1
|
Rajkovic C, MacElroy D, Spirollari E, Vazquez S, Subah G, Lazzari J, Zeller SL, Wainwright JV, Jhanwar-Uniyal M, Kinon MD. The role of alarmins in neuroinflammation following spinal cord injury: A systematic review of the literature. Mol Cell Neurosci 2025; 133:104011. [PMID: 40388993 DOI: 10.1016/j.mcn.2025.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/03/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Alarmins, or damage-associated molecular patterns (DAMPs), are a diverse class of molecules essential for cellular homeostasis; however, their activation following traumatic cell necrosis contributes to neuroinflammation leading to neurologic deficits. This review aims to highlight the current preclinical alarmin studies and define their neuroprotective role in the treatment of SCI. METHODS A systematic review was performed to evaluate studies investigating alarmin-mediated immune and neuroinflammatory responses following SCI in animal models. Primary outcomes investigated included immunostaining of cell lines, quantification of alarmin, cytokine, and inflammatory mediators, myelin staining, and animal function scores. RESULTS IL-1α, HMGB1, S100A1, MIF, D-DT, IL-33, heme, cell-free DNA, and extracellular nucleotides were found to act as alarmins in animal models of SCI. The expression of these molecules in neurons and neuroglia at the SCI lesion site increased levels of TNF-α, IL-1β, and iNOS, contributing to neuroinflammation. Induction of the neurotoxic phenotypes of macrophages, microglia, and astrocytes by IL-1α, HMGB1, and IL-33 promoted cell death and reduction in oligodendrocyte number. Inhibitors of alarmin-signaling pathways, such as toll-like receptors (TLRs), IL-1R1, RAGE, ST2, and mTOR improved neurological function, as shown by enhanced postoperative locomotion. CONCLUSIONS Elevated alarmin expression and activity at the SCI site contribute to functional deficits by augmenting neuroinflammation, cell death, and cytotoxic neuroglia. Targeting alarmin-mediated signaling pathways represents a promising therapeutic approach in SCI treatment.
Collapse
Affiliation(s)
- Christian Rajkovic
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - Donald MacElroy
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - Eris Spirollari
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - Sima Vazquez
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - Galadu Subah
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | | | - Sabrina L Zeller
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - John V Wainwright
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | | | - Merritt D Kinon
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA.
| |
Collapse
|
2
|
Scheuren PS, Kramer JLK. Next-gen spinal cord injury clinical trials: lessons learned and opportunities for future success. EBioMedicine 2024; 109:105381. [PMID: 39383609 PMCID: PMC11490878 DOI: 10.1016/j.ebiom.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Despite promising basic science discoveries and a surge in clinical trials, the quest for effective treatments that restore neurological function after spinal cord injury lags on. While "failed" in a conventional sense, emerging solutions to longstanding challenges represent promising steps towards a future with effective interventions. In this personal view, we highlight clinical trials implementing new solutions and their impact on the field. Our perspective is that, ultimately, the integration of shared knowledge, adaptive designs, and a deeper understanding of the intricacies of spinal cord injury holds promise of unlocking of major breakthroughs, leading to improved outcomes for people with spinal cord injury.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Wei L, Huang Y, Chen Y, Wu J, Chen K, Zheng Z, Wang S, Xue L. Biomarkers for predicting the severity of spinal cord injury by proteomic analysis. Front Mol Neurosci 2023; 16:1153230. [PMID: 38155913 PMCID: PMC10753799 DOI: 10.3389/fnmol.2023.1153230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Purpose Currently, there is a shortage of the protein biomarkers for classifying spinal cord injury (SCI) severity. We attempted to explore the candidate biomarkers for predicting SCI severity. Methods SCI rat models with mild, moderate, and severe injury were constructed with an electro-mechanic impactor. The behavior assessment and pathological examinations were conducted before and after SCI. Then, quantitative liquid chromatography-mass spectrometry (LC-MS/MS) was performed in spinal cord tissues with different extents of injury. The differentially expressed proteins (DEPs) in SCI relative to controls were identified, followed by Mfuzz clustering, function enrichment analysis, and protein-protein interaction (PPI) network construction. The differential changes of candidate proteins were validated by using a parallel reaction monitoring (PRM) assay. Results After SCI modeling, the motor function and mechanical pain sensitivity of SCI rats were impaired, dependent on the severity of the injury. A total of 154 DEPs overlapped in the mild, moderate, and severe SCI groups, among which 82 proteins were classified in clusters 1, 2, 3, 5, and 6 with similar expression patterns at different extents of injury. DEPs were closely related to inflammatory response and significantly enriched in the IL-17 signaling pathway. PPI network showed that Fgg (Fibrinogen gamma chain), Fga (Fibrinogen alpha chain), Serpinc1 (Antithrombin-III), and Fgb (Fibrinogen beta chain) in cluster 1 were significant nodes with the largest degrees. The upregulation of the significant nodes in SCI samples was validated by PRM. Conclusion Fgg, Fga, and Fgb may be the putative biomarkers for assessing the extent of SCI.
Collapse
Affiliation(s)
- Liangfeng Wei
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Yubei Huang
- Department of Neurosurgery, Fuding Hospital, Fujian University of Traditional Chinese Medicine, Fuding, China
| | - Yehuang Chen
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Jianwu Wu
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Kaiqin Chen
- Department of Neurosurgery, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Zhaocong Zheng
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| | - Liang Xue
- Fuzong Clinical Medical College of Fujian Medical University (900TH Hospital), Fuzhou, China
| |
Collapse
|
4
|
Morrison D, Pinpin C, Lee A, Sison C, Chory A, Gregersen PK, Forrest G, Kirshblum S, Harkema SJ, Boakye M, Harrop JS, Bryce TN, Schwab JM, Kwon BK, Stein AB, Bank MA, Bloom O. Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis. J Neurotrauma 2023; 40:2621-2637. [PMID: 37221869 PMCID: PMC10722895 DOI: 10.1089/neu.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Abstract Individuals with SCI are severely affected by immune system changes, resulting in increased risk of infections and persistent systemic inflammation. While recent data support that immunological changes after SCI differ in the acute and chronic phases of living with SCI, only limited immunological phenotyping in humans is available. To characterize dynamic molecular and cellular immune phenotypes over the first year, we assess RNA (bulk-RNA sequencing), protein, and flow cytometry (FACS) profiles of blood samples from 12 individuals with SCI at 0-3 days and at 3, 6, and 12 months post injury (MPI) compared to 23 uninjured individuals (controls). We identified 967 differentially expressed (DE) genes in individuals with SCI (FDR <0.001) compared to controls. Within the first 6 MPI we detected a reduced expression of NK cell genes, consistent with reduced frequencies of CD56bright, CD56dim NK cells present at 12 MPI. Over 6MPI, we observed increased and prolonged expression of genes associated with inflammation (e.g. HMGB1, Toll-like receptor signaling) and expanded frequencies of monocytes acutely. Canonical T-cell related DE genes (e.g. FOXP3, TCF7, CD4) were upregulated during the first 6 MPI and increased frequencies of activated T cells at 3-12 MPI. Neurological injury severity was reflected in distinct whole blood gene expression profiles at any time after SCI, verifying a persistent 'neurogenic' imprint. Overall, 2876 DE genes emerge when comparing motor complete to motor incomplete SCI (ANOVA, FDR <0.05), including those related to neutrophils, inflammation, and infection. In summary, we identify a dynamic immunological phenotype in humans, including molecular and cellular changes which may provide potential targets to reduce inflammation, improve immunity, or serve as candidate biomarkers of injury severity.
Collapse
Affiliation(s)
- Debra Morrison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Camille Pinpin
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Annette Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Cristina Sison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Ashley Chory
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Gail Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Kirshblum
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation. West Orange, New Jersey, USA
| | - Susan J. Harkema
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - James S. Harrop
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam B. Stein
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Matthew A. Bank
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
- North Shore University Hospital, Manhasset, New York, USA
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| |
Collapse
|
5
|
Yang J, Wang M, Zheng S, Huang R, Wen G, Zhou P, Wang W, Zhou S, Jiang X, Liu S, Li Z, Ma D, Jiao G. Mesoporous polydopamine delivering 8-gingerol for the target and synergistic treatment to the spinal cord injury. J Nanobiotechnology 2023; 21:192. [PMID: 37316835 DOI: 10.1186/s12951-023-01896-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/15/2023] [Indexed: 06/16/2023] Open
Abstract
In the treatment of spinal cord injury (SCI), the complex process of secondary injury is mainly responsible for preventing SCI repair or even exacerbating the injury. In this experiment, we constructed the 8-gingerol (8G)-loaded mesoporous polydopamine (M-PDA), M@8G, as the in vivo targeting nano-delivery platform, and investigated the therapeutic effects of M@8G in secondary SCI and its related mechanisms. The results indicated that M@8G could penetrate the blood-spinal cord barrier to enrich the spinal cord injury site. Mechanism research has shown that all of the M-PDA,8G and M@8G displayed the anti-lipid peroxidation effect, and then M@8G can inhibit the secondary SCI by suppressing the ferroptosis and inflammation. In vivo assays showed that M@8G significantly diminished the local injury area, reduced axonal and myelin loss, thus improving the neurological and motor recovery in rats. Based on the analysis of cerebrospinal fluid samples from patients, ferroptosis occurred locally in SCI and continued to progress in patients during the acute phase of SCI as well as the stage after their clinical surgery. This study showcases effective treatment of SCI through the aggregation and synergistic effect of M@8G in focal areas, providing a safe and promising strategy for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Jinpei Yang
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China
- Department of Orthopaedics, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523573, Guangdong, China
| | - Meng Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Shuai Zheng
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China
| | - Ruodong Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Ganjun Wen
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523573, Guangdong, China
| | - Pan Zhou
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China
| | - Wenbo Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Shihao Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Xinlin Jiang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Shuangjiang Liu
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China
| | - Zhizhong Li
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China.
- The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan, 51700, Guangdong, China.
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China.
| | - Genlong Jiao
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China.
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523573, Guangdong, China.
| |
Collapse
|
6
|
Yifan H, Peng G, Tao Q, Bo C, Tao X, Jiang Y, Qian W, Zhenqi Y, Tao J, Jin F, Shujie Z, Wei Z, Jian C, Guoyong Y. Delayed inhibition of collagen deposition by targeting bone morphogenetic protein 1 promotes recovery after spinal cord injury. Matrix Biol 2023; 118:69-91. [PMID: 36918086 DOI: 10.1016/j.matbio.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Fibrotic scars appear after spinal cord injury (SCI) and are mainly composed of fibroblasts and excess extracellular matrix (ECM), including different types of collagen. The temporal and spatial distribution and role of excess collagens and ECM after SCI are not yet fully understood. Here, we identified that the procollagen type I C-terminal propeptide (PICP), a marker of collagen type I deposition, and bone morphogenetic protein 1 (BMP1), a secreted procollagen c-proteinase (PCP) for type I collagen maturation, were significantly elevatedin cerebrospinal fluid of patients with SCI compared with healthy controls, and were associated with spinal cord compression and neurological symptoms. We revealed the deposition of type I collagen in the area damaged by SCI in mice and confirmed that BMP1 was the only expressed PCP and induced collagen deposition. Furthermore, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) can activate the expression of BMP1. However, inhibition of BMP1 at the acute phase eliminated fibrotic scars in the damaged area and inhibited activation and enrichment of astrocytes, which made the damage difficult to repair and increased hematoma. Unexpectedly, knockdown of Bmp1 by adeno-associated virus or the inhibition of BMP1 biological function by specific inhibitors and monoclonal antibodies at different time points after injury led to distinct therapeutic effects. Only delayed inhibition of BMP1 improved axonal regeneration and myelin repair at the subacute stage post-injury, and led to the recovery of motor function, suggesting that scarring had a dual effect. Early inhibition of the scarring was not conducive to limiting inflammation, while excessive scar formation inhibited the growth of axons. After SCI, the collagen deposition indicators increased in both human cerebrospinal fluid and mouse spinal cord. Therefore, suppression of BMP1 during the subacute phase improves nerve function after SCI and is a potential target for scar reduction.
Collapse
Affiliation(s)
- Huang Yifan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Gao Peng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Qin Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Chu Bo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Xu Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yi Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Wang Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Yang Zhenqi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Jiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Fan Jin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China
| | - Zhao Shujie
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Zhou Wei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Chen Jian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| | - Yin Guoyong
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
7
|
Glial fibrillary acidic protein is a robust biomarker in cerebrospinal fluid and peripheral blood after traumatic spinal cord injury: a prospective pilot study. Acta Neurochir (Wien) 2023; 165:1417-1425. [PMID: 36790588 DOI: 10.1007/s00701-023-05520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Biochemical biomarkers to determine the injury severity and the potential for functional recovery of traumatic spinal cord injury (TSCI) are highly warranted; however, it remains to be clarified whether cerebrospinal fluid (CSF) or peripheral blood (PB) is the ideal sample media. This study aims to measure and compare biomarker concentrations in CSF and PB and to explore associations between biomarker concentrations and injury severity, i.e., American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade, and biomarker concentrations and clinical outcome, i.e., AIS grade improvement and Spinal Cord Independent Measure version III (SCIM-III) score. METHODS From 2018 to 2020, we conducted a single-center prospective pilot study of TSCI patients (n=15) and healthy controls (n=15). Sample collection and clinical outcome assessment were performed at median 13 h [IQR: 19], 9 days [IQR: 2], and 148 days [IQR: 49] after TSCI. Concentrations of neuron-specific enolase (NSE); glial fibrillary acid protein (GFAP); neurofilament light chain (NfL); interferon-γ (IFN-γ); interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, and IL-13; and tumor necrosis factor α (TNF-α) were measured and associated to clinical outcomes. RESULTS The biomarker concentrations were higher in CSF than PB. CSF concentrations of GFAP, NSE, IFN-y, TNF-a, IL-2, IL-12p70, IL-4, IL-10, and IL-13 and PB concentrations of GFAP and IFN-y were significantly associated with AIS grade, but not with AIS grade improvement or SCIM-III score. CONCLUSIONS Our results support GFAP as a potential diagnostic biomarker that may be measured in CSF as well as PB.
Collapse
|
8
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Sabirov D, Ogurcov S, Baichurina I, Blatt N, Rizvanov A, Mukhamedshina Y. Molecular diagnostics in neurotrauma: Are there reliable biomarkers and effective methods for their detection? Front Mol Biosci 2022; 9:1017916. [PMID: 36250009 PMCID: PMC9557129 DOI: 10.3389/fmolb.2022.1017916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
To date, a large number of studies are being carried out in the field of neurotrauma, researchers not only establish the molecular mechanisms of the course of the disorders, but are also involved in the search for effective biomarkers for early prediction of the outcome and therapeutic intervention. Particular attention is paid to traumatic brain injury and spinal cord injury, due to the complex cascade of reactions in primary and secondary injury that affect pathophysiological processes and regenerative potential of the central nervous system. Despite a wide range of methods available methods to study biomarkers that correlate with the severity and degree of recovery in traumatic brain injury and spinal cord injury, development of reliable test systems for clinical use continues. In this review, we evaluate the results of recent studies looking for various molecules acting as biomarkers in the abovementioned neurotrauma. We also summarize the current knowledge of new methods for studying biological molecules, analyzing their sensitivity and limitations, as well as reproducibility of results. In this review, we also highlight the importance of developing reliable and reproducible protocols to identify diagnostic and prognostic biomolecules.
Collapse
Affiliation(s)
- Davran Sabirov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, Kazan, Russia
| | - Irina Baichurina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Irina Baichurina,
| | - Nataliya Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russia
| |
Collapse
|
10
|
Advances in monitoring for acute spinal cord injury: a narrative review of current literature. Spine J 2022; 22:1372-1387. [PMID: 35351667 DOI: 10.1016/j.spinee.2022.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects about 17,000 individuals every year in the United States, with approximately 294,000 people living with the ramifications of the initial injury. After the initial primary injury, SCI has a secondary phase during which the spinal cord sustains further injury due to ischemia, excitotoxicity, immune-mediated damage, mitochondrial dysfunction, apoptosis, and oxidative stress. The multifaceted injury progression process requires a sophisticated injury-monitoring technique for an accurate assessment of SCI patients. In this narrative review, we discuss SCI monitoring modalities, including pressure probes and catheters, micro dialysis, electrophysiologic measures, biomarkers, and imaging studies. The optimal next-generation injury monitoring setup should include multiple modalities and should integrate the data to produce a final simplified assessment of the injury and determine markers of intervention to improve patient outcomes.
Collapse
|
11
|
Wichmann TO, Kasch H, Dyrskog S, Høy K, Møller BK, Krog J, Hoffmann HJ, Hviid CVB, Rasmussen MM. Cerebrospinal fluid and peripheral blood proteomics in Traumatic Spinal Cord Injury: A prospective pilot study. BRAIN AND SPINE 2022; 2:100906. [PMID: 36248130 PMCID: PMC9560581 DOI: 10.1016/j.bas.2022.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Proteomics enable profiling of inflammatory responses after spinal cord injury. Proteins are differentially expressed over time. Proteins are differentially expressed in cerebrospinal fluid and peripheral blood. A poor relationship exists between protein expression and neurological outcome.
Collapse
Affiliation(s)
- Thea Overgaard Wichmann
- Dept. Neurosurgery, Cense-Spine, Aarhus University Hospital, Aarhus, Denmark
- Corresponding author. Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.
| | - Helge Kasch
- Dept. Neurology, Viborg Regional Hospital, Toldbodgade 12, 8800, Viborg, Denmark
- Dept. of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Stig Dyrskog
- Dept. Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Kristian Høy
- Dept. of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Dept. Orthopaedic Surgery – Spine Section, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Bjarne Kuno Møller
- Dept. of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jan Krog
- Dept. Anaesthesiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Hans Jürgen Hoffmann
- Dept. of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Dept. Respiratory Diseases and Allergy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 93, 8200, Aarhus N, Denmark
| | - Claus Vinter Bødker Hviid
- Dept. Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Mikkel Mylius Rasmussen
- Dept. Neurosurgery, Cense-Spine, Aarhus University Hospital, Aarhus, Denmark
- Dept. of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| |
Collapse
|
12
|
Jogia T, Kopp MA, Schwab JM, Ruitenberg MJ. Peripheral white blood cell responses as emerging biomarkers for patient stratification and prognosis in acute spinal cord injury. Curr Opin Neurol 2021; 34:796-803. [PMID: 34608075 PMCID: PMC8631147 DOI: 10.1097/wco.0000000000000995] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To date, prognostication of patients after acute traumatic spinal cord injury (SCI) mostly relies on the neurological assessment of residual function attributed to lesion characteristics. With emerging treatment candidates awaiting to be tested in early clinical trials, there is a need for wholistic high-yield prognostic biomarkers that integrate both neurogenic and nonneurogenic SCI pathophysiology as well as premorbid patient characteristics. RECENT FINDINGS It is becoming clearer that effective prognostication after acute SCI would benefit from integrating an assessment of pathophysiological changes on a systemic level, and with that, extend from a lesion-centric approach. Immunological markers mirror tissue injury as well as host immune function and are easily accessible through routine blood sampling. New studies have highlighted the value of circulating white blood cells, neutrophils and lymphocytes in particular, as prognostic systemic indicators of SCI severity and outcomes. SUMMARY We survey recent advances in methods and approaches that may allow for a more refined diagnosis and better prognostication after acute SCI, discuss how these may help deepen our understanding of SCI pathophysiology, and be of use in clinical trials.
Collapse
Affiliation(s)
- Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Marcel A. Kopp
- Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan M. Schwab
- Spinal Cord Injury Research (Neuroparaplegiology), Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Belford Center for Spinal Cord Injury, Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Marc J. Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Leister I, Altendorfer B, Maier D, Mach O, Wutte C, Grillhösl A, Arevalo-Martin A, Garcia-Ovejero D, Aigner L, Grassner L. Serum Levels of Glial Fibrillary Acidic Protein and Neurofilament Light Protein Are Related to the Neurological Impairment and Spinal Edema after Traumatic Spinal Cord Injury. J Neurotrauma 2021; 38:3431-3439. [PMID: 34541888 DOI: 10.1089/neu.2021.0264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurological examination in the acute phase after spinal cord injury (SCI) is often impossible and severely confounded by pharmacological sedation or concomitant injuries. Therefore, diagnostic biomarkers that objectively characterize severity or the presence of SCI are urgently needed to facilitate clinical decision-making. This study aimed to determine if serum markers of neural origin are related to: 1) presence and severity of SCI, and 2) magnetic resonance imaging (MRI) parameters in the very acute post-injury phase. We performed a secondary analysis of serological parameters, as well as MRI findings in patients with acute SCI (n = 38). Blood samples were collected between Days 1-4 post-injury. Serum protein levels of glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), and neurofilament light protein (NfL) were determined. A group of 41 age- and sex-matched healthy individuals served as control group. In the group of individuals with SCI, pre-operative sagittal and axial T2-weighted and sagittal T1-weighted MRI scans were available for 21 patients. Serum markers of neural origin are different among individuals who sustained traumatic SCI depending on injury severity, and the extent of the lesion according to MRI in the acute injury phase. Unbiased Recursive Partitioning regression with Conditional Inference Trees (URP-CTREE) produced preliminary cut-off values for NfL (75.217 pg/mL) and GFAP (73.121 pg/mL), allowing a differentiation between individuals with SCI and healthy controls within the first 4 days after SCI. Serum proteins NfL and GFAP qualify as diagnostic biomarkers for the presence and severity of SCI in the acute post-injury phase, where the reliability of clinical exams is limited.
Collapse
Affiliation(s)
- Iris Leister
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Doris Maier
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria
| | - Orpheus Mach
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany
| | - Christof Wutte
- Department of Neurosurgery, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Biomechanics, BG Trauma Center Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria
| | - Andreas Grillhösl
- Department of Radiology, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ludwig Aigner
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Lukas Grassner
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Department of Neurosurgery, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Biomechanics, BG Trauma Center Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Early Predictors of Neurological Outcomes After Traumatic Spinal Cord Injury: A Systematic Review and Proposal of a Conceptual Framework. Am J Phys Med Rehabil 2021; 100:700-711. [PMID: 34131094 DOI: 10.1097/phm.0000000000001701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neurological outcomes after traumatic spinal cord injury are variable and depend on patient-, trauma-, and treatment-related factors as well as on spinal cord injury characteristics, imaging, and biomarkers. OBJECTIVE The aims of the study were to identify and classify the early predictors of neurological outcomes after traumatic spinal cord injury. DATA SOURCES The Medline, PubMed, Embase, and the Cochrane Central Database were searched using medical subject headings. The search was extended to the reference lists of identified studies. STUDY ELIGIBILITY CRITERIA The study eligibility criteria were assessment of neurological outcomes as primary or secondary outcome, predictors collected during the acute phase after traumatic spinal cord injury, and multivariate design. PARTICIPANTS The participants were adult patients with traumatic spinal cord injury followed at least 3 mos after injury. STUDY APPRAISAL AND SYNTHESIS METHODS The quality of studies was assessed by two independent reviewers using the Study Quality Assessment Tools for Observational Cohort and Cross-sectional Studies. The studies' narrative synthesis relied on a classification of the predictors according to quantity, quality, and consistency of the evidence. Results were summarized in a conceptual framework. RESULTS Forty-nine articles were included. The initial severity of traumatic spinal cord injury (American Spinal Injury Association Impairment Scale, motor score, and neurological level of injury) was the strongest predictor of neurological outcomes: patients with more severe injury at admission presented poor neurological outcomes. Intramedullary magnetic resonance imaging signal abnormalities were also associated with neurological outcomes, as the presence of intramedullary hemorrhage was a factor of poor prognosis. Other largely studied predictors, such as age and surgical timing, showed some inconsistency in results depending on cutoffs. Younger age and early surgery were generally associated with good outcomes. Although widely studied, other factors, such as vertebral and associated injuries, failed to show association with outcomes. Cerebrospinal fluid inflammatory biomarkers, as emerging factors, were significantly associated with outcomes. CONCLUSIONS This study provides a comprehensive review of predictors of neurological outcomes after traumatic spinal cord injury. It also highlights the heterogeneity of outcomes used by studies to assess neurological recovery. The proposed conceptual framework classifies predictors and illustrates their relationships with outcomes.
Collapse
|
15
|
Proteomic Portraits Reveal Evolutionarily Conserved and Divergent Responses to Spinal Cord Injury. Mol Cell Proteomics 2021; 20:100096. [PMID: 34129941 PMCID: PMC8260874 DOI: 10.1016/j.mcpro.2021.100096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/14/2021] [Accepted: 05/11/2021] [Indexed: 01/16/2023] Open
Abstract
Despite the emergence of promising therapeutic approaches in preclinical studies, the failure of large-scale clinical trials leaves clinicians without effective treatments for acute spinal cord injury (SCI). These trials are hindered by their reliance on detailed neurological examinations to establish outcomes, which inflate the time and resources required for completion. Moreover, therapeutic development takes place in animal models whose relevance to human injury remains unclear. Here, we address these challenges through targeted proteomic analyses of cerebrospinal fluid and serum samples from 111 patients with acute SCI and, in parallel, a large animal (porcine) model of SCI. We develop protein biomarkers of injury severity and recovery, including a prognostic model of neurological improvement at 6 months with an area under the receiver operating characteristic curve of 0.91, and validate these in an independent cohort. Through cross-species proteomic analyses, we dissect evolutionarily conserved and divergent aspects of the SCI response and establish the cerebrospinal fluid abundance of glial fibrillary acidic protein as a biochemical outcome measure in both humans and pigs. Our work opens up new avenues to catalyze translation by facilitating the evaluation of novel SCI therapies, while also providing a resource from which to direct future preclinical efforts. • Targeted proteomic analysis of CSF and serum samples from 111 acute SCI patients. • Single- and multiprotein biomarkers of injury severity and recovery. • Parallel proteomic analysis in a large animal model identifies conserved biomarkers. • Evolutionary conservation and divergence of the proteomic response to SCI.
Collapse
|
16
|
Blood Serum Cytokines in Patients with Subacute Spinal Cord Injury: A Pilot Study to Search for Biomarkers of Injury Severity. Brain Sci 2021; 11:brainsci11030322. [PMID: 33806460 PMCID: PMC8000354 DOI: 10.3390/brainsci11030322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Background. Despite considerable interest in the search for a spinal cord injury (SCI) therapy, there is a critical need to develop a panel of diagnostic biomarkers to determine injury severity. In this regard, there is a requirement for continuing research into the fundamental processes of neuroinflammatory and autoimmune reactions in SCI, identifying changes in the expression of cytokines. Methods. In this pilot study, an extended multiplex analysis of the cytokine profiles in the serum of patients at 2 weeks post-SCI (n = 28) was carried out, together with an additional assessment of neuron-specific enolase (NSE) and vascular endothelial growth factor (VEGF) levels by enzyme-linked immunosorbent assay. A total of 16 uninjured subjects were enrolled as controls. Results. The data obtained showed a large elevation of IFNγ (>52 fold), CCL27 (>13 fold), and CCL26 (>8 fold) 2 weeks after SCI. The levels of cytokines CXCL5, CCL11, CXCL11, IL10, TNFα, and MIF were different between patients with baseline American Spinal Injury Association Impairment Scale (AIS) grades of A or B, whilst IL2 (>2 fold) and MIP-3a (>6 fold) were significantly expressed in the cervical and thoracic regions. There was a trend towards increasing levels of NSE. However, the difference in NSE was lost when the patient set was segregated based on AIS group. Conclusions. Our pilot research demonstrates that serum concentrations of cytokines can be used as an affordable and rapid detection tool to accurately stratify SCI severity in patients.
Collapse
|
17
|
Mulcahey MJ, Jones LAT, Rockhold F, Rupp R, Kramer JLK, Kirshblum S, Blight A, Lammertse D, Guest JD, Steeves JD. Adaptive trial designs for spinal cord injury clinical trials directed to the central nervous system. Spinal Cord 2020; 58:1235-1248. [PMID: 32939028 DOI: 10.1038/s41393-020-00547-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN Narrative review. PURPOSE To provide an overview of adaptive trial designs, and describe how adaptive methods can address persistent challenges encountered by randomized controlled trials of people with spinal cord injury (SCI). RESULTS With few exceptions, adaptive methodologies have not been incorporated into clinical trial designs of people with SCI. Adaptive methods provide an opportunity to address high study costs, slow recruitment, and excessive amount of time needed to carry out the trial. The availability of existing SCI registries are well poised to support modeling and simulation, both of which are used extensively in adaptive trial designs. Eight initiatives for immediate advancement of adaptive methods in SCI were identified. CONCLUSION Although successfully applied in other fields, adaptive clinical trial designs in SCI clinical trial programs have been narrow in scope and few in number. Immediate application of several adaptive methods offers opportunity to improve efficiency of SCI trials. Concerted effort is needed by all stakeholders to advance adaptive clinical trial design methodology in SCI.
Collapse
Affiliation(s)
- M J Mulcahey
- Center for Outcomes and Measurement, College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | - Frank Rockhold
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Rϋediger Rupp
- Spinal Cord Center, Heidelberg University Hospital, Heidelberg, Germany
| | - John L K Kramer
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | | | - James D Guest
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, Miami, FL, USA
| | - John D Steeves
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 2020; 369:eaaz5626. [PMID: 32527923 PMCID: PMC7116154 DOI: 10.1126/science.aaz5626] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is a vital liquid, providing nutrients and signaling molecules and clearing out toxic by-products from the brain. The CSF is produced by the choroid plexus (ChP), a protective epithelial barrier that also prevents free entry of toxic molecules or drugs from the blood. Here, we establish human ChP organoids with a selective barrier and CSF-like fluid secretion in self-contained compartments. We show that this in vitro barrier exhibits the same selectivity to small molecules as the ChP in vivo and that ChP-CSF organoids can predict central nervous system (CNS) permeability of new compounds. The transcriptomic and proteomic signatures of ChP-CSF organoids reveal a high degree of similarity to the ChP in vivo. Finally, the intersection of single-cell transcriptomics and proteomic analysis uncovers key human CSF components produced by previously unidentified specialized epithelial subtypes.
Collapse
Affiliation(s)
- Laura Pellegrini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
19
|
Batruch I, Lim B, Soosaipillai A, Brinc D, Fiala C, Diamandis EP. Mass Spectrometry-Based Assay for Targeting Fifty-Two Proteins of Brain Origin in Cerebrospinal Fluid. J Proteome Res 2020; 19:3060-3071. [PMID: 32315192 DOI: 10.1021/acs.jproteome.0c00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebrospinal fluid (CSF) is a circulatory fluid of the central nervous system and it can reflect the biochemical changes occurring in the brain. Although CSF retrieval through lumbar puncture is invasive, it remains the most commonly used fluid in exploring brain pathology as it is less complex and contains a higher concentration of brain-derived proteins than plasma (Reiber, H. Clin. Chim. Acta 2001, 310, 173-186; Macron et al. J. Proteome Res. 2018, 17, 4315-4319). We hypothesize that proteins produced by the brain will have diagnostic significance for brain pathologies. Hence, we expanded the previously in-house-developed 31-protein panel with more proteins classified as brain-specific by the Human Protein Atlas (HPA). Using the HPA, we selected 76 protein coding genes and screened CSF using liquid chromatography-mass spectrometry (LC-MS) and narrowed the protein list to candidates identified endogenously in CSF. Next, we developed a parallel reaction monitoring (PRM) assay for the 21 new proteins and merged it with the 31-protein assay developed earlier. In the process, we evaluated different screening strategies and optimized MS collision energies and ion isolation windows to achieve the highest possible analyte signal resulting in the PRM assay with an average linear dynamic range of 4.3 × 103. We also assessed the extent of Asn (N)-Gln (Q) deamidation, N-terminal pyro-Glu (E) conversion, and Met (M) oxidation and found that deamidation can be misassigned without high mass accuracy and high-resolution settings. We also assessed how many of these proteins could be reliably measured in 10 individual patient CSF samples. Our approach allows us to measure the relative levels of 52 brain-derived proteins in CSF by a single LC-MS method. This new assay may have important applications in discovering CSF biomarkers for various neurological diseases.
Collapse
Affiliation(s)
- Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada
| | - Bryant Lim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto M5G 2C4, Canada
| | - Clare Fiala
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto M5G 2C4, Canada
| |
Collapse
|
20
|
Practical Application of Recent Advances in Diagnostic, Prognostic, and Therapeutic Modalities for Spinal Cord Injury. World Neurosurg 2020; 136:330-336. [PMID: 31931244 DOI: 10.1016/j.wneu.2020.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Spinal cord injury remains a highly morbid entity, with limited treatment modalities in both acute and chronic settings. Clinical research efforts to improve therapeutic guidelines are confounded by initial evaluation inaccuracies, as presentations are frequently complicated by trauma and objective diagnostic and prognostic methods are poorly defined. The purpose of our study was to review recent practical advances for further delineation of these injuries and how such classification may benefit the development of novel treatments. METHODS A review was carried out of recent studies reported within the last 5 years for prognostic and diagnostic modalities of acute spinal cord injury. RESULTS Substantial efforts have been made to improve the timeliness and accuracy of the initial assessment, not only for the purpose of enhancing prognostication but also in determining the efficacy of new treatments. Whether it be applying traumatic brain injury principles to limit injury extent, external stimulators used for chronic pain conditions to enhance the effects of physical therapy, or creative algorithms incorporating various nerve or muscle transfer techniques, innovative and practical solutions continue to be developed in lieu of definitive treatment. Further development will benefit from enhanced stratification of injury from accurate and practical assessment modalities. CONCLUSIONS Recent advances in accurate, timely, and practical classification methods of acute spinal cord injury will assist in the development of novel treatment approaches for both acute and chronic injury alike.
Collapse
|
21
|
Systemic inflammation in traumatic spinal cord injury. Exp Neurol 2019; 325:113143. [PMID: 31843491 DOI: 10.1016/j.expneurol.2019.113143] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
|
22
|
Advances in the Rehabilitation of the Spinal Cord-Injured Patient: The Orthopaedic Surgeons' Perspective. J Am Acad Orthop Surg 2019; 27:e945-e953. [PMID: 31045690 DOI: 10.5435/jaaos-d-18-00559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acute traumatic spinal cord injury is a devastating condition affecting 17,700 new patients per year in the United States alone. Typically, orthopaedic surgeons focus on managing the acute surgical aspects of care (eg, surgical spinal decompression and stabilization). However, in the care of these patients, being familiar with how to prognosticate neurologic recovery and manage secondary complications is extremely important. In addition, as an integral part of the multidisciplinary care team, the surgeon should have an awareness of contemporary rehabilitation approaches to maximize function and facilitate reintegration into the community. The purpose of this review article is to provide a surgeon's perspective on these aspects of spinal cord injury care.
Collapse
|
23
|
Kwon BK, Bloom O, Wanner IB, Curt A, Schwab JM, Fawcett J, Wang KK. Neurochemical biomarkers in spinal cord injury. Spinal Cord 2019; 57:819-831. [PMID: 31273298 DOI: 10.1038/s41393-019-0319-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/02/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
STUDY DESIGN This is a narrative review of the literature on neurochemical biomarkers in spinal cord injury (SCI). OBJECTIVES The objective was to summarize the literature on neurochemical biomarkers in SCI and describe their use in facilitating clinical trials for SCI. Clinical trials in spinal cord injury (SCI) have been notoriously difficult to conduct, as exemplified by the paucity of definitive prospective randomized trials that have been completed, to date. This is related to the relatively low incidence and the complexity and heterogeneity of the human SCI condition. Given the increasing number of promising approaches that are emerging from the laboratory which are vying for clinical evaluation, novel strategies to help facilitate clinical trials are needed. METHODS A literature review was conducted, with a focus on neurochemical biomarkers that have been described in human neurotrauma. RESULTS We describe advances in our understanding of neurochemical biomarkers as they pertain to human SCI. The application of biomarkers from serum and cerebrospinal fluid (CSF) has been led by efforts in the human traumatic brain injury (TBI) literature. A number of promising biomarkers have been described in human SCI whereby they may assist in stratifying injury severity and predicting outcome. CONCLUSIONS Several time-specific biomarkers have been described for acute SCI and for chronic SCI. These appear promising for stratifying injury severity and potentially predicting outcome. The subsequent application within a clinical trial will help to demonstrate their utility in facilitating the study of novel approaches for SCI.
Collapse
Affiliation(s)
- Brian K Kwon
- International Collaboration on Repaid Discoveries, University of British Columbia, Vancouver, BC, Canada.
| | - Ona Bloom
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
- The Zucker School of Medicine at Hofstra Northwell, Hempstead, NY, USA
| | - Ina-Beate Wanner
- Semel Institute for Neuroscience and Human Behavior, IDDRC, UCLA, Los Angeles, CA, USA
| | - Armin Curt
- University Hospital Balgrist, University of Zürich, Zürich, Switzerland
| | - Jan M Schwab
- The Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, USA
| | | | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research (NNBR), University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Yadav S, Surolia A. Lysozyme elicits pain during nerve injury by neuronal Toll-like receptor 4 activation and has therapeutic potential in neuropathic pain. Sci Transl Med 2019; 11:11/504/eaav4176. [DOI: 10.1126/scitranslmed.aav4176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/04/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
The role of neuronal Toll-like receptor 4 (TLR4) in nerve injury is being pursued actively. However, the endogenous activation of neuronal TLR4 during neuroinflammation, in absence of the participation of glial TLR4, remains elusive. Here, we identified lysozyme as an endogenous activator of neuronal TLR4 signaling during nerve injury. Upon nerve injury, enhanced expression of lysozyme promoted neuronal hyperexcitability and neuropathic pain. Injections of lysozyme in healthy rats increased their mechanical and thermal pain sensitivity. Likewise, infusion of spinal cord slices with lysozyme increased neuronal excitability typical of neuropathic pain. Our results also showed that lysozyme activated excitability of both Aδ- and C-fibers. Thus, in addition to the discovery of lysozyme as an endogenous ligand for regulating neuronal TLR4 signaling, this study also lays the foundation of our understanding of its role in nervous system pathologies, providing multiple avenues for treating neuroinflammation.
Collapse
|
25
|
Tigchelaar S, Gupta R, Shannon CP, Streijger F, Sinha S, Flibotte S, Rizzuto MA, Street J, Paquette S, Ailon T, Charest-Morin R, Dea N, Fisher C, Dvorak MF, Dhall S, Mac-Thiong JM, Parent S, Bailey C, Christie S, Van Keuren-Jensen K, Nislow C, Kwon BK. MicroRNA Biomarkers in Cerebrospinal Fluid and Serum Reflect Injury Severity in Human Acute Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:2358-2371. [PMID: 30827169 DOI: 10.1089/neu.2018.6256] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with variability in injury mechanisms and neurologic recovery. Spinal cord impairment after SCI is measured and classified by a widely accepted standard neurological examination. In the very acute stages post-injury, however, this examination is extremely challenging (and often impossible) to conduct and has modest prognostic value in terms of neurological recovery. The lack of objective tools to classify injury severity and predict outcome is a barrier for clinical trials and thwarts development of therapies for those with SCI. Biological markers (biomarkers) represent a promising, complementary approach to these challenges because they represent an unbiased approach to classify injury severity and predict neurological outcome. Identification of a suitable panel of molecular biomarkers would comprise a fundamental shift in how patients with acute SCI are evaluated, stratified, and treated in clinical trials. MicroRNA are attractive biomarker candidates in neurological disorders for several reasons, including their stability in biological fluids, their conservation between humans and model mammals, and their tissue specificity. In this study, we used next-generation sequencing to identify microRNA associated with injury severity within the cerebrospinal fluid (CSF) and serum of human patients with acute SCI. The CSF and serum samples were obtained 1-5 days post-injury from 39 patients with acute SCI (24 American Spinal Injury Association Impairment Scale [AIS] A, 8 AIS B, 7 AIS C) and from five non-SCI controls. We identified a severity-dependent pattern of change in microRNA expression in CSF and identified a set of microRNA that are diagnostic of baseline AIS classification and prognostic of neurological outcome six months post-injury. The data presented here provide a comprehensive description of the CSF and serum microRNA expression changes that occur after acute human SCI. This data set reveals microRNA candidates that warrant further evaluation as biomarkers of injury severity after SCI and as key regulators in other neurological disorders.
Collapse
Affiliation(s)
- Seth Tigchelaar
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Rishab Gupta
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Casey P Shannon
- 2Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, British Columbia, Canada
| | - Femke Streijger
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Sunita Sinha
- 3Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- 3Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A Rizzuto
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - John Street
- 4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Paquette
- 5Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamir Ailon
- 5Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raphaele Charest-Morin
- 4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Dea
- 5Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles Fisher
- 4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marcel F Dvorak
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjay Dhall
- 6Department of Neurosurgery, University of California San Francisco, San Francisco, California
| | | | - Stefan Parent
- 8Department of Surgery, Chu Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Christopher Bailey
- 9Division of Orthopaedic Surgery, Schulich Medicine & Dentistry, Victoria Hospital, London, Ontario, Canada
| | - Sean Christie
- 10Division of Neurosurgery, Halifax Infirmary, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Corey Nislow
- 3Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- 1International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.,4Department of Orthopedics, Division of Spine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Squair JW, Tigchelaar S, Moon KM, Liu J, Tetzlaff W, Kwon BK, Krassioukov AV, West CR, Foster LJ, Skinnider MA. Integrated systems analysis reveals conserved gene networks underlying response to spinal cord injury. eLife 2018; 7:39188. [PMID: 30277459 PMCID: PMC6173583 DOI: 10.7554/elife.39188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition for which there are currently no effective treatment options to restore function. A major obstacle to the development of new therapies is our fragmentary understanding of the coordinated pathophysiological processes triggered by damage to the human spinal cord. Here, we describe a systems biology approach to integrate decades of small-scale experiments with unbiased, genome-wide gene expression from the human spinal cord, revealing a gene regulatory network signature of the pathophysiological response to SCI. Our integrative analyses converge on an evolutionarily conserved gene subnetwork enriched for genes associated with the response to SCI by small-scale experiments, and whose expression is upregulated in a severity-dependent manner following injury and downregulated in functional recovery. We validate the severity-dependent upregulation of this subnetwork in rodents in primary transcriptomic and proteomic studies. Our analysis provides systems-level view of the coordinated molecular processes activated in response to SCI.
Collapse
Affiliation(s)
- Jordan W Squair
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, Canada
| | - Christopher R West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Leonard J Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology and Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Michael A Skinnider
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Herman P, Stein A, Gibbs K, Korsunsky I, Gregersen P, Bloom O. Persons with Chronic Spinal Cord Injury Have Decreased Natural Killer Cell and Increased Toll-Like Receptor/Inflammatory Gene Expression. J Neurotrauma 2018; 35:1819-1829. [PMID: 29310515 PMCID: PMC6033303 DOI: 10.1089/neu.2017.5519] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Infections are the leading cause of death for individuals with traumatic spinal cord injury (SCI). Along with increased infection rates, inflammation is often also observed in persons with chronic SCI. Together, immunological changes post-SCI are also poised to impede neurological recovery and mediate common medical consequences of SCI, including atherogenesis and neuropathic pain. The molecular mechanisms contributing to increased infection susceptibility and inflammation in persons living with SCI are poorly understood. Here, we used tools of functional genomics to perform a pilot study to compare whole-blood gene expression in individuals with chronic SCI (≥1 year from initial injury; N = 31) and uninjured individuals (N = 26). We identified 1815 differentially expressed genes in all SCI participants and 2226 differentially expressed genes in persons with SCI rostral to thoracic level 5, compared to uninjured participants. This included marked downregulation of natural killer cell genes and upregulation of the proinflammatory Toll-like receptor signaling pathway. These data provide novel mechanistic insights into the causes underlying the symptoms of immune dysfunction in individuals living with SCI.
Collapse
Affiliation(s)
- Paige Herman
- 1 The Feinstein Institute for Medical Research , Northwell Health
| | - Adam Stein
- 2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell
| | - Katie Gibbs
- 1 The Feinstein Institute for Medical Research , Northwell Health.,2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell
| | - Ilya Korsunsky
- 3 Robert S. Boas Center for Genomics & Human Genetics , The Feinstein Institute for Medical Research
| | - Peter Gregersen
- 3 Robert S. Boas Center for Genomics & Human Genetics , The Feinstein Institute for Medical Research.,4 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell , Northwell Health, Hempstead, NewYork
| | - Ona Bloom
- 1 The Feinstein Institute for Medical Research , Northwell Health.,2 Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell .,4 Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra Northwell , Northwell Health, Hempstead, NewYork
| |
Collapse
|
28
|
Dalkilic T, Fallah N, Noonan VK, Salimi Elizei S, Dong K, Belanger L, Ritchie L, Tsang A, Bourassa-Moreau E, Heran MK, Paquette SJ, Ailon T, Dea N, Street J, Fisher CG, Dvorak MF, Kwon BK. Predicting Injury Severity and Neurological Recovery after Acute Cervical Spinal Cord Injury: A Comparison of Cerebrospinal Fluid and Magnetic Resonance Imaging Biomarkers. J Neurotrauma 2018; 35:435-445. [DOI: 10.1089/neu.2017.5357] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Turker Dalkilic
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Nader Fallah
- Rick Hansen Institute, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Vanessa K. Noonan
- Rick Hansen Institute, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Sanam Salimi Elizei
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Kevin Dong
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Lise Belanger
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Leanna Ritchie
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Angela Tsang
- Vancouver Spine Program, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Manraj K.S. Heran
- Diagnostic & Therapeutic Neuroradiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Scott J. Paquette
- Vancouver Spine Surgery Institute, Division of Neurosurgery, Department of Surgery Orthopedics, University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Tamir Ailon
- Vancouver Spine Surgery Institute, Division of Neurosurgery, Department of Surgery Orthopedics, University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Nicolas Dea
- Vancouver Spine Surgery Institute, Division of Neurosurgery, Department of Surgery Orthopedics, University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - John Street
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Charles G. Fisher
- Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Marcel F. Dvorak
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopedics, University of British Columbia, Blusson Spinal Cord Center, Vancouver, British Columbia, Canada
| |
Collapse
|