1
|
Onicas A, Deighton S, Yeates KO, Bray S, Graff K, Abdeen N, Beauchamp MH, Beaulieu C, Bjornson BH, Craig W, Dehaes M, Deschenes S, Dennis EL, Doan Q, Freedman SB, Goodyear BG, Gravel J, Lebel C, Ledoux AA, Zemek R, Ware AL. Brain Network Functional Connectivity in Children With a Concussion. Neurology 2025; 104:e213502. [PMID: 40168632 PMCID: PMC11962048 DOI: 10.1212/wnl.0000000000213502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/29/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Pediatric concussion can disrupt functional brain network connectivity, but prospective longitudinal research is needed to clarify recovery and identify moderators of change. This study investigated network functional connectivity (FC) up to 6 months after pediatric concussion. METHODS This prospective longitudinal concurrent cohort observational study consecutively recruited children (aged 8 to 17 years) at 5 Canadian pediatric hospital emergency departments within 48 hours of sustaining a concussion or mild orthopaedic injury (OI). Children completed 3T MRI scanning postacutely (2 to 33 days) and at either 3 or 6 months after injury (randomly assigned at the postacute visit). Reliable change between retrospective preinjury (based on parent report) and 1-month postinjury symptom ratings based on parent and child report was used to classify concussion with or without persisting symptoms. Within-network and between-network FC was computed for 8 brain networks from resting-state fMRI scans and analyzed using linear mixed-effects models, with multiple comparison correction. RESULTS Groups (385 with concussion/198 with OI; 59% male; 69% White; age 12.42 ± 2.29 years) did not differ in within-network FC. Relative to OI, connectivity between the visual and ventral attention networks was lower after concussion, d (95% CI) = -0.46 (-0.79 to -0.14), across time. Connectivity between the visual and default mode networks was lower at 6 months after concussion, -0.60 (-0.92 to -0.27). At 3 months after concussion, connectivity between the frontoparietal and ventral attention networks was lower in younger children, -0.98 (-1.58 to -0.37), but higher in older children, 0.81 (0.20 to 1.42). For symptom groups based on parent report, connectivity between the dorsal and ventral attention networks was higher in female children at 3 months after concussion without persisting symptoms relative to concussion with persisting symptoms, 1.25 (2.05 to 0.46), and OI, 0.87 (0.25 to 1.49). DISCUSSION Time after injury, age at injury, biological sex, and persistent symptom status are important moderators of FC after pediatric concussion for children seen in emergency department settings. Postacute FC may not enhance clinical diagnosis. Although within-network connectivity is preserved, between-network connectivity differences emerge after most children clinically recover and persist up to 6 months after pediatric concussion, providing a potential objective biomarker for lasting changes in brain function.
Collapse
Affiliation(s)
- Adrian Onicas
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Stephanie Deighton
- Department of Psychology, Glenrose Rehabilitation Hospital, Edmonton, Alberta, Canada
| | - Keith O Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Signe Bray
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Kirk Graff
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Nishard Abdeen
- Department of Radiology, University of Ottawa, Children's Hospital of Eastern Ontario Research Institute, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montréal & CHU Sainte-Justine Hospital Research Center, Québec, Canada
| | - Christian Beaulieu
- Department of Radiology and Diagnostic Imaging, and Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Bruce H Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - William Craig
- University of Alberta and Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Mathieu Dehaes
- Department of Radiology, Radio-oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montréal and CHU Sainte-Justine Research Center, Québec, Canada
| | - Sylvain Deschenes
- Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Québec, Canada
| | - Emily L Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
| | - Quynh Doan
- Department of Pediatrics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Stephen B Freedman
- Departments of Pediatric and Emergency Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Bradley G Goodyear
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Jocelyn Gravel
- Department of Pediatric Emergency Medicine, CHU Sainte-Justine, University of Montréal, Québec, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Andrée-Anne Ledoux
- Department of Cellular Molecular Medicine, University of Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Department of Pediatrics, University of Ottawa, Ontario, Canada; and
| | - Ashley L Ware
- TBI and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City
- Department of Psychology, Georgia State University, Atlanta
| |
Collapse
|
2
|
Sieminski M, Reimus M, Kałas M, Stępniewska E. Antioxidant and Anti-Inflammatory Properties of Melatonin in Secondary Traumatic Brain Injury. Antioxidants (Basel) 2024; 14:25. [PMID: 39857359 PMCID: PMC11761219 DOI: 10.3390/antiox14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Traumatic brain injury (TBI) is a disease resulting from external physical forces acting against the head, leading to transient or chronic damage to brain tissue. Primary brain injury is an immediate and, therefore, rather irreversible effect of trauma, while secondary brain injury results from a complex cascade of pathological processes, among which oxidative stress and neuroinflammation are the most prominent. As TBI is a significant cause of mortality and chronic disability, with high social costs all over the world, any form of therapy that may mitigate trauma-evoked brain damage is desirable. Melatonin, a sleep-wake-cycle-regulating neurohormone, exerts strong antioxidant and anti-inflammatory effects and is well tolerated when used as a drug. Due to these properties, it is very reasonable to consider melatonin as a potential therapeutic molecule for TBI treatment. This review summarizes data from in vitro studies, animal models, and clinical trials that focus on the usage of melatonin in TBI.
Collapse
Affiliation(s)
- Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| | - Michalina Reimus
- Emergency Department, University Clinical Center, 80-952 Gdańsk, Poland;
| | - Maria Kałas
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| | - Ewelina Stępniewska
- Department of Emergency Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland; (M.K.); (E.S.)
| |
Collapse
|
3
|
Mavroudis I, Petridis F, Petroaie AD, Ciobica A, Kamal FZ, Honceriu C, Iordache A, Ionescu C, Novac B, Novac O. Exploring Symptom Overlaps: Post-COVID-19 Neurological Syndrome and Post-Concussion Syndrome in Athletes. Biomedicines 2024; 12:1587. [PMID: 39062160 PMCID: PMC11274969 DOI: 10.3390/biomedicines12071587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The COVID-19 pandemic has introduced new challenges in managing neurological conditions, particularly among athletes. This paper explores the intersection of post-COVID-19 neurological syndrome (PCNS/PASC) and post-concussion syndrome (PCS), focusing on their implications in sports medicine. Our analysis covers the symptomatology, pathophysiology, and management strategies for PCNS/PASC and PPCS, with special attention paid to the unique challenges faced by athletes recovering from these conditions, including the risk of symptom exacerbation and prolonged recovery. Key findings reveal that both PCNS/PASC and PPCS present with overlapping symptoms such as cognitive difficulties, exercise intolerance, and mental health issues, but differ in specific manifestations like anosmia and ageusia, unique to COVID-19. Pathophysiological analysis reveals similarities in blood-brain barrier disruption (BBB) but differences in the extent of immune activation. Management strategies emphasize a gradual increase in physical activity, close symptom monitoring, and psychological support, with a tailored approach for athletes. Specific interventions include progressive aerobic exercises, resistance training, and cognitive rehabilitation. Furthermore, our study highlights the importance of integrating neurology, psychiatry, physical therapy, and sports medicine to develop comprehensive care strategies. Our findings underscore the dual challenge of COVID-19 and concussion in athletes, necessitating a nuanced, interdisciplinary approach to effective management. Future research should focus on the long-term neurological effects of both conditions and optimizing treatment protocols to improve patient outcomes. This comprehensive understanding is crucial for advancing the management of athletes affected by these overlapping conditions and ensuring their safe return to sports.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals NHS Trust, Leeds LS2 9JT, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Antoneta Dacia Petroaie
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (A.C.); (C.I.)
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- “Ioan Haulica” Institute, Apollonia University, Pãcurari Street 11, 700511 Iasi, Romania
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Techniques, Marrakesh 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat 26000, Morocco
| | - Cezar Honceriu
- Faculty of Physical Education, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania;
| | - Alin Iordache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Cătălina Ionescu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (A.C.); (C.I.)
- Clinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Bogdan Novac
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Otilia Novac
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| |
Collapse
|
4
|
Stein A, Vinh To X, Nasrallah FA, Barlow KM. Evidence of Ongoing Cerebral Microstructural Reorganization in Children With Persisting Symptoms Following Mild Traumatic Brain Injury: A NODDI DTI Analysis. J Neurotrauma 2024; 41:41-58. [PMID: 37885245 DOI: 10.1089/neu.2023.0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Approximately 300-550 children per 100,000 sustain a mild traumatic brain injury (mTBI) each year, of whom ∼25-30% have long-term cognitive problems. Following mTBI, free water (FW) accumulation occurs in white matter (WM) tracts. Diffusion tensor imaging (DTI) can be used to investigate structural integrity following mTBI. Compared with conventional DTI, neurite orientation dispersion and density imaging (NODDI) orientation dispersion index (ODI) and fraction of isolated free water (FISO) metrics may allow a more advanced insight into microstructural damage following pediatric mTBI. In this longitudinal study, we used NODDI to explore whole-brain and tract-specific differences in ODI and FISO in children with persistent symptoms after mTBI (n = 80) and in children displaying clinical recovery (n = 32) at 1 and 2-3 months post-mTBI compared with healthy controls (HCs) (n = 21). Two-way repeated measures analysis of variance (ANOVA) and voxelwise two-sample t tests were conducted to compare whole-brain and tract-specific diffusion across groups. All results were corrected at positive false discovery rate (pFDR) <0.05. We also examined the association between NODDI metrics and clinical outcomes, using logistical regression to investigate the value of NODDI metrics in predicting future recovery from mTBI. Whole-brain ODI was significantly increased in symptomatic participants compared with HCs at both 1 and 2 months post-injury, where the uncinate fasciculus (UF) and inferior fronto-occipital fasciculus (IFOF) were particularly implicated. Using region of interest (ROI) analysis in significant WM, bilateral IFOF and UF voxels, symptomatic participants had the highest ODI in all ROIs. ODI was lower in asymptomatic participants, and HCs had the lowest ODI in all ROIs. No changes in FISO were found across groups or over time. WM ODI was moderately correlated with a higher youth-reported post-concussion symptom inventory (PCSI) score. With 87% predictive power, ODI (1 month post-injury) and clinical predictors (age, sex, PCSI score, attention scores) were a more sensitive predictor of recovery at 2-3 months post-injury than fractional anisotropy (FA) and clinical predictors, or clinical predictors alone. FISO could not predict recovery at 2-3 months post-injury. Therefore, we found that ODI was significantly increased in symptomatic children following mTBI compared with HCs at 1 month post-injury, and progressively decreased over time alongside clinical recovery. We found no significant differences in FISO between groups or over time. WM ODI at 1 month was a more sensitive predictor of clinical recovery at 2-3 months post-injury than FA, FISO, or clinical measures alone. Our results show evidence of ongoing microstructural reorganization or neuroinflammation between 1 and 2-3 months post-injury, further supporting delayed return to play in children who remain symptomatic. We recommend future research examining the clinical utility of NODDI following mTBI to predict recovery or persistence of post-concussion symptoms and thereby inform management of mTBI.
Collapse
Affiliation(s)
- Athena Stein
- Acquired Brain Injury in Children Research Group, The University of Queensland, South Brisbane, Queensland, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, South Brisbane, Queensland, Australia
| | - Karen M Barlow
- Acquired Brain Injury in Children Research Group, The University of Queensland, South Brisbane, Queensland, Australia
- Queensland Pediatric Rehabilitation Service, Queensland Children's Hospital, South Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Feinberg C, Dickerson Mayes K, Jarvis RC, Carr C, Mannix R. Nutritional Supplement and Dietary Interventions as a Prophylaxis or Treatment of Sub-Concussive Repetitive Head Impact and Mild Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2023; 40:1557-1566. [PMID: 36680752 DOI: 10.1089/neu.2022.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mild traumatic brain injury (mTBI) affects 42 to 56 million individuals worldwide annually. Even more individuals are affected by sub-concussive repetitive head impacts (SRHIs). Such injuries may result in significant acute and chronic symptoms. A study of how individuals may adjust or augment their nutritional and dietary habits to prevent cumulative neurotrauma and promote post-injury recovery is necessary. The objective of the current study is to systematically review nutritional and dietary interventions for neurotrauma prevention and mTBI recovery to direct clinical decision-making and identify future areas of research. This systematic review, without a specified time-period, was performed in PubMed, Scopus, Cochrane, CINAHL, and Web of Science followed by a manual search of references. Search strings were generated by a research librarian. Studies were included if they: 1) investigate human subjects with mTBI or SRHI; 2) investigate a supplement/ingredient of dietary supplement sold in the U.S. or dietary intervention without classification as a drug or prohibitive statement against use by the U.S. Food and Drug Administration (FDA); 3) assess a quantifiable outcome; and 4) are published in English in a peer-reviewed journal with an accessible full-length article. Studies were excluded if: 1) the study included non-mTBI or SRHI subjects (e.g., moderate/severe TBI, stroke); 2) mTBI is not assessed separately from moderate/severe mTBI; or 3) the studies that required intracranial hemorrhage. Fifteen studies from 12 unique subject populations met inclusion and exclusion criteria. A total of 1139 mTBI or SRHI subjects were enrolled across intervention arms in the study populations. A total of eight intervention were studied. Omega-3 fatty acid (n-3FA), melatonin, and Pinus radiata were the only interventions examined in multiple studies. Studies included 10 randomized-control trials, three prospective observational studies, and two retrospective observational studies. Seven of the 15 studies had a low risk of bias. Eleven studies reported benefit of the intervention. Strongest evidence supports n-3FA utility for neurotrauma prevention in athletes exposed to SRHI. Both Pinus radiata and melatonin may have benefit for persistent post-concussion symptoms; however, additional multi-center studies are necessary prior to making a definitive conclusion on these supplements' efficacy. Future studies should continue to assess both novel interventions and additional interventions examined in this review to bring additional evidence to the burgeoning field of nutritional and dietary interventions for SRHI and mTBI.
Collapse
Affiliation(s)
- Charles Feinberg
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Katherine Dickerson Mayes
- Division of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Catherine Carr
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Bell A, Hewins B, Bishop C, Fortin A, Wang J, Creamer JL, Collen J, Werner JK. Traumatic Brain Injury, Sleep, and Melatonin-Intrinsic Changes with Therapeutic Potential. Clocks Sleep 2023; 5:177-203. [PMID: 37092428 PMCID: PMC10123665 DOI: 10.3390/clockssleep5020016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity in the United States and is associated with numerous chronic sequelae long after the point of injury. One of the most common long-term complaints in patients with TBI is sleep dysfunction. It is reported that alterations in melatonin follow TBI and may be linked with various sleep and circadian disorders directly (via cellular signaling) or indirectly (via free radicals and inflammatory signaling). Work over the past two decades has contributed to our understanding of the role of melatonin as a sleep regulator and neuroprotective anti-inflammatory agent. Although there is increasing interest in the treatment of insomnia following TBI, a lack of standardization and rigor in melatonin research has left behind a trail of non-generalizable data and ambiguous treatment recommendations. This narrative review describes the underlying biochemical properties of melatonin as they are relevant to TBI. We also discuss potential benefits and a path forward regarding the therapeutic management of TBI with melatonin treatment, including its role as a neuroprotectant, a somnogen, and a modulator of the circadian rhythm.
Collapse
Affiliation(s)
- Allen Bell
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Bryson Hewins
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Courtney Bishop
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Amanda Fortin
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - Jonathan Wang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | | | - Jacob Collen
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| | - J. Kent Werner
- Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (B.H.)
| |
Collapse
|
7
|
Deshpande SN, Simkin DR. Complementary and Integrative Approaches to Sleep Disorders in Children. Child Adolesc Psychiatr Clin N Am 2023; 32:243-272. [PMID: 37147039 DOI: 10.1016/j.chc.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sleep problems are very common in children and adolescents. Chronic insomnia is the leading cause of sleep disorders in children and adolescents. Adjunctive interventions that address low ferritin levels and vitamin D3 deficiency are helpful in children and adolescents. The addition of l-5-hydroxytryptophan, gabadone, l-theanine, Ashwagandha, omega 3 fatty acids, probiotics in bipolar disorder, and children with colic, meditation, and changing from a high-fat diet to a Mediterranean diet are also helpful adjunctive interventions. Actigraphy data should be collected in future sleep studies because subjective data may not indicate the true effect of the intervention.
Collapse
Affiliation(s)
- Swapna N Deshpande
- Department of Psychiatry and Behavioral Sciences, Oklahoma State University, 5310 East 31st Street, Tulsa, OK 74135, USA.
| | - Deborah R Simkin
- Department of Psychiatry, Emory University School of Medicine, 8955 Highway 98 West, Suite 204, Miramar Beach, FL 32550, USA
| |
Collapse
|
8
|
Sheldrake E, Lam B, Al-Hakeem H, Wheeler AL, Goldstein BI, Dunkley BT, Ameis S, Reed N, Scratch SE. A Scoping Review of Magnetic Resonance Modalities Used in Detection of Persistent Postconcussion Symptoms in Pediatric Populations. J Child Neurol 2023; 38:85-102. [PMID: 36380680 PMCID: PMC10061627 DOI: 10.1177/08830738221120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Up to 30% of youth with concussion experience PPCSs (PPCS) lasting 4 weeks or longer, and can significantly impact quality of life. Magnetic resonance imaging (MRI) has the potential to increase understanding of causal mechanisms underlying PPCS. However, there are no clear modalities to assist in detecting PPCS. This scoping review aims to synthesize findings on utilization of MRI among children and youth with PPCS, and summarize progress and limitations. Thirty-six studies were included from 4907 identified papers. Many studies used multiple modalities, including (1) structural (n = 27) such as T1-weighted imaging, diffusion weighted imaging, and susceptibility weighted imaging; and (2) functional (n = 23) such as functional MRI and perfusion-weighted imaging. Findings were heterogeneous among modalities and regions of interest, which warrants future reviews that report on the patterns and potential advancements in the field. Consideration of modalities that target PPCS prediction and sensitive modalities that can supplement a biopsychosocial approach to PPCS would benefit future research.
Collapse
Affiliation(s)
- Elena Sheldrake
- Bloorview Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Brendan Lam
- Bloorview Research Institute, Toronto, Ontario, Canada
| | | | - Anne L. Wheeler
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I. Goldstein
- Centre for Addiction and Mental Health, Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin T. Dunkley
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Ameis
- Centre for Addiction and Mental Health, Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nick Reed
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E. Scratch
- Bloorview Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Adolescents with a concussion have altered brain network functional connectivity one month following injury when compared to adolescents with orthopedic injuries. Neuroimage Clin 2022; 36:103211. [PMID: 36182818 PMCID: PMC9668608 DOI: 10.1016/j.nicl.2022.103211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
Concussion is a mild traumatic brain injury (mTBI) with increasing prevalence among children and adolescents. Functional connectivity (FC) within and between the default mode network (DMN), central executive network (CEN) and salience network (SN) has been shown to be altered post-concussion. Few studies have investigated connectivity within and between these 3 networks following a pediatric concussion. The present study explored whether within and between-network FC differs between a pediatric concussion and orthopedic injury (OI) group aged 10-18. Participants underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scan at 4 weeks post-injury. One-way ANCOVA analyses were conducted between groups with the seed-based FC of the 3 networks. A total of 55 concussion and 27 OI participants were included in the analyses. Increased within-network FC of the CEN and decreased between-network FC of the DMN-CEN was found in the concussion group when compared to the OI group. Secondary analyses using spherical SN regions of interest revealed increased within-network FC of the SN and increased between-network FC of the DMN-SN and CEN-SN in the concussion group when compared to the OI group. This study identified differential connectivity patterns following a pediatric concussion as compared to an OI 4 weeks post-injury. These differences indicate potential adaptive brain mechanisms that may provide insight into recovery trajectories and appropriate timing of treatment within the first month following a concussion.
Collapse
|
10
|
Iinuma Y, Nobukawa S, Nishimura H, Takahashi T. Dynamic Characteristics of State Transitions Composed of Neural Activity in the Brain by Circadian Rhythms. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:152-157. [PMID: 36085992 DOI: 10.1109/embc48229.2022.9871057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, as a treatment for mental disorders in addition to drug treatment, a non-drug treatment called chronotherapy has been attracting attention. However, the achievement of optimized chronotherapy for each subject's condition requires that the disturbance of the patient's circadian rhythm must be captured over a long duration. Therefore, it is necessary to develop biomarkers that are easy to measure, quantitative, and continuously measured. Complexity analysis of electroencephalograms revealed specific patterns related to circadian rhythms. However, such complexity analysis cannot capture variability in spatial patterns, although moment-to-moment temporal dynamic characteristics can be captured. Therefore, it is necessary to evaluate the dynamic characteristics of the interaction of neural activity throughout the brain. To evaluate the dynamic whole-brain interaction, we proposed a new microstate approach based on the instantaneous frequency distribution. In this context, we hypothesized that it would be possible to detect circadian rhythms using the microstate approach. In this study, to clarify the dynamic interactions of the entire neural network of the brain by circadian rhythms, we measured EEG data at day and night, and detected dynamic state transitions based on the instantaneous frequency distribution of the whole brain from EEG. The results showed the probability of transition among region-specific phase-leading states related to circadian rhythms. This finding might be widely utilized to detect circadian rhythms in healthy and pathological conditions.
Collapse
|
11
|
Moderie C, Boudreau P, Shechter A, Lespérance P, Boivin DB. Effects of exogenous melatonin on sleep and circadian rhythms in women with premenstrual dysphoric disorder. Sleep 2021; 44:zsab171. [PMID: 34240212 PMCID: PMC8664575 DOI: 10.1093/sleep/zsab171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
We previously found normal polysomnographic (PSG) sleep efficiency, increased slow-wave sleep (SWS), and a blunted melatonin secretion in women with premenstrual dysphoric disorder (PMDD) compared to controls. Here, we investigated the effects of exogenous melatonin in five patients previously studied. They took 2 mg of slow-release melatonin 1 h before bedtime during their luteal phase (LP) for three menstrual cycles. At baseline, patients spent every third night throughout one menstrual cycle sleeping in the laboratory. Measures included morning urinary 6-sulfatoxymelatonin (aMt6), PSG sleep, nocturnal core body temperature (CBT), visual analog scale for mood (VAS-Mood), Prospective Record of the Impact and Severity of Menstrual Symptoms (PRISM), and ovarian plasma hormones. Participants also underwent two 24-hour intensive physiological monitoring (during the follicular phase and LP) in time-isolation/constant conditions to determine 24-hour plasma melatonin and CBT rhythms. The same measures were repeated during their third menstrual cycle of melatonin administration. In the intervention condition compared to baseline, we found increased urinary aMt6 (p < 0.001), reduced objective sleep onset latency (p = 0.01), reduced SWS (p < 0.001), and increased Stage 2 sleep (p < 0.001). Increased urinary aMt6 was correlated with reduced SWS (r = -0.51, p < 0.001). Circadian parameters derived from 24-hour plasma melatonin and CBT did not differ between conditions, except for an increased melatonin mesor in the intervention condition (p = 0.01). Ovarian hormones were comparable between the conditions (p ≥ 0.28). Symptoms improved in the intervention condition, as measured by the VAS-Mood (p = 0.02) and the PRISM (p < 0.001). These findings support a role for disturbed melatonergic system in PMDD that can be partially corrected by exogenous melatonin.
Collapse
Affiliation(s)
- Christophe Moderie
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Philippe Boudreau
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Ari Shechter
- Department of Medicine, Columbia University, New York, NY, USA
| | - Paul Lespérance
- CHUM, Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Diane B Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Shapiro JS, Takagi M, Silk T, Anderson N, Clarke C, Davis GA, Hearps SJ, Ignjatovic V, Rausa V, Seal ML, Babl FE, Anderson V. No Evidence of a Difference in Susceptibility-Weighted Imaging Lesion Burden or Functional Network Connectivity between Children with Typical and Delayed Recovery Two Weeks Post-Concussion. J Neurotrauma 2021; 38:2384-2390. [PMID: 33823646 PMCID: PMC8881952 DOI: 10.1089/neu.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Susceptibility weighted imaging (SWI) and resting state functional magnetic resonance imaging have been highlighted as two novel neuroimaging modalities that have been underutilized when attempting to predict whether a child with concussion will recover normally or have a delayed recovery course. This study aimed to investigate whether there was a difference between children who recover normally from a concussion and children with delayed recovery in terms of SWI lesion burden and resting state network makeup. Forty-one children who presented to the emergency department of a tertiary level pediatric hospital with concussion participated in this study as a part of a larger prospective, longitudinal observational cohort study into concussion assessment and recovery. Children underwent neuroimaging 2 weeks post-injury and were classified as either normally recovering (n = 27), or delayed recovering (n = 14) based on their post-concussion symptoms at 2 weeks post-injury. No participants showed lesions detected using SWI; therefore, no group differences could be assessed. No between-group resting state network differences were uncovered using dual regression analysis. These findings, alongside previously published work, suggest that potential causes of delayed recovery from concussion may not be found using current neuroimaging paradigms.
Collapse
Affiliation(s)
- Jesse S. Shapiro
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Monash School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael Takagi
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Monash School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Tim Silk
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- School of Psychology, Deakin University, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Nicholas Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Cathriona Clarke
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gavin A. Davis
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | - Vera Ignjatovic
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Vanessa Rausa
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Marc L. Seal
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
| | - Franz E. Babl
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
- Emergency Department, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Victoria, Australia
- Psychology Service, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Stein A, Iyer KK, Khetani AM, Barlow KM. Changes in working memory-related cortical responses following pediatric mild traumatic brain injury: A longitudinal fMRI study. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/20597002211006541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Persistent post-concussion symptoms (PPCS) lasting longer than 4 weeks affect 25% of children with mild traumatic brain injury (mTBI) or concussion. Working memory (WM) problems are a common complaint in children with PPCS. Despite normal function on traditional neuropsychological tests, these children exhibit aberrant cortical responses within the dorsolateral prefrontal cortex (dlPFC) and default mode network (DMN) regions – both of which are implicated in WM. Using a prospective, longitudinal cohort study design, we investigated changes in cortical fMRI responses within the dlPFC and DMN during an nback WM task at two timepoints: one and two months post-injury. Across these timepoints, the primary outcome was change in cortical activations (increase in BOLD) and deactivations (decrease in BOLD) of both dlPFC and DMN. Twenty-nine children (mean age 15.49 ± 2.15; 48.3% male) with fMRI scans at both timepoints were included, following data quality control. Student’s t-tests were used to examine cortical activations across time and task difficulty. ANCOVA F-tests examined cortical responses after removal of baseline across time, task difficulty and recovery. Volumes of interest (5 mm sphere) were placed in peak voxel regions of the DMN and dlPFC to compare cortical responses between recovered and unrecovered participants over time (one-way ANOVA). Between one and two months post-injury, we found significant increases in dlPFC activations and significant activations and deactivations in the DMN with increasing task difficulty, alongside improved task performance. Cortical responses of the DMN and bilateral dlPFC displayed increased intensity in recovered participants, together with improved attention and behavioural symptoms. Overall, our findings suggest evidence of neural compensation and ongoing cognitive recovery from pediatric TBI over time between one and two months post injury in children with PPCS. These results highlight the wider and persisting implications of mTBI in children, whose maturing brains are particularly vulnerable to TBI.
Collapse
Affiliation(s)
- Athena Stein
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kartik K Iyer
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Aneesh M Khetani
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Karen M Barlow
- Acquired Brain Injury in Children Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Queensland Pediatric Rehabilitation Service, Queensland Children's Hospital, Brisbane, Australia
| |
Collapse
|
14
|
Raikes AC, Dailey NS, Forbeck B, Alkozei A, Killgore WDS. Daily Morning Blue Light Therapy for Post-mTBI Sleep Disruption: Effects on Brain Structure and Function. Front Neurol 2021; 12:625431. [PMID: 33633674 PMCID: PMC7901882 DOI: 10.3389/fneur.2021.625431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness. Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study. Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05). Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.
Collapse
Affiliation(s)
- Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Brittany Forbeck
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Lab, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
15
|
Yamakawa G, Brady R, Sun M, McDonald S, Shultz S, Mychasiuk R. The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2020; 9:100058. [PMID: 33364525 PMCID: PMC7752723 DOI: 10.1016/j.nbscr.2020.100058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex and costly worldwide phenomenon that can lead to many negative health outcomes including disrupted circadian function. There is a bidirectional relationship between the immune system and the circadian system, with mammalian coordination of physiological activities being controlled by the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN receives light information from the external environment and in turn synchronizes rhythms throughout the brain and body. The SCN is capable of endogenous self-sustained oscillatory activity through an intricate clock gene negative feedback loop. Following TBI, the response of the immune system can become prolonged and pathophysiological. This detrimental response not only occurs in the brain, but also within the periphery, where a leaky blood brain barrier can permit further infiltration of immune and inflammatory factors. The prolonged and pathological immune response that follows TBI can have deleterious effects on clock gene cycling and circadian function not only in the SCN, but also in other rhythmic areas throughout the body. This could bring about a state of circadian desynchrony where different rhythmic structures are no longer working together to promote optimal physiological function. There are many parallels between the negative symptomology associated with circadian desynchrony and TBI. This review discusses the significant contributions of an immune-disrupted circadian system on the negative symptomology following TBI. The implications of TBI symptomology as a disorder of circadian desynchrony are discussed.
Collapse
Affiliation(s)
- G.R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - R.D. Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - M. Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - S.J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - S.R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - R. Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|