1
|
Alexandris AS, Rafaels K, Horsmon M, Wozniak S, Belamarich J, Flores P, Frangakis CE, Ryu J, Iacono D, Perl D, Koliatsos VE. Diffuse Axonal and Vascular Pathology in the Gyrencephalic Brain after High-Energy Blunt Injury: Clinicopathological Correlations Involving the Brainstem. J Neurotrauma 2025; 42:417-436. [PMID: 39723444 DOI: 10.1089/neu.2024.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Traumatic brain injury (TBI) after high-energy, behind helmet blunt trauma (BHBT) is an important but poorly understood clinical entity often associated with apnea and death in humans. In this study, we use a swine model of high-energy BHBT to characterize key neuropathologies and their association with acute respiratory decompensation. Animals with either stable or critical vital signs were euthanized within 4 h after injury for neuropathological assessment, with emphasis on axonal and vascular pathologies in the brainstem. The majority of cases were characterized by fractures of the cranium at or about the impact site, extensive subarachnoid hemorrhages, coup and contrecoup contusions, and primarily diffuse axonal and vascular lesions throughout the cerebrum, particularly in the brainstem. Absence of spontaneous respiration that was encountered frequently was associated with both severity of impact and the severity of brainstem axonal and vascular lesions. A focused regional examination of brainstem pathology indicated a link between adverse outcomes and diffuse axonal lesions within the medial medulla or vascular lesions within the anteroventral brainstem, a pattern suggesting that injury to brainstem respiratory centers may play a role in apnea following BHBT. In addition, while the overall burden of diffuse axonal and vascular pathologies correlated with each other, we found minimal overlap in their regional distribution. Our findings indicate that high-energy, blunt-force impact TBI causes diffuse lesions in axons and blood vessels associated with poor outcomes. They also suggest that axons and vessels may have distinct responses to tissue deformation and that commonly used markers of vascular pathology, for example, in diagnostic radiology, cannot be used as direct surrogates of diffuse axonal injury. In concert, our study underscores the role of regional axonal and vascular injuries in the brainstem in acute respiratory decompensation after high-rate blunt TBI, even in the presence of head protection; it also emphasizes the importance of detailed clinicopathological work in complex brains in the field of TBI.
Collapse
Affiliation(s)
- Athanasios S Alexandris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Michael Horsmon
- Army DEVCOM Chemical Biological Center, Gunpowder, Maryland, USA
| | | | - Joseph Belamarich
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Payton Flores
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Constantine E Frangakis
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Jiwon Ryu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diego Iacono
- Uniformed Services University, Bethesda, Maryland, USA
| | - Daniel Perl
- Uniformed Services University, Bethesda, Maryland, USA
| | - Vassilis E Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Wu H, Jiang B, Yan X, Zhan C, Dai W, Yu G. Effect of Decompressive Craniectomy with Stepwise Decompression of the Intracranial Compartment on Postoperative Neurologic Function, Hemodynamics, and Glasgow Outcome Scale Score of Patients with Severe Traumatic Brain Injury. J Neurol Surg A Cent Eur Neurosurg 2023; 84:536-541. [PMID: 36572035 DOI: 10.1055/s-0042-1757933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND We assess the effects of standard decompressive craniectomy with stepwise decompression of the intracranial compartment on the postoperative neurologic function, hemodynamics, and Glasgow Outcome Scale (GOS) score of patients with severe traumatic brain injury (sTBI). METHODS One hundred sTBI patients admitted from July 2017 to February 2019 were enrolled and randomly divided into step and standard groups (n = 50) using a random number table. The standard group received traditional standard decompression during surgery, while the step group underwent multistep decompression during surgery. Heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were measured immediately after surgery (T0), 3 hours after surgery (T1), 6 hours after surgery (T2), and 12 hours after surgery (T3). The postoperative Glasgow Coma Scale (GCS) score, neurologic function deficit score, and GOS score were evaluated. RESULTS After treatment, the excellent/good rate of neurologic function improvement and GCS and GOS scores of the step group significantly exceeded those of the standard group (p < 0.05). Compared with the standard group, the HR, SBP, DBP, and MAP decreased significantly in the step group at T1, T2, and T3 (p < 0.05). CONCLUSION Standard decompressive craniectomy under multistep decompression can markedly improve the neurologic function, hemodynamics, and prognosis of patients.
Collapse
Affiliation(s)
- Huayong Wu
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, People's Republic of China
| | - Bingjie Jiang
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, People's Republic of China
| | - Xinjiang Yan
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, People's Republic of China
| | - Chengpeng Zhan
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, People's Republic of China
| | - Weimin Dai
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, People's Republic of China
| | - Guofeng Yu
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Tallus J, Mohammadian M, Kurki T, Roine T, Posti JP, Tenovuo O. A comparison of diffusion tensor imaging tractography and constrained spherical deconvolution with automatic segmentation in traumatic brain injury. Neuroimage Clin 2023; 37:103284. [PMID: 36502725 PMCID: PMC9758569 DOI: 10.1016/j.nicl.2022.103284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Detection of microstructural white matter injury in traumatic brain injury (TBI) requires specialised imaging methods, of which diffusion tensor imaging (DTI) has been extensively studied. Newer fibre alignment estimation methods, such as constrained spherical deconvolution (CSD), are better than DTI in resolving crossing fibres that are ubiquitous in the brain and may improve the ability to detect microstructural injuries. Furthermore, automatic tract segmentation has the potential to improve tractography reliability and accelerate workflow compared to the manual segmentation commonly used. In this study, we compared the results of deterministic DTI based tractography and manual tract segmentation with CSD based probabilistic tractography and automatic tract segmentation using TractSeg. 37 participants with a history of TBI (with Glasgow Coma Scale 13-15) and persistent symptoms, and 41 healthy controls underwent deterministic DTI-based tractography with manual tract segmentation and probabilistic CSD-based tractography with TractSeg automatic segmentation.Fractional anisotropy (FA) and mean diffusivity of corpus callosum and three bilateral association tracts were measured. FA and MD values derived from both tractography methods were generally moderately to strongly correlated. CSD with TractSeg differentiated the groups based on FA, while DTI did not. CSD and TractSeg-based tractography may be more sensitive in detecting microstructural changes associated with TBI than deterministic DTI tractography. Additionally, CSD with TractSeg was found to be applicable at lower b-value and number of diffusion-encoding gradients data than previously reported.
Collapse
Affiliation(s)
- Jussi Tallus
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland.
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Kurki
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Department of Radiology, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| | - Timo Roine
- Turku Brain and Mind Center, University of Turku, Turku FI-20014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2 C, Espoo 02150, Finland
| | - Jussi P Posti
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland; Neurocenter, Department of Neurosurgery, Turku University Hospital, University of Turku, Hämeentie 11, Turku FI-20521, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Department of Clinical Neurosciences, University of Turku and Turku University Hospital, Hämeentie 11, Turku FI-20521, Finland
| |
Collapse
|
4
|
Dahl J, Tenovuo O, Posti JP, Hirvonen J, Katila AJ, Frantzén J, Maanpää HR, Takala R, Löyttyniemi E, Tallus J, Newcombe V, Menon DK, Hutchinson PJ, Mohammadian M. Cerebral Microbleeds and Structural White Matter Integrity in Patients With Traumatic Brain Injury-A Diffusion Tensor Imaging Study. Front Neurol 2022; 13:888815. [PMID: 35711272 PMCID: PMC9194845 DOI: 10.3389/fneur.2022.888815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Diffuse axonal injury (DAI) is a common neuropathological manifestation of traumatic brain injury (TBI), presenting as traumatic alterations in the cerebral white matter (WM) microstructure and often leading to long-term neurocognitive impairment. These WM alterations can be assessed using diffusion tensor imaging (DTI). Cerebral microbleeds (CMBs) are a common finding on head imaging in TBI and are often considered a visible sign of DAI, although they represent diffuse vascular injury. It is poorly known how they associate with long-term white matter integrity. This study included 20 patients with TBI and CMBs, 34 patients with TBI without CMBs, and 11 controls with orthopedic injuries. DTI was used to assess microstructural WM alterations. CMBs were detected using susceptibility-weighted imaging (SWI) and graded according to their location in the WM and total lesion load was counted. Patients underwent SWI within 2 months after injury. DTI and clinical outcome assessment were performed at an average of eight months after injury. Outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The Glasgow Coma Scale (GCS) and length of post-traumatic amnesia (PTA) were used to assess clinical severity of the injury. We found that CMB grading and total lesion load were negatively associated with fractional anisotropy (FA) and positively associated with mean diffusivity (MD). Patients with TBI and CMBs had decreased FA and increased MD compared with patients with TBI without CMBs. CMBs were also associated with worse clinical outcome. When adjusting for the clinical severity of the injury, none of the mentioned associations were found. Thus, the difference in FA and MD is explained by patients with TBI and CMBs having more severe injuries. Our results suggest that CMBs are not associated with greater WM alterations when adjusting for the clinical severity of TBI. Thus, CMBs and WM alterations may not be strongly associated pathologies in TBI.
Collapse
Affiliation(s)
- Juho Dahl
- Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Olli Tenovuo
- Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Jussi P. Posti
- Neurocenter, Department of Neurosurgery, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Jussi Hirvonen
- Department of Diagnostic Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Ari J. Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Department of Anesthesiology and Intensive Care, Turku University Hospital, University of Turku, Turku, Finland
| | - Janek Frantzén
- Neurocenter, Department of Neurosurgery, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Henna-Riikka Maanpää
- Neurocenter, Department of Neurosurgery, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Riikka Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Department of Anesthesiology and Intensive Care, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Jussi Tallus
- Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Virginia Newcombe
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Peter J. Hutchinson
- Neurosurgery Unit, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Mehrbod Mohammadian
- Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? J Clin Med 2022; 11:jcm11020358. [PMID: 35054052 PMCID: PMC8780504 DOI: 10.3390/jcm11020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) or repeated sport-related concussions (rSRC) may lead to long-term memory impairment. Diffusion tensor imaging (DTI) is helpful to reveal global white matter damage but may underestimate focal abnormalities. We investigated the distribution of post-injury regional white matter changes after TBI and rSRC. Six patients with moderate/severe TBI, and 12 athletes with rSRC were included ≥6 months post-injury, and 10 (age-matched) healthy controls (HC) were analyzed. The Repeatable Battery for the Assessment of Neuropsychological Status was performed at the time of DTI. Major white matter pathways were tracked using q-space diffeomorphic reconstruction and analyzed for global and regional changes with a controlled false discovery rate. TBI patients displayed multiple classic white matter injuries compared with HC (p < 0.01). At the regional white matter analysis, the left frontal aslant tract, anterior thalamic radiation, and the genu of the corpus callosum displayed focal changes in both groups compared with HC but with different trends. Both TBI and rSRC displayed worse memory performance compared with HC (p < 0.05). While global analysis of DTI-based parameters did not reveal common abnormalities in TBI and rSRC, abnormalities to the fronto-thalamic network were observed in both groups using regional analysis of the white matter pathways. These results may be valuable to tailor individualized rehabilitative approaches for post-injury cognitive impairment in both TBI and rSRC patients.
Collapse
|
6
|
Turtzo LC, Luby M, Jikaria N, Griffin AD, Greenman D, Bokkers RPH, Parikh G, Peterkin N, Whiting M, Latour LL. Cytotoxic Edema Associated with Hemorrhage Predicts Poor Outcome after Traumatic Brain Injury. J Neurotrauma 2021; 38:3107-3118. [PMID: 34541886 DOI: 10.1089/neu.2021.0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Magnetic resonance imaging (MRI) is used rarely in the acute evaluation of traumatic brain injury (TBI) but may identify findings of clinical importance not detected by computed tomography (CT). We aimed to characterize the association of cytotoxic edema and hemorrhage, including traumatic microbleeds, on MRI obtained within hours of acute head trauma and investigated the relationship to clinical outcomes. Patients prospectively enrolled in the Traumatic Head Injury Neuroimaging Classification study (NCT01132937) with evidence of diffusion-related findings or hemorrhage on neuroimaging were included. Blinded interpretation of MRI for diffusion-weighted lesions and hemorrhage was conducted, with subsequent quantification of apparent diffusion coefficient (ADC) values. Of 161 who met criteria, 82 patients had conspicuous hyperintense lesions on diffusion-weighted imaging (DWI) with corresponding regions of hypointense ADC in proximity to hemorrhage. Median time from injury to MRI was 21 (10-30) h. Median ADC values per patient grouped by time from injury to MRI were lowest within 24 h after injury. The ADC values associated with hemorrhagic lesions are lowest early after injury, with an increase in diffusion during the subacute period, suggesting transformation from cytotoxic to vasogenic edema during the subacute post-injury period. Of 118 patients with outcome data, 60 had Glasgow Outcome Scale Extended scores ≤6 at 30/90 days post-injury. Cytotoxic edema on MRI (odds ratio [OR] 2.91 [1.32-6.37], p = 0.008) and TBI severity (OR 2.51 [1.32-4.74], p = 0.005) were independent predictors of outcome. These findings suggest that in patients with TBI who had findings of hemorrhage on CT, patients with DWI/ADC lesions on MRI are more likely to do worse.
Collapse
Affiliation(s)
- L Christine Turtzo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Luby
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Neekita Jikaria
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | | | - Danielle Greenman
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Reinoud P H Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gunjan Parikh
- R Adams Shock Trauma Center and University of Maryland School of Medicine, Baltimore, Maryland, USA.,Division of Neurocritical Care and Emergency Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicole Peterkin
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Mark Whiting
- Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| | - Lawrence L Latour
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Center for Neuroscience and Regenerative Medicine, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Környei BS, Szabó V, Perlaki G, Balogh B, Szabó Steigerwald DK, Nagy SA, Tóth L, Büki A, Dóczi T, Bogner P, Schwarcz A, Tóth A. Cerebral Microbleeds May Be Less Detectable by Susceptibility Weighted Imaging MRI From 24 to 72 Hours After Traumatic Brain Injury. Front Neurosci 2021; 15:711074. [PMID: 34658762 PMCID: PMC8514822 DOI: 10.3389/fnins.2021.711074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/12/2021] [Indexed: 01/26/2023] Open
Abstract
Purpose: A former rodent study showed that cerebral traumatic microbleeds (TMBs) may temporarily become invisible shortly after injury when detected by susceptibility weighted imaging (SWI). The present study aims to validate this phenomenon in human SWI. Methods: In this retrospective study, 46 traumatic brain injury (TBI) patients in various forms of severity were included and willingly complied with our strict selection criteria. Clinical parameters potentially affecting TMB count, Rotterdam and Marshall CT score, Mayo Clinic Classification, contusion number, and total volume were registered. The precise time between trauma and MRI [5 h 19 min to 141 h 54 min, including SWI and fluid-attenuated inversion recovery (FLAIR)] was individually recorded; TMB and FLAIR lesion counts were assessed. Four groups were created based on elapsed time between the trauma and MRI: 0–24, 24–48, 48–72, and >72 h. Kruskal–Wallis, ANOVA, Chi-square, and Fisher’s exact tests were used to reveal differences among the groups within clinical and imaging parameters; statistical power was calculated retrospectively for each comparison. Results: The Kruskal–Wallis ANOVA with Conover post hoc analysis showed significant (p = 0.01; 1−β > 0.9) median TMB number differences in the subacute period: 0–24 h = 4.00 (n = 11); 24–48 h = 1 (n = 14); 48–72 h = 1 (n = 11); and 72 h ≤ 7.5 (n = 10). Neither clinical parameters nor FLAIR lesions depicted significant differences among the groups. Conclusion: Our results demonstrate that TMBs on SWI MRI may temporarily become less detectable at 24–72 h following TBI.
Collapse
Affiliation(s)
- Bálint S Környei
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Viktor Szabó
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Perlaki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs Diagnostic Center, Pécs, Hungary
| | - Bendegúz Balogh
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | | | - Szilvia A Nagy
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs Diagnostic Center, Pécs, Hungary.,Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Luca Tóth
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Bogner
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Arnold Tóth
- Department of Medical Imaging, Medical School, University of Pécs, Pécs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| |
Collapse
|
8
|
Zeiler FA, Iturria-Medina Y, Thelin EP, Gomez A, Shankar JJ, Ko JH, Figley CR, Wright GEB, Anderson CM. Integrative Neuroinformatics for Precision Prognostication and Personalized Therapeutics in Moderate and Severe Traumatic Brain Injury. Front Neurol 2021; 12:729184. [PMID: 34557154 PMCID: PMC8452858 DOI: 10.3389/fneur.2021.729184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Despite changes in guideline-based management of moderate/severe traumatic brain injury (TBI) over the preceding decades, little impact on mortality and morbidity have been seen. This argues against the "one-treatment fits all" approach to such management strategies. With this, some preliminary advances in the area of personalized medicine in TBI care have displayed promising results. However, to continue transitioning toward individually-tailored care, we require integration of complex "-omics" data sets. The past few decades have seen dramatic increases in the volume of complex multi-modal data in moderate and severe TBI care. Such data includes serial high-fidelity multi-modal characterization of the cerebral physiome, serum/cerebrospinal fluid proteomics, admission genetic profiles, and serial advanced neuroimaging modalities. Integrating these complex and serially obtained data sets, with patient baseline demographics, treatment information and clinical outcomes over time, can be a daunting task for the treating clinician. Within this review, we highlight the current status of such multi-modal omics data sets in moderate/severe TBI, current limitations to the utilization of such data, and a potential path forward through employing integrative neuroinformatic approaches, which are applied in other neuropathologies. Such advances are positioned to facilitate the transition to precision prognostication and inform a top-down approach to the development of personalized therapeutics in moderate/severe TBI.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Eric P. Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jai J. Shankar
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Chase R. Figley
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Galen E. B. Wright
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris M. Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Haber M, Amyot F, Lynch CE, Sandsmark DK, Kenney K, Werner JK, Moore C, Flesher K, Woodson S, Silverman E, Chou Y, Pham D, Diaz-Arrastia R. Imaging biomarkers of vascular and axonal injury are spatially distinct in chronic traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1924-1938. [PMID: 33444092 PMCID: PMC8327117 DOI: 10.1177/0271678x20985156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
Traumatic Brain Injury (TBI) is associated with both diffuse axonal injury (DAI) and diffuse vascular injury (DVI), which result from inertial shearing forces. These terms are often used interchangeably, but the spatial relationships between DAI and DVI have not been carefully studied. Multimodal magnetic resonance imaging (MRI) can help distinguish these injury mechanisms: diffusion tensor imaging (DTI) provides information about axonal integrity, while arterial spin labeling (ASL) can be used to measure cerebral blood flow (CBF), and the reactivity of the Blood Oxygen Level Dependent (BOLD) signal to a hypercapnia challenge reflects cerebrovascular reactivity (CVR). Subjects with chronic TBI (n = 27) and healthy controls (n = 14) were studied with multimodal MRI. Mean values of mean diffusivity (MD), fractional anisotropy (FA), CBF, and CVR were extracted for pre-determined regions of interest (ROIs). Normalized z-score maps were generated from the pool of healthy controls. Abnormal ROIs in one modality were not predictive of abnormalities in another. Approximately 9-10% of abnormal voxels for CVR and CBF also showed an abnormal voxel value for MD, while only 1% of abnormal CVR and CBF voxels show a concomitant abnormal FA value. These data indicate that DAI and DVI represent two distinct TBI endophenotypes that are spatially independent.
Collapse
Affiliation(s)
- Margalit Haber
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Franck Amyot
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Cillian E Lynch
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John K Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kelley Flesher
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sarah Woodson
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yiyu Chou
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dzung Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Castaño-Leon AM, Cicuendez M, Navarro-Main B, Paredes I, Munarriz PM, Hilario A, Ramos A, Gomez PA, Lagares A. Traumatic axonal injury: is the prognostic information produced by conventional MRI and DTI complementary or supplementary? J Neurosurg 2021; 136:242-256. [PMID: 34214979 DOI: 10.3171/2020.11.jns203124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE A traumatic axonal injury (TAI) diagnosis has traditionally been based on conventional MRI, especially on those sequences with a higher sensitivity to edema and blood degradation products. A more recent technique, diffusion tensor imaging (DTI), can infer the microstructure of white matter (WM) due to the restricted diffusion of water in organized tissues. However, there is little information regarding the correlation of the findings obtained by both methods and their use for outcome prognosis. The main objectives of this study were threefold: 1) study the correlation between DTI metrics and conventional MRI findings; 2) evaluate whether the prognostic information provided by the two techniques is supplementary or complementary; and 3) determine the incremental value of the addition of these variables compared to a traditional prognostic model. METHODS The authors studied 185 patients with moderate to severe traumatic brain injury (TBI) who underwent MRI with DTI study during the subacute stage. The number and volume of lesions in hemispheric subcortical WM, corpus callosum (CC), basal ganglia, thalamus, and brainstem in at least four conventional MRI sequences (T1-weighted, T2-weighted, FLAIR, T2* gradient recalled echo, susceptibility-weighted imaging, and diffusion-weighted imaging) were determined. Fractional anisotropy (FA) was measured in 28 WM bundles using the region of interest method. Nonparametric tests were used to evaluate the colocalization of macroscopic lesions and FA. A multivariate logistic regression analysis was performed to assess the independent prognostic value of each neuroimaging modality after adjustment for relevant clinical covariates, and the internal validation of the model was evaluated in a contemporary cohort of 92 patients. RESULTS Differences in the lesion load between patients according to their severity and outcome were found. Colocalization of macroscopic nonhemorrhagic TAI lesions (not microbleeds) and lower FA was limited to the internal and external capsule, corona radiata, inferior frontooccipital fasciculus, CC, and brainstem. However, a significant association between the FA value and the identification of macroscopic lesions in distant brain regions was also detected. Specifically, lower values of FA of some hemispheric WM bundles and the splenium of the CC were related to a higher number and volume of hyperintensities in the brainstem. The regression analysis revealed that age, motor score, hypoxia, FA of the genu of the CC, characterization of TAI lesions in the CC, and the presence of thalamic/basal ganglia lesions were independent prognostic factors. The performance of the proposed model was higher than that of the IMPACT (International Mission on Prognosis and Analysis of Clinical Trials in TBI) model in the validation cohort. CONCLUSIONS Very limited colocalization of hyperintensities (none for microbleeds) with FA values was discovered. DTI and conventional MRI provide complementary prognostic information, and their combination can improve the performance of traditional prognostic models.
Collapse
Affiliation(s)
| | - Marta Cicuendez
- 2Department of Neurosurgery, Hospital Universitario Vall d'Hebron, Universidad de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
| | | | - Igor Paredes
- 1Department of Neurosurgery and Research Institute i+12-CIBERESP, and
| | - Pablo M Munarriz
- 1Department of Neurosurgery and Research Institute i+12-CIBERESP, and
| | - Amaya Hilario
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Avda de Cordoba SN, Madrid; and
| | - Ana Ramos
- 3Department of Radiology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Avda de Cordoba SN, Madrid; and
| | - Pedro A Gomez
- 1Department of Neurosurgery and Research Institute i+12-CIBERESP, and
| | - Alfonso Lagares
- 1Department of Neurosurgery and Research Institute i+12-CIBERESP, and
| |
Collapse
|
11
|
Andreasen SH, Andersen KW, Conde V, Dyrby TB, Puonti O, Kammersgaard LP, Madsen CG, Madsen KH, Poulsen I, Siebner HR. Two Coarse Spatial Patterns of Altered Brain Microstructure Predict Post-traumatic Amnesia in the Subacute Stage of Severe Traumatic Brain Injury. Front Neurol 2020; 11:800. [PMID: 33013616 PMCID: PMC7498982 DOI: 10.3389/fneur.2020.00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Diffuse traumatic axonal injury (TAI) is one of the key mechanisms leading to impaired consciousness after severe traumatic brain injury (TBI). In addition, preferential regional expression of TAI in the brain may also influence clinical outcome. Aim: We addressed the question whether the regional expression of microstructural changes as revealed by whole-brain diffusion tensor imaging (DTI) in the subacute stage after severe TBI may predict the duration of post-traumatic amnesia (PTA). Method: Fourteen patients underwent whole-brain DTI in the subacute stage after severe TBI. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for five bilateral brain regions: fronto-temporal, parieto-occipital, and midsagittal hemispheric white matter, as well as brainstem and basal ganglia. Region-specific calculation of mean FA and MD only considered voxels that showed no tissue damage, using an exclusive mask with all voxels that belonged to local brain lesions or microbleeds. Mean FA or MD of the five brain regions were entered in separate partial least squares (PLS) regression analyses to identify patterns of regional microstructural changes that account for inter-individual variations in PTA. Results: For FA, PLS analysis revealed two spatial patterns that significantly correlated with individual PTA. The lower the mean FA values in all five brain regions, the longer that PTA lasted. A pattern characterized by lower FA values in the deeper brain regions relative to the FA values in the hemispheric regions also correlated with longer PTA. Similar trends were found for MD, but opposite in sign. The spatial FA changes as revealed by PLS components predicted the duration of PTA. Individual PTA duration, as predicted by a leave-one-out cross-validation analysis, correlated with true PTA values (Spearman r = 0.68, p permutation = 0.008). Conclusion: Two coarse spatial patterns of microstructural damage, indexed as reduction in FA, were relevant to recovery of consciousness after TBI. One pattern expressed was consistent with diffuse microstructural damage across the entire brain. A second pattern was indicative of a preferential damage of deep midline brain structures.
Collapse
Affiliation(s)
- Sara H. Andreasen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Research Unit on Brain Injury Rehabilitation Copenhagen (RUBRIC), Department of Neurorehabilitation, Traumatic Brain Injury, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Mental Health Services East, Psychiatry Region Zealand, Roskilde, Denmark
| | - Kasper W. Andersen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Virginia Conde
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Clinical Neuroscience Laboratory, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Lars P. Kammersgaard
- Research Unit on Brain Injury Rehabilitation Copenhagen (RUBRIC), Department of Neurorehabilitation, Traumatic Brain Injury, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Camilla G. Madsen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department for Radiology, Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kristoffer H. Madsen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Ingrid Poulsen
- Research Unit on Brain Injury Rehabilitation Copenhagen (RUBRIC), Department of Neurorehabilitation, Traumatic Brain Injury, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Research Unit Nursing and Health Care, Health, Aarhus University, Aarhus, Denmark
| | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department for Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
12
|
Hütter BO, Altmeppen J, Kraff O, Maderwald S, Theysohn JM, Ringelstein A, Wrede KH, Dammann P, Quick HH, Schlamann M, Moenninghoff C. Higher sensitivity for traumatic cerebral microbleeds at 7 T ultra-high field MRI: is it clinically significant for the acute state of the patients and later quality of life? Ther Adv Neurol Disord 2020; 13:1756286420911295. [PMID: 32313555 PMCID: PMC7155239 DOI: 10.1177/1756286420911295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/03/2020] [Indexed: 01/14/2023] Open
Abstract
Background The present study evaluates the possible prognostic benefits of 7 T susceptibility weighted imaging (SWI) of traumatic cerebral microbleeds (TMBs) over 3 T SWI to predict the acute clinical state and subjective impairments, including health-related quality of life (HRQOL), after closed head injury (CHI). Methods The study group comprised 10 participants with known TMBs All subjects underwent 3 T magnetic resonance imaging (MRI) and 7 T MRI, respectively. Location and count of TMBs were independently evaluated by two neuroradiologists. The initial Glasgow Coma Scale (GCS), the duration of coma and further clinical data were taken from the patients records. HRQOL was assessed by means of a questionnaire. Memory complaints and neurological symptoms were inquired at the time of the MRI examinations. Results SWI revealed a total of 485 TMBs at 3 T, 584 TMBs at 7 T with similar spatial resolution, and 684 TMBs at 7 T with a factor of 10 higher spatial resolution. The TMBs depicted by 7 T high-resolution SWI were correlated with the duration of coma (Spearman's rho of 0.77). The corresponding association with TMBs in 3 T MRI SWI showed a Spearman's rho of 0.71. The initial GCS score and TMBs correlated with a Spearman's rho of -0.35 at 3 T SWI MRI and a rho of -0.33 at 7 T high-resolution SWI, respectively. The physical aspect of HRQOL correlated substantially with the count of TMBs (rho = 0.44 for 3 T SWI and rho = 0.35 for both 7 T SWI sequences, respectively). Conclusions The number of TMBs showed a substantial association with indicators of the acute clinical state and chronic neurobehavioral parameters after CHI, but there was no additional advantage of 7 T MRI. These preliminary findings warrant a larger prospective study for the future.
Collapse
Affiliation(s)
- Bernd-Otto Hütter
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, Essen, 45147, Germany
| | - Jan Altmeppen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Jens M Theysohn
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Adrian Ringelstein
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Marc Schlamann
- Department of Neuroradiology, University Hospital Giessen, Giessen, Germany
| | - Christoph Moenninghoff
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
13
|
Rizk T, Turtzo LC, Cota M, Van Der Merwe AJ, Latour L, Whiting MD, Chan L. Traumatic microbleeds persist for up to five years following traumatic brain injury despite resolution of other acute findings on MRI. Brain Inj 2020; 34:773-781. [PMID: 32228304 DOI: 10.1080/02699052.2020.1725835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The primary objective of this study was to track the incidence and progression of traumatic microbleeds (TMBs) for up to five years following traumatic brain injury (TBI). METHODS Thirty patients with mild, moderate, or severe TBI received initial MRI within 48 h of injury and continued in a longitudinal study for up to five years. The incidence and progression of MRI findings was assessed across the five year period. In addition to TMBs, we noted the presence of other imaging findings including diffusion weighted imaging (DWI) lesions, extra-axial and intraventricular hemorrhage, hematoma, traumatic meningeal enhancement (TME), fluid-attenuated inversion recovery (FLAIR) hyperintensities, and encephalomalacia. RESULTS TMBs were observed in 60% of patients at initial presentation. At one-year follow-up, TMBs were more persistent than other neuroimaging findings, with 83% remaining visible on MRI. In patients receiving serial MRI 2-5 years post-injury, acute TMBs were visible on all follow-up scans. In contrast, most other imaging markers of TBI had either resolved or evolved into ambiguous abnormalities on imaging by one year post-injury. CONCLUSIONS These findings suggest that TMBs may serve as a uniquely persistent indicator of TBI and reinforce the importance of acute post-injury imaging for accurate characterization of persistent imaging findings.
Collapse
Affiliation(s)
- Theresa Rizk
- Department of Rehabilitation Medicine, National Institutes of Health Clinical Center , Bethesda, MD, USA
| | - L Christine Turtzo
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, USA
| | - Martin Cota
- Center for Neuroscience and Regenerative Medicine , Rockville, MD, USA
| | | | - Lawrence Latour
- National Institutes of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine , Rockville, MD, USA
| | - Mark D Whiting
- Center for Neuroscience and Regenerative Medicine , Rockville, MD, USA
| | - Leighton Chan
- Department of Rehabilitation Medicine, National Institutes of Health Clinical Center , Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine , Rockville, MD, USA
| |
Collapse
|