1
|
Tegeler CL, Haight TJ, Cole WR, Shaltout HA, Choi YS, Harris TE, Rachels N, Bellini PG, Roy MJ, Tegeler CH. Acoustic neuromodulation with or without micro-voltage tACS reduces post-concussive symptoms. Brain Inj 2025; 39:496-508. [PMID: 39913294 DOI: 10.1080/02699052.2024.2445709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 04/19/2025]
Abstract
OBJECTIVE Persistent post-concussive symptoms (PPCS) are common and disruptive, particularly in military service members (SM), yet there are no approved therapies targeting underlying physiological processes. This study was designed to compare acoustic neuromodulation using Cereset Research™ Standard Operating Procedures (CR-SOP), with Cereset Research Cranial Electrical Stimulation (CR-CES), on PPCS. METHODS SM, veterans, or dependents with PPCS (Neurobehavioral Symptom Inventory [NSI] Score ≥23) were randomized to receive 10 sessions of engineered tones linked to brainwaves (CR-SOP) or 5 sessions of CR-CES, which adds intermittent low voltage transcranial alternating current stimulation (tACS) to CR-SOP. Designed to assess non-inferiority between varied doses of CR-SOP and CR-CES, the primary outcome was a change in post-concussive symptoms on the NSI, with secondary outcomes of heart rate variability (HRV) and self-report measures of PTSD, sleep, headaches, and depression. RESULTS Among study participants (n = 80, 21.3% female, mean age 40.2 [SD 13.2], 4.8 deployments, 3.2 TBIs), mean NSI declined from 45.6 to 29.5 after intervention (p < 0.0001), with gains sustained at 3 months (29.7). No significant between group differences for NSI (CR-SOP: baseline 43.9, post-intervention 26.0, 3-month 27.2, and CR-CES 46.4, 30.7, and 31.1, respectively), and no evidence of inferiority between the groups with respect to NSI. Similar improvements were seen on PCL-5, ISI, HIT-6, and PHQ-9, with no HRV differences between groups. CONCLUSION Both acoustic neuromodulation alone (CR-SOP) and a lower dose of CR-SOP, with tACS added (CR-CES), significantly improved PPCS out to 3 months. REGISTRATION ClinicalTrials.gov - NCT03649958.
Collapse
Affiliation(s)
- Catherine L Tegeler
- Department of Neurology, Wake Forest University School of Medicine (WFUSM), Winston-Salem, North Carolina, USA
| | - Thaddeus J Haight
- Department of Medicine, Uniformed Services University (USU), Bethesda, Maryland, USA
- Military Traumatic Brain Injury Initiative, USU, Bethesda, Maryland, USA
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Wesley R Cole
- Department of Exercise and Sports Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hossam A Shaltout
- Department of Surgery, Hypertension and Vascular Research Center, WFUSM, Winston-Salem, North Carolina, USA
| | - Y Sammy Choi
- Womack Army Medical Center (WAMC), Fort Liberty, North Carolina, USA
| | - Tyler E Harris
- Womack Army Medical Center (WAMC), Fort Liberty, North Carolina, USA
| | - Nora Rachels
- Womack Army Medical Center (WAMC), Fort Liberty, North Carolina, USA
| | - Paula G Bellini
- Department of Medicine, Uniformed Services University (USU), Bethesda, Maryland, USA
- Military Traumatic Brain Injury Initiative, USU, Bethesda, Maryland, USA
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Michael J Roy
- Department of Medicine, Uniformed Services University (USU), Bethesda, Maryland, USA
- Military Traumatic Brain Injury Initiative, USU, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center (WRNMMC), Bethesda, Maryland, USA
| | - Charles H Tegeler
- Department of Neurology, Wake Forest University School of Medicine (WFUSM), Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Shinde A, Nagarajan R, Gunduz ME, Visintainer P, Schlaug G. Assessing the Dose-Dependent Effects of tDCS on Neurometabolites using Magnetic Resonance Spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544864. [PMID: 37398447 PMCID: PMC10312761 DOI: 10.1101/2023.06.13.544864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Concurrent transcranial direct current stimulation (tDCS) and proton Magnetic Resonance Spectroscopy ( 1 H MRS) experiments have shown up- or downregulation of neurotransmitter concentration. However, effects have been modest applying mostly lower current doses and not all studies found significant effects. Dose of stimulation might be an important variable in eliciting a consistent response. To investigate dose effects of tDCS on neurometabolites, we placed an electrode over the left supraorbital region (with a return electrode over the right mastoid bone) and utilized an MRS voxel (3x3x3cm) that was centered over the anterior cingulate/inferior mesial prefrontal region which is in the path of the current distribution. We conducted 5 epochs of acquisition, each one with a 9:18min acquisition time, and applied tDCS in the third epoch. We observed significant dose and polarity dependent modulation of GABA and to a lesser degree of Glutamine/Glutamate (GLX) with the highest and reliable changes seen with the highest current dose, 5mA (current density 0.39 mA/cm 2 ), during and after the stimulation epoch compared with pre-stimulation baselines. The strong effect on GABA concentration (achieving a mean change of 63% from baseline, more than twice as much as reported with lower doses of stimulation) establishes tDCS-dose as an important parameter in eliciting a regional brain engagement and response. Furthermore, our experimental design in examining tDCS parameters and effects using shorter epochs of acquisitions might constitute a framework to explore the tDCS parameter space further and establish measures of regional engagement by non-invasive brain-stimulation.
Collapse
|
3
|
Glutamate, GABA and glutathione in adults with persistent post-concussive symptoms. Neuroimage Clin 2022; 36:103152. [PMID: 36007438 PMCID: PMC9424629 DOI: 10.1016/j.nicl.2022.103152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Persistent post-concussive symptoms (PPCS) are debilitating and endure beyond the usual recovery period after mild traumatic brain injury (mTBI). Altered neurotransmission, impaired energy metabolism and oxidative stress have been examined acutely post-injury but have not been explored extensively in those with persistent symptoms. Specifically, the antioxidant glutathione (GSH) and the excitatory and inhibitory metabolites, glutamate (Glu) and γ-aminobutyric acid (GABA), are seldom studied together in the clinical mTBI literature. While Glu can be measured using conventional magnetic resonance spectroscopy (MRS) methods at 3 Tesla, GABA and GSH require the use of advanced MRS methods. Here, we used the recently established Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy (HERMES) to simultaneously measure GSH and GABA and short-echo time point resolved spectroscopy (PRESS) to measure Glu to gain new insight into the pathophysiology of PPCS. Twenty-nine adults with PPCS (mean age: 45.69 years, s.d.: 10.73, 22 females, 7 males) and 29 age- and sex-matched controls (mean age: 43.69 years, s.d.: 11.00) completed magnetic resonance spectroscopy scans with voxels placed in the anterior cingulate and right sensorimotor cortex. Relative to controls, anterior cingulate Glu was significantly reduced in PPCS. Higher anterior cingulate GABA was significantly associated with a higher number of lifetime mTBIs, suggesting GABA may be upregulated with repeated incidence of mTBI. Furthermore, GSH in both regions of interest was positively associated with symptoms of sleepiness and headache burden. Collectively, our findings suggest that the antioxidant defense system is active in participants with PPCS, however this may be at the expense of other glutamatergic functions such as cortical excitation and energy metabolism.
Collapse
|
4
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
5
|
Quinn DK, Story-Remer J, Brandt E, Fratzke V, Rieger R, Wilson JK, Gill D, Mertens N, Hunter M, Upston J, Jones TR, Richardson JD, Myers O, Arciniegas DB, Campbell R, Clark VP, Yeo RA, Shuttleworth CW, Mayer AR. Transcranial direct current stimulation modulates working memory and prefrontal-insula connectivity after mild-moderate traumatic brain injury. Front Hum Neurosci 2022; 16:1026639. [PMID: 36310843 PMCID: PMC9608772 DOI: 10.3389/fnhum.2022.1026639] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Persistent posttraumatic symptoms (PPS) may manifest after a mild-moderate traumatic brain injury (mmTBI) even when standard brain imaging appears normal. Transcranial direct current stimulation (tDCS) represents a promising treatment that may ameliorate pathophysiological processes contributing to PPS. Objective/Hypothesis: We hypothesized that in a mmTBI population, active tDCS combined with training would result in greater improvement in executive functions and post-TBI cognitive symptoms and increased resting state connectivity of the stimulated region, i.e., left dorsolateral prefrontal cortex (DLPFC) compared to control tDCS. Methods: Thirty-four subjects with mmTBI underwent baseline assessments of demographics, symptoms, and cognitive function as well as resting state functional magnetic resonance imaging (rsfMRI) in a subset of patients (n = 24). Primary outcome measures included NIH EXAMINER composite scores, and the Neurobehavioral Symptom Inventory (NSI). All participants received 10 daily sessions of 30 min of executive function training coupled with active or control tDCS (2 mA, anode F3, cathode right deltoid). Imaging and assessments were re-obtained after the final training session, and assessments were repeated after 1 month. Mixed-models linear regression and repeated measures analyses of variance were calculated for main effects and interactions. Results: Both active and control groups demonstrated improvements in executive function (EXAMINER composite: p < 0.001) and posttraumatic symptoms (NSI cognitive: p = 0.01) from baseline to 1 month. Active anodal tDCS was associated with greater improvements in working memory reaction time compared to control (p = 0.007). Reaction time improvement correlated significantly with the degree of connectivity change between the right DLPFC and the left anterior insula (p = 0.02). Conclusion: Anodal tDCS improved reaction time on an online working memory task in a mmTBI population, and decreased connectivity between executive network and salience network nodes. These findings generate important hypotheses for the mechanism of recovery from PPS after mild-moderate TBI.
Collapse
Affiliation(s)
- Davin K Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Jacqueline Story-Remer
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States
| | - Emma Brandt
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States
| | - Violet Fratzke
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States
| | - Rebecca Rieger
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - John Kevin Wilson
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States
| | - Darbi Gill
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States
| | - Nickolas Mertens
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Michael Hunter
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States
| | - Joel Upston
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Thomas R Jones
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Jessica D Richardson
- Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Orrin Myers
- Department of Family and Community Medicine, University of New Mexico, Albuquerque, NM, United States
| | - David B Arciniegas
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Richard Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States.,Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States
| | - Vincent P Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.,Mind Research Network, Albuquerque, NM, United States
| | - Ronald A Yeo
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States.,Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - C William Shuttleworth
- Center for Brain Recovery and Repair, University of New Mexico, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | | |
Collapse
|
6
|
Redlinger F, Sicard V, Caron G, Ellemberg D. Long-Term Cognitive Impairments of Sports Concussions in College-Aged Athletes: A Meta-Analysis. TRANSLATIONAL JOURNAL OF THE AMERICAN COLLEGE OF SPORTS MEDICINE 2022. [DOI: 10.1249/tjx.0000000000000193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Effect of transcranial direct current stimulation on in-vivo assessed neuro-metabolites through magnetic resonance spectroscopy: a systematic review. Acta Neuropsychiatr 2021; 33:242-253. [PMID: 33926587 DOI: 10.1017/neu.2021.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Previous studies have examined the effect of transcranial direct current stimulation (tDCS) on the in-vivo concentrations of neuro-metabolites assessed through magnetic resonance spectroscopy (MRS) in neurological and psychiatry disorders. This review aims to systematically evaluate the data on the effect of tDCS on MRS findings and thereby attempt to understand the potential mechanism of tDCS on neuro-metabolites. METHODS The relevant literature was obtained through PubMed and cross-reference (search till June 2020). Thirty-four studies were reviewed, of which 22 reported results from healthy controls and 12 were from patients with neurological and psychiatric disorders. RESULTS The evidence converges to highlight that tDCS modulates the neuro-metabolite levels at the site of stimulation, which, in turn, translates into alterations in the behavioural outcome. It also shows that the baseline level of these neuro-metabolites can, to a certain extent, predict the outcome after tDCS. However, even though tDCS has shown promising effects in alleviating symptoms of various psychiatric disorders, there are limited studies that have reported the effect of tDCS on neuro-metabolite levels. CONCLUSIONS There is a compelling need for more systematic studies examining patients with psychiatric/neurological disorders with larger samples and harmonised tDCS protocols. More studies will potentially help us to understand the tDCS mechanism of action pertinent to neuro-metabolite levels modulation. Further, studies should be conducted in psychiatric patients to understand the neurological changes in this population and potentially unravel the neuro-metabolite × tDCS interaction effect that can be translated into individualised treatment.
Collapse
|
8
|
Phillips A, Sami S, Adamson M. Sex Differences in Neuromodulation Treatment Approaches for Traumatic Brain Injury: A Scoping Review. J Head Trauma Rehabil 2021; 35:412-429. [PMID: 33165154 DOI: 10.1097/htr.0000000000000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neuromodulatory brain stimulation interventions for traumatic brain injury (TBI)-related health sequelae, such as psychiatric, cognitive, and pain disorders, are on the rise. Because of disproportionate recruitment and epidemiological reporting of TBI-related research in men, there is limited understanding of TBI development, pathophysiology, and treatment intervention outcomes in women. With data suggesting sex-related variances in treatment outcomes, it is important that these gaps are addressed in emerging, neuromodulatory treatment approaches for TBI populations. METHODS Four research databases (PubMED, EMBASE, CINAHL, and PsycINFO) were electronically searched in February 2020. DESIGN This PRISMA Scoping Review (PRISMA-ScR)-guided report contextualizes the importance of reporting sex differences in TBI + neuromodulatory intervention studies and summarizes the current state of reporting sex differences when investigating 3 emerging interventions for TBI outcomes. RESULTS Fifty-four studies were identified for the final review including 12 controlled trials, 16 single or case series reports, and 26 empirical studies. Across all studies reviewed, 68% of participants were male, and only 7 studies reported sex differences as a part of their methodological approach, analysis, or discussion. CONCLUSION This review is hoped to update the TBI community on the current state of evidence in reporting sex differences across these 3 neuromodulatory treatments of post-TBI sequelae. The proposed recommendations aim to improve future research and clinical treatment of all individuals suffering from post-TBI sequelae.
Collapse
Affiliation(s)
- Angela Phillips
- Department of Rehabilitation, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (Drs Phillips and Adamson and Mr Sami); and Departments of Psychiatry & Behavioral Sciences (Dr Phillips) and Neurosurgery (Dr Adamson), Stanford School of Medicine, Stanford, California
| | | | | |
Collapse
|
9
|
Eilam-Stock T, George A, Charvet LE. Cognitive Telerehabilitation with Transcranial Direct Current Stimulation Improves Cognitive and Emotional Functioning Following a Traumatic Brain Injury: A Case Study. Arch Clin Neuropsychol 2021; 36:442-453. [PMID: 33885138 DOI: 10.1093/arclin/acaa059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Cognitive deficits following a traumatic brain injury (TBI) are a leading cause of disability in young adults and there is a critical need for novel approaches to improve cognitive outcomes in TBI survivors. Transcranial direct current stimulation (tDCS) paired with cognitive remediation has emerged as a viable, cost-effective, noninvasive approach for treating cognitive impairments in a wide variety of neurological conditions. Here, we report the first case study utilizing remotely supervised tDCS (RS-tDCS) protocol paired with cognitive remediation in a 29-year-old man with persisting cognitive and emotional sequelae following TBI. METHOD Neuropsychological measures were administered before and after the patient completed 20 daily sessions of RS-tDCS (2.0 mA × 20 minutes, left anodal dorsolateral prefrontal cortex montage). During the daily stimulation period, he completed adaptive cognitive training. All treatment procedures were delivered at home and monitored in real time via videoconference with a study technician. RESULTS Following 20 RS-tDCS and cognitive training sessions, he had significant improvements (>1 SD) on tests of attention and working memory, semantic fluency, and information processing speed. Mood was also improved. CONCLUSIONS This is the first demonstration of at-home telerehabilitation with RS-tDCS and cognitive training to improve cognitive outcomes following TBI.
Collapse
Affiliation(s)
- Tehila Eilam-Stock
- Department of Neurology, NYU Grossman School of Medicine, New York 10017, USA
| | - Allan George
- Department of Neurology, NYU Grossman School of Medicine, New York 10017, USA
| | - Leigh E Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York 10017, USA
| |
Collapse
|
10
|
Choi CH, Iordanishvili E, Shah NJ, Binkofski F. Magnetic resonance spectroscopy with transcranial direct current stimulation to explore the underlying biochemical and physiological mechanism of the human brain: A systematic review. Hum Brain Mapp 2021; 42:2642-2671. [PMID: 33634527 PMCID: PMC8090777 DOI: 10.1002/hbm.25388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
A large body of molecular and neurophysiological evidence connects synaptic plasticity to specific functions and energy metabolism in particular areas of the brain. Furthermore, altered plasticity and energy regulation has been associated with a number of neuropsychiatric disorders. A favourable approach enabling the modulation of neuronal excitability and energy in humans is to stimulate the brain using transcranial direct current stimulation (tDCS) and then to observe the effect on neurometabolites using magnetic resonance spectroscopy (MRS). In this way, a well-defined modulation of brain energy and excitability can be achieved using a dedicated tDCS protocol to a predetermined brain region. This systematic review was guided by the preferred reporting items for systematic reviews and meta-analysis and summarises recent literature studying the effect of tDCS on neurometabolites in the human brain as measured by proton or phosphorus MRS. Limitations and recommendations are discussed for future research. The findings of this review provide clear evidence for the potential of using tDCS and MRS to examine and understand the effect of neurometabolites in the in vivo human brain.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Elene Iordanishvili
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany.,Institute of Neuroscience and Medicine - 11, JARA, Forschungszentrum Jülich, Jülich, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Ferdinand Binkofski
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany.,Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany
| |
Collapse
|
11
|
Visual cortex cTBS increases mixed percept duration while a-tDCS has no effect on binocular rivalry. PLoS One 2021; 16:e0239349. [PMID: 33539443 PMCID: PMC7861428 DOI: 10.1371/journal.pone.0239349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/19/2020] [Indexed: 11/29/2022] Open
Abstract
Neuromodulation of the primary visual cortex using anodal transcranial direct current stimulation (a-tDCS) can alter visual perception and enhance neuroplasticity. However, the mechanisms that underpin these effects are currently unknown. When applied to the motor cortex, a-tDCS reduces the concentration of the inhibitory neurotransmitter gamma aminobutyric acid (GABA), an effect that has been linked to increased neuroplasticity. The aim of this study was to assess whether a-tDCS also reduces GABA-mediated inhibition when applied to the human visual cortex. Changes in visual cortex inhibition were measured using the mixed percept duration in binocular rivalry. Binocular rivalry mixed percept duration has recently been advocated as a direct and sensitive measure of visual cortex inhibition whereby GABA agonists decrease mixed percept durations and agonists of the excitatory neurotransmitter acetylcholine (ACH) increase them. Our hypothesis was that visual cortex a-tDCS would increase mixed percept duration by reducing GABA-mediated inhibition and increasing cortical excitation. In addition, we measured the effect of continuous theta-burst transcranial magnetic stimulation (cTBS) of the visual cortex on binocular rivalry dynamics. When applied to the motor or visual cortex, cTBS increases GABA concentration and we therefore hypothesized that visual cortex cTBS would decrease the mixed percept duration. Binocular rivalry dynamics were recorded before and after active and sham a-tDCS (N = 15) or cTBS (N = 15). Contrary to our hypotheses, a-tDCS had no effect, whereas cTBS increased mixed percepts during rivalry. These results suggest that the neurochemical mechanisms of a-tDCS may differ between the motor and visual cortices.
Collapse
|
12
|
Buhagiar F, Fitzgerald M, Bell J, Allanson F, Pestell C. Neuromodulation for Mild Traumatic Brain Injury Rehabilitation: A Systematic Review. Front Hum Neurosci 2020; 14:598208. [PMID: 33362494 PMCID: PMC7759622 DOI: 10.3389/fnhum.2020.598208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Mild traumatic brain injury (mTBI) results from an external force to the head or body causing neurophysiological changes within the brain. The number and severity of symptoms can vary, with some individuals experiencing rapid recovery, and others having persistent symptoms for months to years, impacting their quality of life. Current rehabilitation is limited in its ability to treat persistent symptoms and novel approaches are being sought to improve outcomes following mTBI. Neuromodulation is one technique used to encourage adaptive neuroplasticity within the brain. Objective: To systematically review the literature on the efficacy of neuromodulation in the mTBI population. Method: A systematic review was conducted using Medline, Embase, PsycINFO, PsycARTICLES and EBM Review. Preferred Reporting Items for Systematic Reviews and the Synthesis Without Meta-analysis reporting guidelines were used and a narrative review of the selected studies was completed. Fourteen articles fulfilled the inclusion criteria which were published in English, investigating an adult sample and using a pre- and post-intervention design. Studies were excluded if they included non-mild TBI severities, pediatric or older adult populations. Results: Thirteen of fourteen studies reported positive reductions in mTBI symptomatology following neuromodulation. Specifically, improvements were reported in post-concussion symptom ratings, headaches, dizziness, depression, anxiety, sleep disturbance, general disability, cognition, return to work and quality of life. Normalization of working memory activation patterns, vestibular field potentials, hemodynamics of the dorsolateral prefrontal cortex and excessive delta wave activity were also seen. The studies reviewed had several methodological limitations including small, heterogenous samples and varied intervention protocols, limiting generalisability. Further research is required to understand the context in which neuromodulation may be beneficial. Conclusions: While these positive effects are observed, limitations included unequal representation of neuromodulation modalities in the literature, and lack of literature describing the efficacy of neuromodulation on the development or duration of persistent mTBI symptoms. Better clarity regarding neuromodulation efficacy could have a significant impact on mTBI patients, researchers, clinicians, and policy makers, facilitating a more productive post-mTBI population. Despite the limitations, the literature indicates that neuromodulation warrants further investigation. PROSPERO registration number: CRD42020161279.
Collapse
Affiliation(s)
- Francesca Buhagiar
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, Nedlands, WA, Australia
| | - Jason Bell
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Fiona Allanson
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Carmela Pestell
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
- Curtin University, Perth, WA, Australia
| |
Collapse
|
13
|
Scott E, Kidgell DJ, Frazer AK, Pearce AJ. The Neurophysiological Responses of Concussive Impacts: A Systematic Review and Meta-Analysis of Transcranial Magnetic Stimulation Studies. Front Hum Neurosci 2020; 14:306. [PMID: 33192374 PMCID: PMC7481389 DOI: 10.3389/fnhum.2020.00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/08/2020] [Indexed: 01/20/2023] Open
Abstract
Aim: This systematic review and meta-analysis investigated neurophysiological responses using transcranial magnetic stimulation (TMS) following a concussion or sub-concussion. Methods: A systematic searching of relevant databases for peer-reviewed literature quantifying motor evoked potentials from TMS between 1999 and 2019 was performed. A meta-analysis quantified pooled data for measures including motor threshold, motor latency, and motor evoked potential amplitude and for inhibitory measures such as cortical silent period duration, short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI) ratios. Results: Fifteen articles met the inclusion criteria. The studies were arbitrarily classified into the groups, based on time post-concussion, “acute” (subjects 0–3 months post-injury, n = 8) and “post-acute” (3 months−2 years post-concussion, n = 7). A TMS quality of study checklist rated studies from moderate to high in methodological quality; however, the risk of bias analysis found that the included studies were categorised as high risk of bias, particularly for a lack of allocation concealment and blinding of participants in the methodologies. A meta-analysis showed no differences in excitability measures, apart from a decreased motor threshold that was observed in the concussed group (SMD −0.28, 95% CI −0.51 to −0.04; P = 0.02) for the post-acute time frame. Conversely, all inhibitory measures showed differences between groups. Cortical silent period duration was found to be significantly increased in the acute (SMD 1.19, 95% CI 0.58–1.81; P < 0.001) and post-acute (SMD 0.55, 95% CI 0.12–0.98; P = 0.01) time frames. The SICI (SMD −1.15, 95% CI −1.95 to −0.34; P = 0.005) and LICI (SMD −1.95, 95% CI −3.04 to −0.85; P = 0.005) ratios were reduced, inferring increased inhibition, for the post-acute time frame. Conclusion: This systematic review and meta-analysis demonstrates that inhibitory pathways are affected in the acute period post-concussion. However, persistent alterations in cortical excitability remain, with increased intracortical inhibition. While TMS should be considered as a reliable technique to measure the functional integrity of the central nervous system, the high risk of bias and heterogeneity in data suggest that future studies should aim to incorporate standardised methodological techniques, particularly with threshold determination and stimulus intervals for paired-pulse measures.
Collapse
Affiliation(s)
- Emily Scott
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Dawson J Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
| | - Ashlyn K Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Zhao X, Ding J, Pan H, Zhang S, Pan D, Yu H, Ye Z, Hua T. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats. J Physiol 2020; 598:3727-3745. [PMID: 32506434 DOI: 10.1113/jp279340] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The present study showed that anodal and cathodal transcranial direct current stimulation (tDCS) can respectively increase and decrease the amplitude of visually evoked field potentials in the stimulated visual cortex of cats, with the effect lasting for ∼60-70 min. We directly measured tDCS-induced changes in the concentration of inhibitory and excitatory neurotransmitters in the visual cortex using the enzyme-linked immunosorbent assay method and showed that anodal and cathodal tDCS can selectively decrease the concentration of GABA and glutamate in the stimulated cortical area. Anodal and cathodal tDCS can selectively inhibit the synthesis of GABA and glutamate by suppressing the expression of GABA- and glutamate-synthesizing enzymes, respectively. ABSTRACT Transcranial direct current stimulation (tDCS) evokes long-lasting neuronal excitability in the target brain region. The underlying neural mechanisms remain poorly understood. The present study examined tDCS-induced alterations in neuronal activities, as well as the concentration and synthesis of GABA and glutamate (GLU), in area 21a (A21a) of cat visual cortex. Our analysis showed that anodal and cathodal tDCS respectively enhanced and suppressed neuronal activities in A21a, as indicated by a significantly increased and decreased amplitude of visually evoked field potentials (VEPs). The tDCS-induced effect lasted for ∼60-70 min. By contrast, sham tDCS had no significant impact on the VEPs in A21a. On the other hand, the concentration of GABA, but not that of GLU, in A21a significantly decreased after anodal tDCS relative to sham tDCS, whereas the concentration of GLU, but not that of GABA, in A21a significantly decreased after cathodal tDCS relative to sham tDCS. Furthermore, the expression of GABA-synthesizing enzymes GAD65 and GAD67 in A21a significantly decreased in terms of both mRNA and protein concentrations after anodal tDCS relative to sham tDCS, whereas that of GLU-synthesizing enzyme glutaminase (GLS) did not change significantly after anodal tDCS. By contrast, both mRNA and protein concentrations of GLS in A21a significantly decreased after cathodal tDCS relative to sham tDCS, whereas those of GAD65/GAD67 showed no significant change after cathodal tDCS. Taken together, these results indicate that anodal and cathodal tDCS may selectively reduce GABA and GLU syntheses and thus respectively enhance and suppress neuronal excitability in the stimulated brain area.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
15
|
Transcranial Magnetic Stimulation-Electroencephalography Measures of Cortical Neuroplasticity Are Altered after Mild Traumatic Brain Injury. J Neurotrauma 2019; 36:2774-2784. [DOI: 10.1089/neu.2018.6353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
16
|
Kim GH, Kang I, Jeong H, Park S, Hong H, Kim J, Kim JY, Edden RAE, Lyoo IK, Yoon S. Low Prefrontal GABA Levels Are Associated With Poor Cognitive Functions in Professional Boxers. Front Hum Neurosci 2019; 13:193. [PMID: 31244630 PMCID: PMC6579878 DOI: 10.3389/fnhum.2019.00193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cognitive dysfunction has long been recognized as a frequently observed symptom in individuals with repetitive mild traumatic brain injury (rmTBI) such as professional boxers. The exact neurobiological mechanisms underlying this cognitive deficit have not yet been identified, but it is agreed upon that the prefrontal cortex (PFC) is one of the most commonly affected brain regions in professional boxers. Noting the pivotal role of the two major brain metabolites in human cognitive functions, γ-aminobutyric acid (GABA) and glutamate/glutamine (Glx), we hypothesized that alterations in levels of GABA and Glx in the PFC would be prominent and may correlate with cognitive deficits in professional boxers. Twenty male professional boxers (Boxers) and 14 age-matched healthy males who had never experienced any TBI (CON) were recruited. Using a 3T magnetic resonance imaging (MRI) scanner, single-voxel proton magnetic resonance spectroscopy with Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence was performed to evaluate the levels of GABA and Glx in the PFC. Cognitive function was assessed using the memory and attention domains from the Cambridge Neuropsychological Test Automated Battery. The Boxers showed lower GABA level in the PFC compared to the CON, while also showing lower performance in the attention and memory domains. There were no significant between-group differences in Glx levels. Furthermore, the GABA level correlated with memory performance in the Boxers, but not in attention performance. The current findings may suggest that alterations in GABA levels in the PFC may be a potential neurochemical correlate underlying memory dysfunction related to rmTBI.
Collapse
Affiliation(s)
- Geon Ha Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Neurology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shinwon Park
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Jung Yoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Richard A E Edden
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.,College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
17
|
Zaninotto AL, El-Hagrassy MM, Green JR, Babo M, Paglioni VM, Benute GG, Paiva WS. Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: A systematic review. Dement Neuropsychol 2019; 13:172-179. [PMID: 31285791 PMCID: PMC6601308 DOI: 10.1590/1980-57642018dn13-020005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of chronic disability. Less than a
quarter of moderate and severe TBI patients improved in their cognition within 5
years. Non-invasive brain stimulation, including transcranial direct current
stimulation (tDCS), may help neurorehabilitation by boosting adaptive
neuroplasticity and reducing pathological sequelae following TBI.
Collapse
Affiliation(s)
- Ana Luiza Zaninotto
- Speech and Feeding Disorders Lab, MGH Institute of Health Professions (MGH IHP), Boston, USA
| | - Mirret M El-Hagrassy
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School (HMS), Boston, USA
| | - Jordan R Green
- Speech and Feeding Disorders Lab, MGH Institute of Health Professions (MGH IHP), Boston, USA
| | - Maíra Babo
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Department of Neurology, São Paulo, SP, Brazil
| | - Vanessa Maria Paglioni
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Department of Neurology, São Paulo, SP, Brazil
| | | | - Wellingson Silva Paiva
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Department of Neurology, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Castaño-Castaño S, Martinez-Navarrete G, Morales-Navas M, Fernández-Jover E, Sanchez-Santed F, Nieto-Escámez F. Transcranial direct-current stimulation (tDCS) improves detection of simple bright stimuli by amblyopic Long Evans rats in the SLAG task and produces an increase of parvoalbumin labelled cells in visual cortices. Brain Res 2019; 1704:94-102. [PMID: 30287342 DOI: 10.1016/j.brainres.2018.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022]
Abstract
In this work visual functional improvement of amblyopic Long Evans rats treated with tDCS has been assessed using the "slow angled-descent forepaw grasping" (SLAG) test. This test is based on an innate response that does not requires any memory-learning component and has been used before for measuring visual function in rodents. The results obtained show that this procedure is useful to assess monocular but not binocular deficits, as controls and amblyopic animals showed significant differences during monocular but not during binocular assessment. On the other hand, parvoalbumin labelling was analysed in three areas of the visual cortex (V1M, V1B and V2L) before and after tDCS treatment. No changes in labelling were observed after monocular deprivation. However, tDCS treatment significantly improved vision through the amblyopic eye, and a significant increase of parvoalbumin-positive cells was observed in the three areas, both in the stimulated hemisphere but also in the non-stimulated hemisphere. This effect occurred both in control and amblyopic animals. Thus, tDCS induced changes are similar in controls and amblyopic animals, although only the last one showed a functional improvement.
Collapse
Affiliation(s)
- S Castaño-Castaño
- Universidad de Almería, Departamento de Psicología, Ctra. Sacramento S/N, 04120, La Cañada de San Urbano, Almería, Spain; Achucarro, Basque Center for Neuroscience Science Park, edificio de la Sede UPV/EHU, 48940 Leioa, Spain
| | - G Martinez-Navarrete
- Universidad Miguel Hernández de Elche, Unidad de Neuroprótesis y Rehabilitación Visual, Av. de la Universidad S/N, Elche, Alicante, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - M Morales-Navas
- Universidad de Almería, Departamento de Psicología, Ctra. Sacramento S/N, 04120, La Cañada de San Urbano, Almería, Spain
| | - E Fernández-Jover
- Universidad Miguel Hernández de Elche, Unidad de Neuroprótesis y Rehabilitación Visual, Av. de la Universidad S/N, Elche, Alicante, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - F Sanchez-Santed
- Universidad de Almería, Departamento de Psicología, Ctra. Sacramento S/N, 04120, La Cañada de San Urbano, Almería, Spain
| | - F Nieto-Escámez
- Universidad de Almería, Departamento de Psicología, Ctra. Sacramento S/N, 04120, La Cañada de San Urbano, Almería, Spain; Centro de Evaluación y Rehabilitación Neuropsicológica (CERNEP), Ctra. Sacramento S/N, 04120, La Cañada de San Urbano, Almería, Spain
| |
Collapse
|
19
|
Multimodal Assessment of Recurrent MTBI across the Lifespan. J Clin Med 2018; 7:jcm7050095. [PMID: 29723976 PMCID: PMC5977134 DOI: 10.3390/jcm7050095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 12/25/2022] Open
Abstract
Recurrent mild traumatic brain injuries (mTBI) and its neurological sequelae have been the focus of a large number of studies, indicating cognitive, structural, and functional brain alterations. However, studies often focused on single outcome measures in small cohorts of specific populations only. We conducted a multimodal evaluation of the impact of recurrent mTBI on a broad range of cognitive functions, regional brain volume, white matter integrity, and resting state functional connectivity (RSFC) in young and older adults in the chronic stage (>6 months after the last mTBI). Seventeen young participants with mTBI (age: 24.2 ± 2.8 (mean ± SD)) and 21 group-wise matched healthy controls (age: 25.8 ± 5.4 (mean ± SD)), as well as 17 older participants with mTBI (age: 62.7 ± 7.7 (mean ± SD)) and 16 group-wise matched healthy controls (age: 61.7 ± 5.9 (mean ± SD)) were evaluated. We found significant differences in the verbal fluency between young participants with mTBI and young healthy controls. Furthermore, differences in the regional volume of precuneus and medial orbitofrontal gyrus between participants with mTBI and controls for both age groups were seen. A significant age by group interaction for the right hippocampal volume was noted, indicating an accelerated hippocampal volume loss in older participants with mTBI. Other cognitive parameters, white matter integrity, and RSFC showed no significant differences. We confirmed some of the previously reported detrimental effects of recurrent mTBI, but also demonstrated inconspicuous findings for the majority of parameters.
Collapse
|
20
|
Lefebvre G, Chamard E, Proulx S, Tremblay S, Halko M, Soman S, de Guise E, Pascual-Leone A, Théoret H. Increased Myo-Inositol in Primary Motor Cortex of Contact Sports Athletes without a History of Concussion. J Neurotrauma 2018; 35:953-962. [PMID: 29279021 DOI: 10.1089/neu.2017.5254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of the study was to determine whether repetitive hits to the head at a subclinical level are associated with structural and functional brain abnormalities and whether these effects are influenced by high levels of fitness associated with intense physical activity. Seventy-two college students were recruited: 24 nonathletic, 24 athletes practicing a varsity contact sport, and 24 athletes practicing a varsity noncontact sport. They were recruited for a neuropsychological evaluation and a magnetic resonance imaging session that included magnetic resonance spectroscopy of primary motor cortex (M1) and prefrontal cortex and susceptibility-weighted imaging. There was no evidence for reduced cognitive performance or presence of micro bleeds in contact sports athletes. Abnormalities in contact sports athletes were found for myo-inositol concentration (mIns) in M1, where levels were significantly higher compared with noncontact sports athletes (p = 0.016) and nonathletes (p = 0.029). In prefrontal cortex, glutamate + glutamine (Glx) was significantly reduced in contact sports athletes compared with noncontact sports athletes (p = 0.016), and a similar reduction was observed for gamma-aminobutyric acid (GABA) levels (p = 0.005). Varsity contact sports are associated with area-specific alterations in mIns concentration in the primary motor cortex. In the prefrontal cortex, high levels of fitness could modulate the effects of head impact exposure on prefrontal metabolite concentration. Indeed, although athletes in contact and noncontact sports show different neurometabolic profiles, they do not differ from sedentary controls.
Collapse
Affiliation(s)
- Geneviève Lefebvre
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | - Emilie Chamard
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | | | - Sara Tremblay
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | - Mark Halko
- Division of Cognitive Neurology and Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Salil Soman
- Department of Radiology, Division of Neuroradiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Elaine de Guise
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | - Alvaro Pascual-Leone
- Division of Cognitive Neurology and Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Institut de Neurorrehabilitacion Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Hugo Théoret
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
- Research Center, CHU Sainte-Justine, Montreal, Québec, Canada
| |
Collapse
|
21
|
Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder. Neuropharmacology 2017; 131:51-57. [PMID: 29221791 DOI: 10.1016/j.neuropharm.2017.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 02/07/2023]
Abstract
Gambling disorder is characterized by persistent maladaptive gambling behaviors and is now considered among substance-related and addictive disorders. There is still unmet therapeutic need for these clinical populations, however recent advances indicate that interventions targeting the Glutamatergic/GABAergic system hold promise in reducing symptoms in substance-related and addictive disorders, including gambling disorder. There is some data indicating that transcranial direct current stimulation may hold clinical benefits in substance use disorders and modulate levels of brain metabolites including glutamate and GABA. The goal of the present work was to test whether this non-invasive neurostimulation method modulates key metabolites in gambling disorder. We conducted a sham-controlled, crossover, randomized study, blinded at two levels in order to characterize the effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex on neural metabolites levels in sixteen patients with gambling disorder. Metabolite levels were measured with magnetic resonance spectroscopy from the right dorsolateral prefrontal cortex and the right striatum during active and sham stimulation. Active as compared to sham stimulation elevated prefrontal GABA levels. There were no significant changes between stimulation conditions in prefrontal glutamate + glutamine and N-acetyl Aspartate, or in striatal metabolite levels. Results also indicated positive correlations between metabolite levels during active, but not sham, stimulation and levels of risk taking, impulsivity and craving. Our findings suggest that transcranial direct current stimulation can modulate GABA levels in patients with gambling disorder which may represent an interesting future therapeutic avenue.
Collapse
|
22
|
Menshchikov PE, Semenova NA, Akhadov TA, Bozhko OV, Varfolomeev SD. An Increase in Cerebral γ-Amino Butyric Acid Concentration in Children with Mild Traumatic Brain Injury in the Acute Phase: 1H MRS Study. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917060161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
tDCS-Induced Modulation of GABA Levels and Resting-State Functional Connectivity in Older Adults. J Neurosci 2017; 37:4065-4073. [PMID: 28314813 DOI: 10.1523/jneurosci.0079-17.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) modulates human behavior, neuronal patterns, and metabolite concentrations, with exciting potential for neurorehabilitation. However, the understanding of tDCS-induced alterations on the neuronal level is incomplete, and conclusions from young adults, in whom the majority of studies have been conducted, cannot be easily transferred to older populations. Here, we investigated tDCS-induced effects in older adults (N = 48; age range, 50-79 years) using magnetic resonance spectroscopy to quantify GABA levels as well as resting-state functional magnetic resonance imaging to assess sensorimotor network strength and interhemispheric connectivity. In a randomized, counterbalanced, crossover design, we applied anodal tDCS (atDCS), cathodal tDCS (ctDCS), and sham tDCS (stDCS) over the left sensorimotor region. We observed a significant reduction of GABA levels after atDCS compared with stDCS, reflecting the preserved neuromodulatory effect of atDCS in older adults. Moreover, resting-state functional coupling was decreased during atDCS compared with stDCS, most likely indicating augmented efficiency in brain network functioning. Increased levels of interhemispheric connectivity with age were diminished by atDCS, suggesting stimulation-induced functional decoupling. Further, the magnitude of atDCS-induced local plasticity was related to baseline functional network strength. Our findings provide novel insight into the neuronal correlates underlying tDCS-induced neuronal plasticity in older adults and thus might help to develop tDCS interventions tailored to the aging brain.SIGNIFICANCE STATEMENT Transcranial direct current stimulation (tDCS) modulates human behavior, neuronal patterns, and metabolite concentrations, with exciting potential for neurorehabilitation. However, the understanding of tDCS-induced alterations on the neuronal level is incomplete, and conclusions from young adults cannot be easily transferred to older populations. We used a systematic multimodal imaging approach to investigate the neurophysiological effects of tDCS in older adults and found stimulation-induced effects on GABA levels, reflecting augmented local plasticity and functional connectivity, suggesting modulation of network efficiency. Our findings may help to reconcile some of the recent reports on the variability of tDCS-induced effects, not only implicating age as a crucial modulating factor, but detailing its specific impact on the functionality of neural networks.
Collapse
|
24
|
Das S, Holland P, Frens MA, Donchin O. Impact of Transcranial Direct Current Stimulation (tDCS) on Neuronal Functions. Front Neurosci 2016; 10:550. [PMID: 27965533 PMCID: PMC5127836 DOI: 10.3389/fnins.2016.00550] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/15/2016] [Indexed: 02/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes are highly sensitive to stimulation parameters, leading to difficulty maximizing the technique's effectiveness. Although reversing the polarity of stimulation often causes opposite effects, this is not always the case. Effective clinical application will require an understanding of how tDCS works; how it modulates a neuron; how it affects the local network; and how it alters inter-network signaling. We have summarized what is known regarding the mechanisms of tDCS from sub-cellular processing to circuit level communication with a particular focus on what can be learned from the polarity specificity of the effects.
Collapse
Affiliation(s)
- Suman Das
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Peter Holland
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands; Faculty of Social and Behavioral Sciences, Erasmus University College, Erasmus UniversityRotterdam, Netherlands
| | - Opher Donchin
- Department of Biomedical Engineering and Zlotowski Center for Neuroscience, Ben Gurion University of the NegevBe'er Sheva, Israel; Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| |
Collapse
|