1
|
Núñez C, Stephan-Otto C, Roldán A, Grasa EM, Escartí MJ, Aguilar García-Iturrospe EJ, García-Martí G, de la Iglesia-Vaya M, Nacher J, Portella MJ, Corripio I. Orbitofrontal cortex hypergyrification in hallucinating schizophrenia patients: Surface ratio as a promising brain biomarker. Eur Neuropsychopharmacol 2024; 89:47-55. [PMID: 39341083 DOI: 10.1016/j.euroneuro.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The study of brain gyrification may provide useful information on the cytoarchitecture and connectivity of the brain. One of the methods that have been developed to estimate brain gyrification, known as surface ratio (SR), has not yet been studied in schizophrenia. Here we aimed to assess whether SR could provide new insights on the brain structure of schizophrenia patients and the severity of symptoms. We also computed a more established brain gyrification measure, namely absolute mean curvature (AMC). We analyzed 63 magnetic resonance images, 25 from schizophrenia patients with treatment-resistant auditory verbal hallucinations (SCH-H), 18 from schizophrenia patients without hallucinations (SCH-NH), and 20 from healthy controls (HC). The SR measure revealed that SCH-H patients had a more folded orbitofrontal cortex than SCH-NH patients and HC. Gyrification in this region was also negatively associated with positive symptoms, specifically with the delusions and conceptual disorganization items, only in the SCH-H group. Regarding the AMC measure, we identified two areas where HC showed more gyrification than SCH-H patients, but no relationships arose with symptoms. The hypergyrification of the orbitofrontal cortex displayed by SCH-H patients, as captured by the SR measure, suggests aberrant and/or excessive wiring in these patients, which in turn could give rise to auditory verbal hallucinations. Alternatively, we comment on potential compensatory mechanisms that may better explain the negative association between orbitofrontal gyrification and positive symptomatology. The SR measure captured the most relevant differences and associations, making it a promising biomarker in schizophrenia.
Collapse
Affiliation(s)
- Christian Núñez
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Christian Stephan-Otto
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Pediatric Computational Imaging Group (PeCIC), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alexandra Roldán
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Eva Mª Grasa
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain
| | - Mª José Escartí
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University CEU-UCH, Valencia, Spain
| | - Eduardo J Aguilar García-Iturrospe
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Hospital Clínico Universitario de Valencia, Valencia, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Department of Medicine, University CEU-UCH, Valencia, Spain
| | - Gracián García-Martí
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Biomedical Engineering Unit / Radiology Department, Quirónsalud Hospital, Valencia, Spain
| | - Maria de la Iglesia-Vaya
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Joint unit in Biomedical Imaging FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Valencia, Spain
| | - Juan Nacher
- CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain; Neuroplasticity Unit, Institute of Biotechnology and Biomedicine, Universitat de València, Valencia, Spain
| | - Maria J Portella
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iluminada Corripio
- Mental Health Research Group, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERSAM, ISCIII, Spanish National Network for Research in Mental Health, Madrid, Spain; Psychiatry Department, Hospital Consortium of Vic, Barcelona, Spain; Institute of Health Research and Innovation at Central Catalonia (IRIS-CC). Central University of Catalonia (UVic-UCC), Barcelona, Spain
| |
Collapse
|
2
|
Daniel E, Deng F, Patel SK, Sedrak MS, Kim H, Razavi M, Sun C, Root JC, Ahles TA, Dale W, Chen BT. Altered gyrification in chemotherapy-treated older long-term breast cancer survivors. Brain Behav 2024; 14:e3634. [PMID: 39169605 PMCID: PMC11339126 DOI: 10.1002/brb3.3634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/20/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
PURPOSE The purpose of this prospective longitudinal study was to evaluate the changes in brain surface gyrification in older long-term breast cancer survivors 5-15 years after chemotherapy treatment. METHODS Older breast cancer survivors aged ≥ 65 years treated with chemotherapy (C+) or without chemotherapy (C-) 5-15 years prior and age- and sex-matched healthy controls (HC) were recruited (time point 1 (TP1)) and followed up for 2 years (time point 2 (TP2)). Study assessments for both time points included neuropsychological (NP) testing with the NIH Toolbox cognition battery and cortical gyrification analysis based on brain MRI. RESULTS The study cohort with data for both TP1 and TP2 consisted of the following: 10 participants for the C+ group, 12 participants for the C- group, and 13 participants for the HC group. The C+ group had increased gyrification in six local gyral regions including the right fusiform, paracentral, precuneus, superior, middle temporal gyri and left pars opercularis gyrus, and it had decreased gyrification in two local gyral regions from TP1 to TP2 (p < .05, Bonferroni corrected). The C- and HC groups showed decreased gyrification only (p < .05, Bonferroni corrected). In the C+ group, changes in right paracentral gyrification and crystalized composite scores were negatively correlated (R = -0.76, p = .01). CONCLUSIONS Altered gyrification could be the neural correlate of cognitive changes in older chemotherapy-treated long-term breast cancer survivors.
Collapse
Affiliation(s)
- Ebenezer Daniel
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Frank Deng
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Sunita K. Patel
- Department of Population ScienceCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Mina S. Sedrak
- Department of Medical OncologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Heeyoung Kim
- Center for Cancer and AgingCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Marianne Razavi
- Department of Supportive Care MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Can‐Lan Sun
- Center for Cancer and AgingCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - James C. Root
- Neurocognitive Research LabMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Tim A. Ahles
- Neurocognitive Research LabMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - William Dale
- Center for Cancer and AgingCity of Hope National Medical CenterDuarteCaliforniaUSA
- Department of Supportive Care MedicineCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Bihong T. Chen
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCaliforniaUSA
- Center for Cancer and AgingCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
3
|
Recht G, Hou J, Buddenbaum C, Cheng H, Newman SD, Saykin AJ, Kawata K. Multiparameter cortical surface morphology in former amateur contact sport athletes. Cereb Cortex 2024; 34:bhae301. [PMID: 39077916 PMCID: PMC11484490 DOI: 10.1093/cercor/bhae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be associated with neuroanatomical changes.
Collapse
Affiliation(s)
- Grace Recht
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
| | - Jiancheng Hou
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
- Research Center for Cross-Straits Cultural Development, Fujian Normal University, Cangshan Campus, No. 8 Shangshan Road, Cangshan District, Fuzhou, Fujian 350007, China
| | - Claire Buddenbaum
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
| | - Hu Cheng
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, United States
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, United States
| | - Sharlene D Newman
- Alabama Life Research Institute, College of Arts & Sciences, University of Alabama, 211 Peter Bryce Blvd., Tuscaloosa, AL 35401, United States
| | - Andrew J Saykin
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 West 16th Street, Indianapolis, IN 46202, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 University Blvd, Indianapolis, IN 46202, United States
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health-Bloomington, 1025 E. 10th Street, Bloomington, IN 47405, United States
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, United States
- Department of Pediatrics, Indiana University School of Medicine, 1130 W Michigan St, Indianapolis, IN 46202, United States
| |
Collapse
|
4
|
Khoury MA, Churchill NW, Di Battista A, Graham SJ, Symons S, Troyer AK, Roberts A, Kumar S, Tan B, Arnott SR, Ramirez J, Tartaglia MC, Borrie M, Pollock B, Rajji TK, Pasternak SH, Frank A, Tang-Wai DF, Scott CJM, Haddad SMH, Nanayakkara N, Orange JB, Peltsch A, Fischer CE, Munoz DG, Schweizer TA. History of traumatic brain injury is associated with increased grey-matter loss in patients with mild cognitive impairment. J Neurol 2024; 271:4540-4550. [PMID: 38717612 DOI: 10.1007/s00415-024-12369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES To investigate whether a history of traumatic brain injury (TBI) is associated with greater long-term grey-matter loss in patients with mild cognitive impairment (MCI). METHODS 85 patients with MCI were identified, including 26 with a previous history of traumatic brain injury (MCI[TBI-]) and 59 without (MCI[TBI+]). Cortical thickness was evaluated by segmenting T1-weighted MRI scans acquired longitudinally over a 2-year period. Bayesian multilevel modelling was used to evaluate group differences in baseline cortical thickness and longitudinal change, as well as group differences in neuropsychological measures of executive function. RESULTS At baseline, the MCI[TBI+] group had less grey matter within right entorhinal, left medial orbitofrontal and inferior temporal cortex areas bilaterally. Longitudinally, the MCI[TBI+] group also exhibited greater longitudinal declines in left rostral middle frontal, the left caudal middle frontal and left lateral orbitofrontal areas sover the span of 2 years (median = 1-2%, 90%HDI [-0.01%: -0.001%], probability of direction (PD) = 90-99%). The MCI[TBI+] group also displayed greater longitudinal declines in Trail-Making-Test (TMT)-derived ratio (median: 0.737%, 90%HDI: [0.229%: 1.31%], PD = 98.8%) and differences scores (median: 20.6%, 90%HDI: [-5.17%: 43.2%], PD = 91.7%). CONCLUSIONS Our findings support the notion that patients with MCI and a history of TBI are at risk of accelerated neurodegeneration, displaying greatest evidence for cortical atrophy within the left middle frontal and lateral orbitofrontal frontal cortex. Importantly, these results suggest that long-term TBI-mediated atrophy is more pronounced in areas vulnerable to TBI-related mechanical injury, highlighting their potential relevance for diagnostic forms of intervention in TBI.
Collapse
Affiliation(s)
- Marc A Khoury
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Physics Department, Toronto Metropolitan University, Toronto, Canada
| | - Alex Di Battista
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sean Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Angela K Troyer
- Neuropsychology and Cognitive Health Program, Baycrest Hospital, Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Angela Roberts
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- Department of Computer Science, Western University, London, ON, Canada
- Canadian Centre for Activity and Aging, London, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Joel Ramirez
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Michael Borrie
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- . Joseph's Healthcare Centre, London, ON, Canada
| | - Bruce Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen H Pasternak
- . Joseph's Healthcare Centre, London, ON, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON, Canada
| | - Andrew Frank
- Bruyère Research Institute, Ottawa, ON, Canada
- University of Ottawa, Ottawa, ON, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christopher J M Scott
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | | | | | - Joseph B Orange
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- University of Western, London, ON, Canada
| | | | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David G Munoz
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Tech (iBEST), A Partnership Between St. Michael's Hospital and Ryerson University, Toronto, ON, M5V 1T8, Canada
- Division of Neurosurgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Zuidema TR, Hou J, Kercher KA, Recht GO, Sweeney SH, Chenchaiah N, Cheng H, Steinfeldt JA, Kawata K. Cerebral Cortical Surface Structure and Neural Activation Pattern Among Adolescent Football Players. JAMA Netw Open 2024; 7:e2354235. [PMID: 38300622 PMCID: PMC10835513 DOI: 10.1001/jamanetworkopen.2023.54235] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 02/02/2024] Open
Abstract
Importance Recurring exposure to head impacts in American football has garnered public and scientific attention, yet neurobiological associations in adolescent football players remain unclear. Objective To examine cortical structure and neurophysiological characteristics in adolescent football players. Design, Setting, and Participants This cohort study included adolescent football players and control athletes (swimming, cross country, and tennis) from 5 high school athletic programs, who were matched with age, sex (male), and school. Neuroimaging assessments were conducted May to July of the 2021 and 2022 seasons. Data were analyzed from February to November 2023. Exposure Playing tackle football or noncontact sports. Main Outcomes and Measures Structural magnetic resonance imaging (MRI) data were analyzed for cortical thickness, sulcal depth, and gyrification, and cortical surface-based resting state (RS)-functional MRI analyses examined the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and RS-functional connectivity (RS-FC). Results Two-hundred seventy-five male participants (205 football players; mean [SD] age, 15.8 [1.2] years; 5 Asian [2.4%], 8 Black or African American [3.9%], and 189 White [92.2%]; 70 control participants; mean [SD] age 15.8 [1.2] years, 4 Asian [5.7], 1 Black or African American [1.4%], and 64 White [91.5%]) were included in this study. Relative to the control group, the football group showed significant cortical thinning, especially in fronto-occipital regions (eg, right precentral gyrus: t = -2.24; P = .01; left superior frontal gyrus: -2.42; P = .002). Elevated cortical thickness in football players was observed in the anterior and posterior cingulate cortex (eg, left posterior cingulate cortex: t = 2.28; P = .01; right caudal anterior cingulate cortex 3.01; P = .001). The football group had greater and deeper sulcal depth than the control groups in the cingulate cortex, precuneus, and precentral gyrus (eg, right inferior parietal lobule: t = 2.20; P = .004; right caudal anterior cingulate cortex: 4.30; P < .001). Significantly lower ALFF was detected in the frontal lobe and cingulate cortex of the football group (t = -3.66 to -4.92; P < .01), whereas elevated ALFF was observed in the occipital regions (calcarine and lingual gyrus, t = 3.20; P < .01). Similar to ALFF, football players exhibited lower ReHo in the precentral gyrus and medial aspects of the brain, such as precuneus, insula, and cingulum, whereas elevated ReHo was clustered in the occipitotemporal regions (t = 3.17; P < .001; to 4.32; P < .01). There was no group difference in RS-FC measures. Conclusions and Relevance In this study of adolescent athletes, there was evidence of discernible structural and physiological differences in the brains of adolescent football players compared with their noncontact controls. Many of the affected brain regions were associated with mental health well-being.
Collapse
Affiliation(s)
- Taylor R. Zuidema
- Department of Kinesiology, Indiana University School of Public Health, Bloomington
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington
| | - Jiancheng Hou
- Department of Kinesiology, Indiana University School of Public Health, Bloomington
- Research Center for Cross-Straits Cultural Development, Fujian Normal University, Fuzhou, Fujian, China
| | - Kyle A. Kercher
- Department of Kinesiology, Indiana University School of Public Health, Bloomington
| | - Grace O. Recht
- Department of Kinesiology, Indiana University School of Public Health, Bloomington
| | - Sage H. Sweeney
- Department of Kinesiology, Indiana University School of Public Health, Bloomington
| | - Nishant Chenchaiah
- Department of Kinesiology, Indiana University School of Public Health, Bloomington
| | - Hu Cheng
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Indiana University, Bloomington
| | - Jesse A. Steinfeldt
- Department of Counseling and Educational Psychology, School of Education, Indiana University, Bloomington
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University School of Public Health, Bloomington
- Program in Neuroscience, The College of Arts and Sciences, Indiana University, Bloomington
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
6
|
Donovan M, Frentz M, Lozano AR, Rao S, Rodriguez M, Noble-Haeusslein LJ. The Emerging Landscape of the Cerebellum after a Pediatric Traumatic Brain Injury: From Diaschisis to Sociality. ADVANCES IN NEUROBIOLOGY 2024; 42:165-177. [PMID: 39432042 DOI: 10.1007/978-3-031-69832-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
There is an expanding interest in the cerebellum in the context of focal and diffuse traumatic injuries to the cerebral cortex. In the adult brain, preclinical studies have revealed acute as well as progressive loss of Purkinje cells in the cerebellum coincident with microglial activation. This pathogenesis, remote to the site of the primary injury, is termed "diaschisis." Here we consider traumatic injuries to the developing brain, where the cerebellum likewise undergoes neurodegeneration. As injury is superimposed on a young brain, long-term adverse consequences may reflect diaschisis that is compounded by disruption of brain development.
Collapse
Affiliation(s)
- Michael Donovan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Morgan Frentz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Anakaren Romero Lozano
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shripriya Rao
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | | | - Linda J Noble-Haeusslein
- Departments of Neurology and Psychology, Dell Medical School and the College of Liberal Arts, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Dennis EL, Keleher F, Bartnik-Olson B. Neuroimaging Correlates of Functional Outcome Following Pediatric TBI. ADVANCES IN NEUROBIOLOGY 2024; 42:33-84. [PMID: 39432037 DOI: 10.1007/978-3-031-69832-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Neuroimaging plays an important role in assessing the consequences of TBI across the postinjury period. While identifying alterations to the brain is important, associating those changes to functional, cognitive, and behavioral outcomes is an essential step to establishing the value of advanced neuroimaging for pediatric TBI. Here we highlight research that has revealed links between advanced neuroimaging and outcome after TBI and point to opportunities where neuroimaging could expand our ability to prognosticate and potentially uncover opportunities to intervene.
Collapse
Affiliation(s)
- Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Finian Keleher
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, School of Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
8
|
Daniel E, Deng F, Patel SK, Sedrak MS, Kim H, Razavi M, Sun CL, Root JC, Ahles TA, Dale W, Chen BT. Altered gyrification in chemotherapy-treated older long-term breast cancer survivors. RESEARCH SQUARE 2023:rs.3.rs-2697378. [PMID: 37090667 PMCID: PMC10120747 DOI: 10.21203/rs.3.rs-2697378/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Purpose The purpose of this prospective longitudinal study was to evaluate the changes in brain surface gyrification in older long-term breast cancer survivors 5 to 15 years after chemotherapy treatment. Methods Older breast cancer survivors aged ≥ 65 years treated with chemotherapy (C+) or without chemotherapy (C-) 5-15 years prior and age & sex-matched healthy controls (HC) were recruited (time point 1 (TP1)) and followed up for 2 years (time point 2 (TP2)). Study assessments for both time points included neuropsychological (NP) testing with the NIH Toolbox cognition battery and cortical gyrification analysis based on brain MRI. Results The study cohort with data for both TP1 and TP2 consisted of the following: 10 participants for the C+ group, 12 participants for the C- group, and 13 participants for the HC group. The C+ group had increased gyrification in 6 local gyrus regions including the right fusiform, paracentral, precuneus, superior, middle temporal gyri and left pars opercularis gyrus, and it had decreased gyrification in 2 local gyrus regions from TP1 to TP2 (p < 0.05, Bonferroni corrected). The C- and HC groups showed decreased gyrification only (p < 0.05, Bonferroni corrected). In C+ group, changes in right paracentral gyrification and crystalized composite scores were negatively correlated (R = -0.76, p = 0.01). Conclusions Altered gyrification could be the neural correlate of cognitive changes in older chemotherapy-treated long-term breast cancer survivors.
Collapse
Affiliation(s)
| | - Frank Deng
- City of Hope National Medical Center: City of Hope
| | | | | | - Heeyoung Kim
- City of Hope National Medical Center: City of Hope
| | | | | | | | | | | | | |
Collapse
|
9
|
Gharehgazlou A, Jetly R, Rhind SG, Reichelt AC, Da Costa L, Dunkley BT. Cortical Gyrification Morphology in Adult Males with Mild Traumatic Brain Injury. Neurotrauma Rep 2022; 3:299-307. [PMID: 36060456 PMCID: PMC9438439 DOI: 10.1089/neur.2021.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cortical gyrification, as a specific measure derived from magnetic resonance imaging, remains understudied in mild traumatic brain injury (mTBI). Local gyrification index (lGI) and mean curvature are related measures indexing the patterned folding of the cortex,ml which reflect distinct properties of cortical morphology and geometry. Using both metrics, we examined cortical gyrification morphology in 59 adult males with mTBI (n = 29) versus those without (n = 30) mTBI in the subacute phase of injury (between 2 weeks and 3 months). The effect of IQ on lGI and brain-symptom relations were also examined. General linear models revealed greater lGI in mTBI versus controls in the frontal lobes bilaterally, but reduced lGI in mTBI of the left temporal lobe. An age-related decrease in lGI was found in numerous areas, with no significant group-by-age interaction effects observed. Including other factors (i.e., mTBI severity, symptoms, and IQ) in the lGI model yielded similar results with few exceptions. Mean curvature analyses depicted a significant group-by-age interaction with the absence of significant main effects of group or age. Our results suggest that cortical gyrification morphology is adversely affected by mTBI in both frontal and temporal lobes, which are thought of as highly susceptible regions to mTBI. These findings contribute to understanding the effects of mTBI on neuromorphological properties, such as alterations in cortical gyrification, which reflect underlying microstructural changes (i.e., apoptosis, neuronal number, or white matter alterations). Future studies are needed to infer causal relationships between micro- and macrostructural changes after an mTBI and investigate potential sex differences.
Collapse
Affiliation(s)
- Avideh Gharehgazlou
- Neurosciences and Mental Health, The Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services HQ, Ottawa, Ontario, Canada
- Defence Research and Development Canada–Toronto Research Centre, Toronto, Ontario, Canada
| | - Shawn G. Rhind
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Amy C. Reichelt
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Leodante Da Costa
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
| | - Benjamin T. Dunkley
- Neurosciences and Mental Health, The Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children (SickKids) Research Institute, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Nwafor DC, Brichacek AL, Foster CH, Lucke-Wold BP, Ali A, Colantonio MA, Brown CM, Qaiser R. Pediatric Traumatic Brain Injury: An Update on Preclinical Models, Clinical Biomarkers, and the Implications of Cerebrovascular Dysfunction. J Cent Nerv Syst Dis 2022; 14:11795735221098125. [PMID: 35620529 PMCID: PMC9127876 DOI: 10.1177/11795735221098125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of pediatric morbidity and mortality. Recent studies suggest that children and adolescents have worse post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover, a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the current preclinical models of pTBI, the implications of pTBI on the brain’s vasculature, and clinical pTBI biomarkers. Finally, we conclude the review by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chase H. Foster
- Department of Neurosurgery, George Washington University Hospital, Washington D.C., USA
| | | | - Ahsan Ali
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Candice M. Brown
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, Baylor Scott and White, Temple, TX, USA
| |
Collapse
|
11
|
Bigler ED. Charting Brain Development in Graphs, Diagrams, and Figures from Childhood, Adolescence, to Early Adulthood: Neuroimaging Implications for Neuropsychology. JOURNAL OF PEDIATRIC NEUROPSYCHOLOGY 2021. [DOI: 10.1007/s40817-021-00099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|