1
|
Calderone A, Cardile D, Gangemi A, De Luca R, Quartarone A, Corallo F, Calabrò RS. Traumatic Brain Injury and Neuromodulation Techniques in Rehabilitation: A Scoping Review. Biomedicines 2024; 12:438. [PMID: 38398040 PMCID: PMC10886871 DOI: 10.3390/biomedicines12020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic Brain Injury (TBI) is a condition in which an external force, usually a violent blow to the head, causes functional impairment in the brain. Neuromodulation techniques are thought to restore altered function in the brain, resulting in improved function and reduced symptoms. Brain stimulation can alter the firing of neurons, boost synaptic strength, alter neurotransmitters and excitotoxicity, and modify the connections in their neural networks. All these are potential effects on brain activity. Accordingly, this is a promising therapy for TBI. These techniques are flexible because they can target different brain areas and vary in frequency and amplitude. This review aims to investigate the recent literature about neuromodulation techniques used in the rehabilitation of TBI patients. MATERIALS AND METHODS The identification of studies was made possible by conducting online searches on PubMed, Web of Science, Cochrane, Embase, and Scopus databases. Studies published between 2013 and 2023 were selected. This review has been registered on OSF (JEP3S). RESULTS We have found that neuromodulation techniques can improve the rehabilitation process for TBI patients in several ways. Transcranial Magnetic Stimulation (TMS) can improve cognitive functions such as recall ability, neural substrates, and overall improved performance on neuropsychological tests. Repetitive TMS has the potential to increase neural connections in many TBI patients but not in all patients, such as those with chronic diffuse axonal damage. CONCLUSIONS This review has demonstrated that neuromodulation techniques are promising instruments in the rehabilitation field, including those affected by TBI. The efficacy of neuromodulation can have a significant impact on their lives and improve functional outcomes for TBI patients.
Collapse
Affiliation(s)
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C. da Casazza; 98124 Messina, Italy; (A.C.); (A.G.); (R.D.L.); (A.Q.); (F.C.); (R.S.C.)
| | | | | | | | | | | |
Collapse
|
2
|
Coyle HL, Bailey NW, Ponsford J, Hoy KE. A comprehensive characterization of cognitive performance, clinical symptoms, and cortical activity following mild traumatic brain injury (mTBI). APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-17. [PMID: 38015637 DOI: 10.1080/23279095.2023.2286493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
OBJECTIVE The objective of this study was to investigate clinical symptoms, cognitive performance and cortical activity following mild traumatic brain injury (mTBI). METHODS We recruited 30 individuals in the sub-acute phase post mTBI and 28 healthy controls with no history of head injury and compared these groups on clinical, cognitive and cortical activity measures. Measures of cortical activity included; resting state electroencephalography (EEG), task related EEG and combined transcranial magnetic stimulation with electroencephalography (TMS-EEG). Primary analyses investigated clinical, cognitive and cortical activity differences between groups. Exploratory analyses investigated the relationships between these measures. RESULTS At 4 weeks' post injury, mTBI participants exhibited significantly greater post concussive and clinical symptoms compared to controls; as well as reduced cognitive performance on verbal learning and working memory measures. mTBI participants demonstrated alterations in cortical activity while at rest and in response to stimulation with TMS. CONCLUSIONS The present study comprehensively characterized the multidimensional effect of mTBI in the sub-acute phase post injury, showing a broad range of differences compared to non-mTBI participants. Further research is needed to explore the relationship between these pathophysiologies and clinical/cognitive symptoms in mTBI.
Collapse
Affiliation(s)
- Hannah L Coyle
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Australia
| | - Neil W Bailey
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Australia
- Monarch Research Institute Monarch Mental Health Group, Sydney, Australia
- School of Medicine and Psychology, The Australian National University, Canberra, Australia
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
- Monash-Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - Kate E Hoy
- Central Clinical School Department of Psychiatry, Monash University, Melbourne, Australia
- Bionics Institute of Australia, East Melbourne, Australia
| |
Collapse
|
3
|
Vatrano M, Nemirovsky IE, Tonin P, Riganello F. Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges. Life (Basel) 2023; 13:1675. [PMID: 37629532 PMCID: PMC10455583 DOI: 10.3390/life13081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback is a non-invasive therapeutic approach that has gained traction in recent years, showing promising results for various neurological and psychiatric conditions. It involves real-time monitoring of brain activity, allowing individuals to gain control over their own brainwaves and improve cognitive performance or alleviate symptoms. The use of electroencephalography (EEG), such as brain-computer interface (BCI), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), has been instrumental in developing neurofeedback techniques. However, the application of these tools in patients with disorders of consciousness (DoC) presents unique challenges. In this narrative review, we explore the use of neurofeedback in treating patients with DoC. More specifically, we discuss the advantages and challenges of using tools such as EEG neurofeedback, tDCS, TMS, and BCI for these conditions. Ultimately, we hope to provide the neuroscientific community with a comprehensive overview of neurofeedback and emphasize its potential therapeutic applications in severe cases of impaired consciousness levels.
Collapse
Affiliation(s)
- Martina Vatrano
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| | - Idan Efim Nemirovsky
- Department of Physics and Astronomy, Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Paolo Tonin
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| | - Francesco Riganello
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| |
Collapse
|
4
|
Babov KD, Zabolotna IB, Plakida AL, Volyanska VS, Babova IK, Gushcha SG, Kolker IA. The effectiveness of high-tone therapy in the complex rehabilitation of servicemen with post-traumatic stress disorder complicated by traumatic brain injury. Neurol Sci 2023; 44:1039-1048. [PMID: 36417014 DOI: 10.1007/s10072-022-06510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION As a result of local military conflicts that have become more frequent over the past decades, the number of military personnel subjected to combat stress has sharply increased. More than 50% of them suffer from combat posttraumatic stress disorder. The most common comorbidity in this category of patients is a traumatic brain injury. Due to the undesirability of the long-term use of pharmacological agents, for rehabilitation, preference should be given to physiotherapeutic procedures. OBJECTS AND METHODS We examined 50 patients with post-traumatic stress disorder in combination with a closed craniocerebral injury. Group 1-25 patients received standard complex treatment at the sanatoriumresort rehabilitation stage (diet therapy, climatotherapy, balneotherapy, exercise therapy, psychotherapy). Group 2-25 patients, in addition to the standard complex treatment, received a course of high-tone therapy. RESULTS Complex rehabilitation of patients with the use of high-tone therapy contributes to a significant decrease in astheno-neurotic (p < 0.05) and asthenic depressive (p < 0.01) syndromes and has a psycho-relaxing effect on anxiety syndrome (p < 0.01). There was also a decrease in the severity of pyramidal symptoms and regression of the vestibulo-atactic syndrome (p < 0.05). The course application of hightone therapy was accompanied by a significant restoration of the elastotonic properties of the vascular wall and an improvement in cerebral perfusion (p < 0.05). Positive dynamics of electrophysiological indicators were noted: a decrease in the intensity of slow rhythms against the background of an increase in the frequency and intensity of the alpha rhythm in both hemispheres (p < 0.05), which indicates the harmonization of the bioelectrical activity of the brain.
Collapse
Affiliation(s)
- Kostyantyn D Babov
- State Institution "Ukrainian Research Institute of Medical Rehabilitation Therapy of Ministry of Health of Ukraine", Odessa, 65014, Ukraine
| | - Iryna B Zabolotna
- State Institution "Ukrainian Research Institute of Medical Rehabilitation Therapy of Ministry of Health of Ukraine", Odessa, 65014, Ukraine
| | - Alexander L Plakida
- State Institution "Ukrainian Research Institute of Medical Rehabilitation Therapy of Ministry of Health of Ukraine", Odessa, 65014, Ukraine.
| | | | - Iryna K Babova
- State Institution "South Ukrainian National Pedagogical University Named After K.D. Ushynsky", Odessa, 65020, Ukraine
| | - Sergey G Gushcha
- State Institution "Ukrainian Research Institute of Medical Rehabilitation Therapy of Ministry of Health of Ukraine", Odessa, 65014, Ukraine
| | - Iryna A Kolker
- Odessa National Medical University, Odessa, 65000, Ukraine
| |
Collapse
|
5
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
6
|
Browne CJ, Fahey P, Sheeba SR, Sharpe MH, Rosner M, Feinberg D, Mucci V. Visual disorders and mal de debarquement syndrome: a potential comorbidity questionnaire-based study. Future Sci OA 2022; 8:FSO813. [PMID: 36248065 PMCID: PMC9540399 DOI: 10.2144/fsoa-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Aim: Mal de debarquement syndrome (MdDS) is a neurological condition characterized by a constant sensation of self-motion; onset may be motion-triggered (MT) or non-motion-triggered/spontaneous (NMT/SO). People with MdDS experience similar symptoms to those with vertical heterophoria, a subset of binocular visual dysfunction. Hence, we aimed to explore potential visual symptom overlaps. Methods: MdDS patients (n = 196) and controls (n = 197) completed a visual health questionnaire. Results: Compared with controls, the MdDS group demonstrated higher visual disorder scores and visual complaints. NMT/SO participants reported unique visual symptoms and a higher prevalence of mild traumatic brain injury. Conclusion: Our findings suggest visual disorders may coexist with MdDS, particularly the NMT/SO subtype. The difference in visual dysfunction frequency and medical histories between subtypes, warrants further investigation into differing pathophysiological mechanisms.
Collapse
Affiliation(s)
- Cherylea J Browne
- School of Science, Western Sydney University, Sydney, NSW 2560, Australia
- Translational Neuroscience Facility (TNF), School of Medical Sciences, UNSW Sydney, NSW, 2033, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Paul Fahey
- School of Health Sciences, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Stella R Sheeba
- School of Science, Western Sydney University, Sydney, NSW 2560, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Margie H Sharpe
- Dizziness & Balance Disorders Center, Adelaide, SA, 5000, Australia
| | - Mark Rosner
- NeuroVisual Medicine Institute, Bloomfield Hills, MI 48302, USA
| | - Debby Feinberg
- NeuroVisual Medicine Institute, Bloomfield Hills, MI 48302, USA
| | - Viviana Mucci
- School of Science, Western Sydney University, Sydney, NSW 2560, Australia
| |
Collapse
|
7
|
Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. J Neurosci Methods 2022; 377:109631. [PMID: 35623474 DOI: 10.1016/j.jneumeth.2022.109631] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Biomarkers are essential for understanding the underlying pathologies in brain disorders and for developing effective treatments. Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging neurophysiological tool that can be used for biomarker development. This method can identify biomarkers associated with the function and dynamics of the inhibitory and excitatory neurotransmitter systems and effective connectivity between brain areas. In this review, we outline the current state of the TMS-EEG biomarker field by summarizing the existing protocols and the possibilities and challenges associated with this methodology.
Collapse
|
8
|
Dose-response of intermittent theta burst stimulation of the prefrontal cortex: a TMS-EEG study. Clin Neurophysiol 2022; 136:158-172. [DOI: 10.1016/j.clinph.2021.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/01/2021] [Accepted: 12/26/2021] [Indexed: 01/01/2023]
|
9
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
10
|
Pearce AJ, Kidgell DJ, Tommerdahl MA, Frazer AK, Rist B, Mobbs R, Batchelor J, Buckland ME. Chronic Neurophysiological Effects of Repeated Head Trauma in Retired Australian Male Sport Athletes. Front Neurol 2021; 12:633320. [PMID: 33767661 PMCID: PMC7985524 DOI: 10.3389/fneur.2021.633320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Aim: This study investigated the somatosensory and corticomotor physiology of retired contact sport athletes with a history of repeated concussion/subconcussion head trauma. Methods: Retired male athletes with a history of playing contact sports and repeated head trauma (n = 122) were divided into two groups: those who expressed concerns regarding their mental and cognitive health ("symptomatic": n = 83), and those who did not express any ongoing concerns ("asymptomatic": n = 39). Both groups were compared to age-matched male controls (n = 50) with no history of concussions or participation in contact sports, an absence of self-reported cognitive, or mood impairments. Transcranial magnetic stimulation (TMS) and vibrotactile stimulation were used to assess corticomotor and somatosensory pathways respectively. TMS and vibrotactile stimulation were correlated to self-reported responses using the Fatigue and Related Symptom Survey. Linear regression was used to associate concussion history with TMS, somatosensory variables. Results: Significant differences were found in symptom survey scores between all groups (p < 0.001). TMS showed significant differences between the "symptomatic" and control groups for intracortical inhibition and paired pulse TMS measures. Somatosensory measures showed significant differences for reaction time (p < 0.01) and reaction time variability (p < 0.01) between the "symptomatic" group to the "asymptomatic" and control groups. For other somatosensory measures, the "symptomatic" measures showed differences to the "control" group. Correlations showed significant associations between severity of symptom reporting with TMS and somatosensory measure, and regression revealed the number of concussions reported was shown to have significant relationships to increased intracortical inhibition and poorer somatosensory performance. Conclusion: This study shows that retired contact sport athletes expressing chronic symptoms showed significant pathophysiology compared to those with no ongoing concerns and non-concussed controls. Further, there is a linear dose-response relationship between number of reported concussions and abnormal neurophysiology. Neurophysiological assessments such as TMS and somatosensory measures represent useful and objective biomarkers to assess cortical impairments and progression of neuropsychological impairment in individuals with a history of repeated head trauma.
Collapse
Affiliation(s)
- Alan J. Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Dawson J. Kidgell
- Department of Physiotherapy, Faculty of Medicine Nursing and Health Science, Monash University, Melbourne, VIC, Australia
| | - Mark A. Tommerdahl
- Department of Biomedical Engineering, University of North Carolina, Chappell Hill, NC, United States
- Cortical Metrics, Carrboro, NC, United States
| | - Ashlyn K. Frazer
- Department of Physiotherapy, Faculty of Medicine Nursing and Health Science, Monash University, Melbourne, VIC, Australia
| | - Billymo Rist
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Rowena Mobbs
- Department of Neurology, Macquarie University Hospital, Macquarie University, Sydney, NSW, Australia
| | | | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Brain and Mind Centre, University Sydney, Camperdown, NSW, Australia
| |
Collapse
|
11
|
Fatih P, Kucuker MU, Vande Voort JL, Doruk Camsari D, Farzan F, Croarkin PE. A Systematic Review of Long-Interval Intracortical Inhibition as a Biomarker in Neuropsychiatric Disorders. Front Psychiatry 2021; 12:678088. [PMID: 34149483 PMCID: PMC8206493 DOI: 10.3389/fpsyt.2021.678088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Long-interval intracortical inhibition (LICI) is a paired-pulse transcranial magnetic stimulation (TMS) paradigm mediated in part by gamma-aminobutyric acid receptor B (GABAB) inhibition. Prior work has examined LICI as a putative biomarker in an array of neuropsychiatric disorders. This review conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) sought to examine existing literature focused on LICI as a biomarker in neuropsychiatric disorders. There were 113 articles that met the inclusion criteria. Existing literature suggests that LICI may have utility as a biomarker of GABAB functioning but more research with increased methodologic rigor is needed. The extant LICI literature has heterogenous methodology and inconsistencies in findings. Existing findings to date are also non-specific to disease. Future research should carefully consider existing methodological weaknesses and implement high-quality test-retest reliability studies.
Collapse
Affiliation(s)
- Parmis Fatih
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - M Utku Kucuker
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Jennifer L Vande Voort
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Deniz Doruk Camsari
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Centre for Engineering-Led Brain Research, Simon Fraser University, Surrey, BC, Canada
| | - Paul E Croarkin
- Mayo Clinic Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Levy-Lamdan O, Zifman N, Sasson E, Efrati S, Hack DC, Tanne D, Dolev I, Fogel H. Evaluation of White Matter Integrity Utilizing the DELPHI (TMS-EEG) System. Front Neurosci 2020; 14:589107. [PMID: 33408607 PMCID: PMC7779791 DOI: 10.3389/fnins.2020.589107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Objective The aim of this study was to evaluate brain white matter (WM) fibers connectivity damage in stroke and traumatic brain injury (TBI) subjects by direct electrophysiological imaging (DELPHI) that analyzes transcranial magnetic stimulation (TMS)-evoked potentials (TEPs). Methods The study included 123 participants, out of which 53 subjects with WM-related pathologies (39 stroke, 14 TBI) and 70 healthy age-related controls. All subjects underwent DELPHI brain network evaluations of TMS-electroencephalogram (EEG)-evoked potentials and diffusion tensor imaging (DTI) scans for quantification of WM microstructure fractional anisotropy (FA). Results DELPHI output measures show a significant difference between the healthy and stroke/TBI groups. A multidimensional approach was able to classify healthy from unhealthy with a balanced accuracy of 0.81 ± 0.02 and area under the curve (AUC) of 0.88 ± 0.01. Moreover, a multivariant regression model of DELPHI output measures achieved prediction of WM microstructure changes measured by FA with the highest correlations observed for fibers proximal to the stimulation area, such as frontal corpus callosum (r = 0.7 ± 0.02), anterior internal capsule (r = 0.7 ± 0.02), and fronto-occipital fasciculus (r = 0.65 ± 0.03). Conclusion These results indicate that features of TMS-evoked response are correlated to WM microstructure changes observed in pathological conditions, such as stroke and TBI, and that a multidimensional approach combining these features in supervised learning methods serves as a strong indicator for abnormalities and changes in WM integrity.
Collapse
Affiliation(s)
| | - Noa Zifman
- QuantalX Neuroscience, Beer-Yaacov, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Zerifin, Israel.,Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dallas C Hack
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States
| | - David Tanne
- Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Stroke and Cognition Institute, Rambam Healthcare Campus, Haifa, Israel
| | | | | |
Collapse
|
13
|
Paul H, Heller R. EEG-Fokus: osteopathisch-manualmedizinische Therapie? MANUELLE MEDIZIN 2020. [DOI: 10.1007/s00337-020-00731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Scott E, Kidgell DJ, Frazer AK, Pearce AJ. The Neurophysiological Responses of Concussive Impacts: A Systematic Review and Meta-Analysis of Transcranial Magnetic Stimulation Studies. Front Hum Neurosci 2020; 14:306. [PMID: 33192374 PMCID: PMC7481389 DOI: 10.3389/fnhum.2020.00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/08/2020] [Indexed: 01/20/2023] Open
Abstract
Aim: This systematic review and meta-analysis investigated neurophysiological responses using transcranial magnetic stimulation (TMS) following a concussion or sub-concussion. Methods: A systematic searching of relevant databases for peer-reviewed literature quantifying motor evoked potentials from TMS between 1999 and 2019 was performed. A meta-analysis quantified pooled data for measures including motor threshold, motor latency, and motor evoked potential amplitude and for inhibitory measures such as cortical silent period duration, short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI) ratios. Results: Fifteen articles met the inclusion criteria. The studies were arbitrarily classified into the groups, based on time post-concussion, “acute” (subjects 0–3 months post-injury, n = 8) and “post-acute” (3 months−2 years post-concussion, n = 7). A TMS quality of study checklist rated studies from moderate to high in methodological quality; however, the risk of bias analysis found that the included studies were categorised as high risk of bias, particularly for a lack of allocation concealment and blinding of participants in the methodologies. A meta-analysis showed no differences in excitability measures, apart from a decreased motor threshold that was observed in the concussed group (SMD −0.28, 95% CI −0.51 to −0.04; P = 0.02) for the post-acute time frame. Conversely, all inhibitory measures showed differences between groups. Cortical silent period duration was found to be significantly increased in the acute (SMD 1.19, 95% CI 0.58–1.81; P < 0.001) and post-acute (SMD 0.55, 95% CI 0.12–0.98; P = 0.01) time frames. The SICI (SMD −1.15, 95% CI −1.95 to −0.34; P = 0.005) and LICI (SMD −1.95, 95% CI −3.04 to −0.85; P = 0.005) ratios were reduced, inferring increased inhibition, for the post-acute time frame. Conclusion: This systematic review and meta-analysis demonstrates that inhibitory pathways are affected in the acute period post-concussion. However, persistent alterations in cortical excitability remain, with increased intracortical inhibition. While TMS should be considered as a reliable technique to measure the functional integrity of the central nervous system, the high risk of bias and heterogeneity in data suggest that future studies should aim to incorporate standardised methodological techniques, particularly with threshold determination and stimulus intervals for paired-pulse measures.
Collapse
Affiliation(s)
- Emily Scott
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Dawson J Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
| | - Ashlyn K Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Wilkerson GB, Nabhan DC, Crane RT. Concussion History and Neuromechanical Responsiveness Asymmetry. J Athl Train 2020; 55:594-600. [PMID: 32396473 DOI: 10.4085/1062-6050-0401.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Detection of subtle changes in brain sensorimotor processes may enable clinicians to identify athletes who would derive the greatest benefit from interventions designed to reduce the risk for future injury and progressive neurologic or musculoskeletal dysfunction. OBJECTIVE To develop a generalizable statistical model for identifying athletes who possess subtle alterations in sensorimotor processes that may be due to previous concussion. DESIGN Cross-sectional study. SETTING Residential Olympic Training Center sports medicine clinic. PATIENTS OR OTHER PARTICIPANTS A primary cohort of 35 elite athletes and a secondary cohort of 40 elite athletes who performed identical tests the preceding year. INTERVENTION(S) Two upper extremity tests of visual-motor reaction time and 2 tests of whole-body reactive agility were administered. The whole-body tests required lateral or diagonal responses to virtual-reality targets, which provided measures of reaction time, speed, acceleration, and deceleration. MAIN OUTCOME MEASURE(S) Sport-related concussion history, which was reported by 54% (n = 19) of the athletes in the primary cohort and 45% (n = 18) of the athletes in the secondary cohort. RESULTS Univariable analyses identified 12 strong predictors of sport-related concussion history, which we combined to create a composite metric with maximum predictive value. Composite lateral asymmetry for whole-body reactive movements and persisting effects of previous musculoskeletal injury yielded a logistic regression model with exceptionally good discrimination (area under the curve = 0.845) and calibration (predicted-observed probabilities within 7 subgroups: r = 0.959, P = .001). Application of the derived model to compatible data acquired from another cohort of elite athletes demonstrated very good discrimination (area under the curve = 0.772) and calibration (within 8 subgroups: r = 0.849, P = .008). CONCLUSIONS Asymmetry in whole-body reactive movement capabilities may be a manifestation of a subtle abnormality in the functional connectivity of brain networks that might be relevant to previously reported associations between sport-related concussion history and musculoskeletal injury occurrence.
Collapse
|