecules 2014; 19:3012-24. [PMID: 24662068 PMCID: PMC6271345 DOI: 10.3390/molecules19033012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 12/17/2022] Open
Abstract
Ginseng, the root of Panax ginseng C.A. Meyer, has been used as a tonic to enhance bodily functions against various ailments for hundreds of years in Far Eastern countries without apparent adverse effects. Ginsenoside Rb1, one of the most active ingredients of ginseng, has been shown to possess various pharmacological activities. Here we report that Rb1 exhibits potent neuroprotective effects against oxidative injury induced by tert-butylhydroperoxide (t-BHP). Lactate dehydrogenase (LDH) assay demonstrated that incubation with 300 µm t-BHP for 2.5 h led to a significant cell loss of cultured rat embryonic cortex-derived neural progenitor cells (NPCs) and the cell viability was pronouncedly increased by 24 h pretreatment of 10 µm Rb1. TUNEL staining further confirmed that pretreatment of Rb1 significantly reduced the cell apoptosis in t-BHP-induced oxidative injury. Real time PCR revealed that pretreatment with Rb1 activated Nrf2 pathway in cultured NPCs and led to an elevated expression of HO-1. The results of the present study demonstrate that Rb1 shows a potent anti-oxidative effect on cultured NPCs by activating Nrf2 pathway.
Collapse
Affiliation(s)
- Na Ni
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Qiang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Di Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Chuanming Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
18
|
Tovar-Y-Romo LB, Ramírez-Jarquín UN, Lazo-Gómez R, Tapia R. Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy. Front Cell Neurosci 2014; 8:61. [PMID: 24616665 PMCID: PMC3937589 DOI: 10.3389/fncel.2014.00061] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/11/2014] [Indexed: 12/12/2022] Open
Abstract
Motor neuron physiology and development depend on a continuous and tightly regulated trophic support from a variety of cellular sources. Trophic factors guide the generation and positioning of motor neurons during every stage of the developmental process. As well, they are involved in axon guidance and synapse formation. Even in the adult spinal cord an uninterrupted trophic input is required to maintain neuronal functioning and protection from noxious stimuli. Among the trophic factors that have been demonstrated to participate in motor neuron physiology are vascular endothelial growth factor (VEGF), glial-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and insulin-like growth factor 1 (IGF-1). Upon binding to membrane receptors expressed in motor neurons or neighboring glia, these trophic factors activate intracellular signaling pathways that promote cell survival and have protective action on motor neurons, in both in vivo and in vitro models of neuronal degeneration. For these reasons these factors have been considered a promising therapeutic method for amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, although their efficacy in human clinical trials have not yet shown the expected protection. In this minireview we summarize experimental data on the role of these trophic factors in motor neuron function and survival, as well as their mechanisms of action. We also briefly discuss the potential therapeutic use of the trophic factors and why these therapies may have not been yet successful in the clinical use.
Collapse
Affiliation(s)
- Luis B Tovar-Y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Uri Nimrod Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Rafael Lazo-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| |
Collapse
|
19
|
Antonic A, Sena ES, Lees JS, Wills TE, Skeers P, Batchelor PE, Macleod MR, Howells DW. Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol 2013; 11:e1001738. [PMID: 24358022 PMCID: PMC3866091 DOI: 10.1371/journal.pbio.1001738] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 11/01/2013] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that causes substantial morbidity and mortality and for which no treatments are available. Stem cells offer some promise in the restoration of neurological function. We used systematic review, meta-analysis, and meta-regression to study the impact of stem cell biology and experimental design on motor and sensory outcomes following stem cell treatments in animal models of SCI. One hundred and fifty-six publications using 45 different stem cell preparations met our prespecified inclusion criteria. Only one publication used autologous stem cells. Overall, allogeneic stem cell treatment appears to improve both motor (effect size, 27.2%; 95% Confidence Interval [CI], 25.0%-29.4%; 312 comparisons in 5,628 animals) and sensory (effect size, 26.3%; 95% CI, 7.9%-44.7%; 23 comparisons in 473 animals) outcome. For sensory outcome, most heterogeneity between experiments was accounted for by facets of stem cell biology. Differentiation before implantation and intravenous route of delivery favoured better outcome. Stem cell implantation did not appear to improve sensory outcome in female animals and appeared to be enhanced by isoflurane anaesthesia. Biological plausibility was supported by the presence of a dose-response relationship. For motor outcome, facets of stem cell biology had little detectable effect. Instead most heterogeneity could be explained by the experimental modelling and the outcome measure used. The location of injury, method of injury induction, and presence of immunosuppression all had an impact. Reporting of measures to reduce bias was higher than has been seen in other neuroscience domains but were still suboptimal. Motor outcomes studies that did not report the blinded assessment of outcome gave inflated estimates of efficacy. Extensive recent preclinical literature suggests that stem-cell-based therapies may offer promise, however the impact of compromised internal validity and publication bias mean that efficacy is likely to be somewhat lower than reported here.
Collapse
Affiliation(s)
- Ana Antonic
- Department of Medicine, University of Melbourne Lance Townsend Building, Austin Hospital, Heidelberg, Victoria, Australia
| | - Emily S. Sena
- Florey Institute of Neuroscience and Mental Health, Victoria, Australia
- Division of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jennifer S. Lees
- Division of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Taryn E. Wills
- Department of Medicine, University of Melbourne Lance Townsend Building, Austin Hospital, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Peta Skeers
- Department of Medicine, University of Melbourne Lance Townsend Building, Austin Hospital, Heidelberg, Victoria, Australia
| | - Peter E. Batchelor
- Department of Medicine, University of Melbourne Lance Townsend Building, Austin Hospital, Heidelberg, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Malcolm R. Macleod
- Division of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - David W. Howells
- Florey Institute of Neuroscience and Mental Health, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
N-arachidonoyl-L-serine (AraS) possesses proneurogenic properties in vitro and in vivo after traumatic brain injury. J Cereb Blood Flow Metab 2013; 33:1242-50. [PMID: 23695434 PMCID: PMC3734775 DOI: 10.1038/jcbfm.2013.75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/16/2013] [Accepted: 04/15/2013] [Indexed: 12/24/2022]
Abstract
N-arachidonoyl-L-serine (AraS) is a novel neuroprotective endocannabinoid. We aimed to test the effects of exogenous AraS on neurogenesis after traumatic brain injury (TBI). The effects of AraS on neural progenitor cells (NPC) proliferation, survival, and differentiation were examined in vitro. Next, mice underwent TBI and were treated with AraS or vehicle. Lesion volumes and clinical outcome were evaluated and the effects on neurogenesis were tested using immunohistochemistry. Treatment with AraS led to a dose-dependent increase in neurosphere size without affecting cell survival. These effects were partially reversed by CB1, CB2, or TRPV1 antagonists. AraS significantly reduced the differentiation of NPC in vitro to astrocytes or neurons and led to a 2.5-fold increase in expression of the NPC marker nestin. Similar effects were observed in vivo in mice treated with AraS 7 days after TBI. These effects were accompanied by a reduction in lesion volume and an improvement in neurobehavioral function compared with controls. AraS increases proliferation of NPCs in vitro in cannabinoid-receptor-mediated mechanisms and maintains NPC in an undifferentiated state in vitro and in vivo. Moreover, although given at 7 days post injury, these effects are associated with significant neuroprotective effects leading to an improvement in neurobehavioral functions.
Collapse
|
21
|
Su H, Wang L, Cai J, Yuan Q, Yang X, Yao X, Wong WM, Huang W, Li Z, Wan JB, Wang Y, Pei D, So KF, Qin D, Wu W. Transplanted motoneurons derived from human induced pluripotent stem cells form functional connections with target muscle. Stem Cell Res 2013; 11:529-39. [DOI: 10.1016/j.scr.2013.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/29/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022] Open
|
22
|
Su H, Yuan Q, Qin D, Yang X, Wong WM, So KF, Wu W. Ventral root re-implantation is better than peripheral nerve transplantation for motoneuron survival and regeneration after spinal root avulsion injury. BMC Surg 2013; 13:21. [PMID: 23799915 PMCID: PMC3711737 DOI: 10.1186/1471-2482-13-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/19/2013] [Indexed: 11/13/2022] Open
Abstract
Background Peripheral nerve (PN) transplantation and ventral root implantation are the two common types of recovery operations to restore the connection between motoneurons and their target muscles after brachial plexus injury. Despite experience accumulated over the past decade, fundamental knowledge is still lacking concerning the efficacy of the two microsurgical interventions. Methods Thirty-eight adult female Sprague–Dawley rats were divided into 5 groups. Immediately following root avulsion, animals in the first group (n = 8) and the second group (n = 8) received PN graft and ventral root implantation respectively. The third group (n = 8) and the fourth group (n = 8) received PN graft and ventral root implantation respectively at one week after root avulsion. The fifth group received root avulsion only as control (n = 6). The survival and axonal regeneration of severed motoneurons were investigated at 6 weeks post-implantation. Results Re-implantation of ventral roots, both immediately after root avulsion and in delay, significantly increased the survival and regeneration of motoneurons in the avulsed segment of the spinal cord as compared with PN graft transplantation. Conclusions The ventral root re-implantation is a better surgical repairing procedure than PN graft transplantation for brachial plexus injury because of its easier manipulation for re-implanting avulsed ventral roots to the preferred site, less possibility of causing additional damage and better effects on motoneuron survival and axonal regeneration.
Collapse
|
23
|
Su H, Zhang W, Yang X, Qin D, Sang Y, Wu C, Wong WM, Yuan Q, So KF, Wu W. Neural Progenitor Cells Generate Motoneuron-Like Cells to Form Functional Connections with Target Muscles after Transplantation into the Musculocutaneous Nerve. Cell Transplant 2012; 21:2651-63. [DOI: 10.3727/096368912x654975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neural progenitor cells (NPCs) are suggested to be a valuable source of cell transplant in treatment of various neurological diseases because of their distinct attributes. They can be expanded and induced to differentiate in vitro. However, it remains uncertain whether in vitro expanded NPCs have the capacity to give rise to functional motoneurons after transplantation in vivo. Here, we showed that in vitro expanded NPCs, when transplanted into the musculocutaneous nerve, generated motoneuron-like cells that exhibited typical morphology with large cell bodies, expressed specific molecules, and extended axons to form functional connections with the target muscle. In contrast, transplanted NPCs failed to yield motoneurons in the injured ventral horn of the spinal cord. The results of the study demonstrate that NPCs have the potential to generate functional motoneurons in an appropriate environment. The distinct differentiating fate of NPCs in the musculocutaneous nerve and the injured ventral horn suggests the importance and necessity of modifying the host microenvironment in use of NPCs for cell replacement therapies for motoneuron diseases.
Collapse
Affiliation(s)
- Huanxing Su
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenming Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Xiaoying Yang
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dajiang Qin
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yanhua Sang
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chaoyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Wai-Man Wong
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qiuju Yuan
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok-Fai So
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Joint Laboratory for Brain Function and Health (BFAH), Jinan University and The University of Hong Kong, Jinan University, Guangzhou, China
| | - Wutian Wu
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Joint Laboratory for Brain Function and Health (BFAH), Jinan University and The University of Hong Kong, Jinan University, Guangzhou, China
- Research Center of Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
24
|
Jergova S, Hentall ID, Gajavelli S, Varghese MS, Sagen J. Intraspinal transplantation of GABAergic neural progenitors attenuates neuropathic pain in rats: a pharmacologic and neurophysiological evaluation. Exp Neurol 2011; 234:39-49. [PMID: 22193109 DOI: 10.1016/j.expneurol.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 02/03/2023]
Abstract
Dysfunctional γ-aminobutyric acid (GABA)-ergic inhibitory neurotransmission is hypothesized to underlie chronic neuropathic pain. Intraspinal transplantation of GABAergic neural progenitor cells (NPCs) may reduce neuropathic pain by restoring dorsal horn inhibition. Rat NPCs pre-differentiated to a GABAergic phenotype were transplanted into the dorsal horn of rats with unilateral chronic constriction injury (CCI) of the sciatic nerve. GABA signaling in antinociceptive effects of NPC grafts was tested with the GABA(A) receptor antagonist bicuculline (BIC), GABA(B) receptor antagonist CGP35348 (CGP) and GABA reuptake inhibitor SKF 89976A (SKF). NPC-treated animals showed decreased hyperalgesia and allodynia 1-3week post-transplantation; vehicle-injected CCI rats continued displaying pain behaviors. Intrathecal application of BIC or CGP attenuated the antinociceptive effects of the NPC transplants while SKF injection induced analgesia in control rats. Electrophysiological recordings in NPC treated rats showed reduced responses of wide dynamic range (WDR) neurons to peripheral stimulation compared to controls. A spinal application of BIC or CGP increased wind-up response and post-discharges of WDR neurons in NPC treated animals. Results suggest that transplantation of GABAergic NPCs attenuate pain behaviors and reduce exaggerated dorsal horn neuronal firing induced by CCI. The effects of GABA receptor inhibitors suggest participation of continuously released GABA in the grafted animals.
Collapse
Affiliation(s)
- Stanislava Jergova
- University of Miami, Miller School of Medicine, Miami Project to Cure Paralysis, 1095 NW 14 Terrace, Miami, Florida 33136, USA.
| | | | | | | | | |
Collapse
|
25
|
Fagerlund M, Pérez Estrada C, Jaff N, Svensson M, Brundin L. Neural stem/progenitor cells transplanted to the hypoglossal nucleus integrates with the host CNS in adult rats and promotes motor neuron survival. Cell Transplant 2011; 21:739-47. [PMID: 22182695 DOI: 10.3727/096368911x612459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transplantation of neural stem cells and the mobilization of endogenous neuronal precursors in the adult brain have been proposed as therapeutic strategies for central nervous system disorders and injuries. The aim of the present study was to investigate the possible survival and integration of grafted neural progenitor cells (NPCs) from the subventricular zone (SVZ) in a hypoglossal nerve avulsion model with substantial neuronal loss. Adult neural progenitor cells (NPCs) from the subventricular zone (SVZ) were cultured from inbred transgenic eGFP Lewis rats and transplanted to the hypoglossal nucleus of inbred Lewis rat from the same family but that were not carrying the eGFP strain after avulsion of the hypoglossal nerve. Grafted cells survived in the host more than 3 months and differentiated into neurons [βIII tubulin (Tuj-1 staining)] with fine axon- and dendrite-like processes as well as astrocytes (GFAP) and oligodendrocytes (O4) with typical morphology. Staining for synaptic structures (synaptophysin and bassoon) indicated integration of differentiated cells from the graft with the host CNS. Furthermore, transplantation of NPCs increased the number of surviving motoneurons in the hypoglossal nucleus after nerve avulsion that, if untreated, result in substantial neuronal death. The NPCs used in this study expressed VEGF in vitro as well as in vivo following transplantation that may mediate the rescue effect of the axotomized motoneurons.
Collapse
Affiliation(s)
- Michael Fagerlund
- Department of Clinical Neuroscience and Departments of Neurosurgery and Neurology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
26
|
De Freria CM, Barbizan R, De Oliveira ALR. Granulocyte colony stimulating factor neuroprotective effects on spinal motoneurons after ventral root avulsion. Synapse 2011; 66:128-41. [PMID: 21953623 DOI: 10.1002/syn.20993] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/14/2011] [Indexed: 01/02/2023]
Abstract
G-CSF is a glycoprotein commonly used to treat neutropenia. Recent studies have shown that the G-CSF receptor (G-CSF-R) is expressed by neurons in the central nervous system (CNS), and neuroprotective effects of G-CSF have been observed. In this study, the influence of G-CSF treatment on the glial reactivity and synaptic plasticity of spinal motoneurons in rats subjected to ventral root avulsion (VRA) was investigated. Lewis rats (7 weeks old) were subjected to unilateral VRA and divided into two groups: G-CSF and placebo treated. The drug treated animals were injected subcutaneously with 200 μg/kg/day of G-CSF for 5 days post lesion. The placebo group received saline buffer. After 2 weeks, both groups were sacrificed and their lumbar intumescences processed for transmission electron microscopy (TEM), motoneuron counting, and immunohistochemistry with antibodies against GFAP, Iba-1, and synaptophysin. Furthermore, in vitro analysis was carried out, using newborn cortical derived astrocytes. The results indicated increased neuronal survival in the G-CSF treated group coupled with synaptic preservation. TEM analyses revealed an improved preservation of the synaptic covering in treated animals. Additionally, the drug treated group showed an increase in astroglial reactivity both in vivo and in vitro. The astrocytes also presented an increased cell proliferation rate when compared with the controls after 3 days of culturing. In conclusion, the present results suggest that G-CSF has an influence on the stability of presynaptic terminals in the spinal cord as well as on the astroglial reaction, indicating a possible neuroprotective action.
Collapse
Affiliation(s)
- Camila Marques De Freria
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | | | | |
Collapse
|
27
|
Gowing G, Svendsen CN. Stem cell transplantation for motor neuron disease: current approaches and future perspectives. Neurotherapeutics 2011; 8:591-606. [PMID: 21904789 PMCID: PMC3210365 DOI: 10.1007/s13311-011-0068-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motor neuron degeneration leading to muscle atrophy and death is a pathological hallmark of disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophy. No effective treatment is available for these devastating diseases. At present, cell-based therapies targeting motor neuron replacement, support, or as a vehicle for the delivery of neuroprotective molecules are being investigated. Although many challenges and questions remain, the beneficial effects observed following transplantation therapy in animal models of motor neuron disease has sparked hope and a number of clinical trials. Here, we provide a comprehensive review of cell-based therapeutics for motor neuron disorders, with a particular emphasis on amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Genevieve Gowing
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Clive N. Svendsen
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| |
Collapse
|
28
|
Jiménez-Díaz L, Nava-Mesa MO, Heredia M, Riolobos AS, Gómez-Álvarez M, Criado JM, de la Fuente A, Yajeya J, Navarro-López JD. Embryonic amygdalar transplants in adult rats with motor cortex lesions: a molecular and electrophysiological analysis. Front Neurol 2011; 2:59. [PMID: 21954393 PMCID: PMC3173738 DOI: 10.3389/fneur.2011.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 08/29/2011] [Indexed: 12/16/2022] Open
Abstract
Transplants of embryonic nervous tissue ameliorate motor deficits induced by motor cortex lesions in adult animals. Restoration of lost brain functions has been recently shown in grafts of homotopic cortical origin, to be associated with a functional integration of the transplant after development of reciprocal host–graft connections. Nevertheless little is known about physiological properties or gene expression profiles of cortical implants with functional restorative capacity but no cortical origin. In this study, we show molecular and electrophysiological evidence supporting the functional development and integration of heterotopic transplants of embryonic amygdalar tissue placed into pre-lesioned motor cortex of adult rats. Grafts were analyzed 3 months post-transplantation. Using reverse transcriptase quantitative polymerase chain reaction, we found that key glutamatergic, GABAergic, and muscarinic receptors transcripts were expressed at different quantitative levels both in grafted and host tissues, but were all continuously present in the graft. Parallel sharp electrode recordings of grafted neurons in brain slices showed a regular firing pattern of transplanted neurons similar to host amygdalar pyramidal neurons. Synaptic connections from the adjacent host cortex on grafted neurons were electrophysiologically investigated and confirmed our molecular results. Taken together, our findings indicate that grafted neurons from a non-cortical, non-motor-related, but ontogenetical similar source, not only received functionally effective contacts from the adjacent motor cortex, but also developed electrophysiological and gene expression patterns comparable to host pyramidal neurons; suggesting an interesting tool for the field of neural repair and donor tissue in adults.
Collapse
Affiliation(s)
- Lydia Jiménez-Díaz
- Laboratorio de Neurofisiología, Facultad de Medicina de Ciudad Real, Universidad de Castilla-La Mancha Castilla-La Mancha, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J. Repetitive Intrathecal Catheter Delivery of Bone Marrow Mesenchymal Stromal Cells Improves Functional Recovery in a Rat Model of Contusive Spinal Cord Injury. J Neurotrauma 2011; 28:1951-61. [DOI: 10.1089/neu.2010.1413] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Dasa Cizkova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivana Novotna
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Lucia Slovinska
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Stanislava Jergova
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jan Rosocha
- Tissue Bank, Faculty of Medicine, P.J. Safarik University, and L. Pasteur Faculty Hospital, Kosice, Slovakia
| | - Jozef Radonak
- I Surgical Clinic, P.J. Safarik University, and L. Pasteur Faculty Hospital, Kosice, Slovakia
| |
Collapse
|
30
|
Pintér S, Gloviczki B, Szabó A, Márton G, Nógrádi A. Increased survival and reinnervation of cervical motoneurons by riluzole after avulsion of the C7 ventral root. J Neurotrauma 2011; 27:2273-82. [PMID: 20939695 DOI: 10.1089/neu.2010.1445] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although adult motoneurons do not die if their axons are injured at some distance from the cell body, they are unable to survive injury caused by ventral root avulsion. Some of the injured motoneurons can be rescued if the ventral root is re-inserted into the spinal cord. Brachial plexus injuries that involve the complete or partial avulsion of one or more cervical ventral roots can be treated successfully only if satisfactory numbers of motoneurons remain alive following such an injury at the time of reconstructive surgery. Here we investigated the various strategies that could be used to rescue injured rat cervical motoneurons. The seventh cervical ventral root (C7) was avulsed and various therapeutic approaches were applied to induce motoneuronal survival and regeneration. Avulsion of the root without reimplantation resulted in very low numbers of surviving motoneurons (65 ± 8 SEM), while treatment of the injured motoneurons with riluzole resulted in high numbers of surviving motoneurons (637 ± 26 SEM). When the C7 ventral root was reimplanted or a peripheral nerve implant was used to guide the regenerating axons to a muscle, considerable numbers of motoneurons regenerated their axons (211 ± 15 SEM and 274 ± 28 SEM, respectively). Much greater numbers of axons regenerated when reimplantation was followed by riluzole treatment (573 ± 9 SEM). These results show that injured adult motoneurons can be rescued by riluzole treatment, even if they cannot regenerate their axons. Reinnervation of the peripheral targets can also be further improved with riluzole treatment.
Collapse
Affiliation(s)
- Sándor Pintér
- Laboratory of Neuromorphology, Department of Ophthalmology, Faculty of General Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
31
|
Su H, Wu Y, Yuan Q, Guo J, Zhang W, Wu W. Optimal time point for neuronal generation of transplanted neural progenitor cells in injured spinal cord following root avulsion. Cell Transplant 2010; 20:167-76. [PMID: 20719091 DOI: 10.3727/096368910x522090] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Root avulsion of the brachial plexus results in a progressive and pronounced loss of motoneurons. Cell replacement strategies have therapeutic potential in the treatment of motoneuron degenerative neurological disorders. Here, we transplanted spinal cord-derived neural progenitor cells (NPCs) into the cervical ventral horn of adult rats immediately, 2 weeks, or 6 weeks after root avulsion to determine an optimal time scale for the survival and differentiation of grafted cells. We showed that grafted NPCs survived robustly at all three time points and there was no statistical difference in survival rate. Interestingly, however, transplantation at 2 weeks postavulsion significantly increased the neuronal differentiation of transplanted NPCs compared to transplantation immediately or at 6 weeks postavulsion. Moreover, only NPCs transplanted at 2 weeks postavulsion were able to differentiate into choline acetyltransferase (ChAT)-positive neurons. Specific ELISAs and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) demonstrated that expression levels of BDNF and GDNF were significantly upregulated in the ventral cord at 2 weeks postavulsion compared to immediately or at 6 weeks postavulsion. Our study suggests that the cervical ventral horn at 2 weeks postavulsion both supports neuronal differentiation and induces region-specific neuronal generation possibly because of its higher expression of BDNF and GDNF.
Collapse
Affiliation(s)
- Huanxing Su
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|