1
|
Medina-Terol GJ, Chimal L, Huerta de la Cruz S, Ávila G, Aranda A, Cruz-Robles D, Centurión D, Altamirano J, Rojo R, Gómez-Viquez NL. H 2S treatment reverts cardiac hypertrophy and increases SERCA2a activity but does not fully restore cardiac Ca 2+ handling in hypertensive rats. Cell Calcium 2025; 128:103015. [PMID: 40184980 DOI: 10.1016/j.ceca.2025.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Hydrogen sulfide (H2S) has been proposed to play a cardioprotective role, particularly due to its ability to revert left ventricular hypertrophy (LVH) and mitigate cardiac dysfunction in various cardiomyopathies, including hypertensive heart disease. However, the extent to which cardioprotection by H2S involves improvement in Ca2+ handling remains unclear. Although H2S has been reported to influence the function of key Ca2+ handling proteins, most studies have focused on acute administration of H2S donors in isolated cardiomyocytes, rather than in a therapeutic context. In this study, we used a rat model of hypertension induced by abdominal aortic coarctation (AAC) to evaluate the therapeutic potential of NaHS, an H2S donor, on LVH and Ca2+ handling. After 8 weeks of AAC, hypertensive rats developed moderate LVH, which was accompanied by a reduction in both the amplitude and the rate of rise of systolic Ca2+ transients, as well as a decrease in sarcoplasmic reticulum (SR) Ca2+ load. Despite the reduced SR Ca2+ load, the frequency of diastolic Ca2+ sparks remained high, while the incidence and propagation rate of spontaneous Ca2+ waves significantly increased, suggesting enhanced diastolic SR Ca2+ leak, most likely due to hypersensitivity of ryanodine receptors (RyR2) to Ca2+. On the other hand, NaHS administration during the final 4 weeks of AAC reverted both LVH and hypertension, and increased SR Ca2+ reuptake mediated by the SR Ca2+ ATPase (SERCA2a). However, NaHS treatment failed to restore the amplitude and rate of rise of systolic Ca2+ transients or SR Ca2+ load. Furthermore, SR Ca2+ leak might have worsened, since spontaneous Ca2+ waves increased. In conclusion, NaHS treatment does not appear to normalize all Ca2+ handling properties during hypertensive LVH. On the contrary, NaHS may exert an arrhythmogenic effect, likely due to enhanced SERCA2a activity under conditions of unresolved RyR2 Ca2+ hypersensitivity.
Collapse
Affiliation(s)
- Grecia J Medina-Terol
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Luis Chimal
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Guillermo Ávila
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alberto Aranda
- Instituto Nacional de Cardiología Ignacio Chávez, Departamento de Anatomía Patológica, Ciudad de México, Mexico
| | - David Cruz-Robles
- Instituto Nacional de Cardiología Ignacio Chávez, Departamento de Biología Molecular, Ciudad de México, Mexico
| | - David Centurión
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Chihuahua, Mexico
| | - Rocio Rojo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Chihuahua, Mexico
| | - Norma Leticia Gómez-Viquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Beltran-Ornelas JH, Silva-Velasco DL, Tapia-Martínez JA, Sánchez-López A, Cano-Europa E, Huerta de la Cruz S, Centurión D. Sodium Hydrosulfide Reverts Chronic Stress-Induced Cardiovascular Alterations by Reducing Oxidative Stress. J Cardiovasc Pharmacol 2024; 83:317-329. [PMID: 38207007 DOI: 10.1097/fjc.0000000000001538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
ABSTRACT Chronic stress induces a group of unrecognized cardiovascular impairments, including elevated hemodynamic variables and vascular dysfunction. Moreover, hydrogen sulfide (H 2 S), a gasotransmitter that regulates the cardiovascular system decreases under chronic stress. Thus, this study assessed the impact of sodium hydrosulfide (NaHS) (H 2 S donor) on chronic restraint stress (CRS)-induced cardiovascular changes. For that purpose, male Wistar rats were restrained for 2 hours a day in a transparent acrylic tube over 8 weeks. Then, body weight, relative adrenal gland weight, serum corticosterone, H 2 S-synthesizing enzymes, endothelial nitric oxide synthetize expression, reactive oxygen species levels, lipid peroxidation, and reduced glutathione-to-oxidized glutathione (GSH 2 :GSSG) ratio were determined in the thoracic aorta. The hemodynamic variables were measured in vivo by the plethysmograph method. The vascular function was evaluated in vitro as vasorelaxant responses induced by carbachol or sodium nitroprusside, and norepinephrine (NE)-mediated vasocontractile responses in the thoracic aorta. CRS increased (1) relative adrenal gland weight; (2) hemodynamic variables; (3) vasoconstrictor responses induced by NE, (4) reactive oxygen species levels, and (5) lipid peroxidation in the thoracic aorta. In addition, CRS decreased (1) body weight; (2) vasorelaxant responses induced by carbachol; (3) GSH content, and (4) GSH 2 :GSSG ratio. Notably, NaHS administration (5.6 mg/kg) restored hemodynamic variables and lipid peroxidation and attenuated the vasoconstrictor responses induced by NE in the thoracic aorta. In addition, NaHS treatment increased relative adrenal gland weight and the GSH 2 :GSSG ratio. Taken together, our results demonstrate that NaHS alleviates CRS-induced hypertension by reducing oxidative stress and restoring vascular function in the thoracic aorta.
Collapse
Affiliation(s)
| | | | | | | | - Edgar Cano-Europa
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Ciudad de México, México ; and
| |
Collapse
|
3
|
Huerta de la Cruz S, Santiago-Castañeda C, Rodríguez-Palma EJ, Rocha L, Sancho M. Lateral fluid percussion injury: A rat model of experimental traumatic brain injury. Methods Cell Biol 2024; 185:197-224. [PMID: 38556449 DOI: 10.1016/bs.mcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Traumatic brain injury (TBI) represents one of the leading causes of disability and death worldwide. The annual economic impact of TBI-including direct and indirect costs-is high, particularly impacting low- and middle-income countries. Despite extensive research, a comprehensive understanding of the primary and secondary TBI pathophysiology, followed by the development of promising therapeutic approaches, remains limited. These fundamental caveats in knowledge have motivated the development of various experimental models to explore the molecular mechanisms underpinning the pathogenesis of TBI. In this context, the Lateral Fluid Percussion Injury (LFPI) model produces a brain injury that mimics most of the neurological and systemic aspects observed in human TBI. Moreover, its high reproducibility makes the LFPI model one of the most widely used rodent-based TBI models. In this chapter, we provide a detailed surgical protocol of the LFPI model used to induce TBI in adult Wistar rats. We further highlight the neuroscore test as a valuable tool for the evaluation of TBI-induced sensorimotor consequences and their severity in rats. Lastly, we briefly summarize the current knowledge on the pathological aspects and functional outcomes observed in the LFPI-induced TBI model in rodents.
Collapse
Affiliation(s)
- Saúl Huerta de la Cruz
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Departamento de Farmacobiología, Cinvestav Sede Sur, Ciudad de México, México.
| | | | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav Sede Sur, Ciudad de México, México
| | - Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States; Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Chen J, Chen Z, Yu D, Yan Y, Hao X, Zhang M, Zhu T. Neuroprotective Effect of Hydrogen Sulfide Subchronic Treatment Against TBI-Induced Ferroptosis and Cognitive Deficits Mediated Through Wnt Signaling Pathway. Cell Mol Neurobiol 2023; 43:4117-4140. [PMID: 37624470 PMCID: PMC10661805 DOI: 10.1007/s10571-023-01399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Emerging evidence shows that targeting ferroptosis may be a potential therapeutic strategy for treating traumatic brain injury (TBI). Hydrogen sulfide (H2S) has been proven to play a neuroprotective role in TBI, but little is known about the effects of H2S on TBI-induced ferroptosis. In addition, it is reported that the Wnt signaling pathway can also actively regulate ferroptosis. However, whether H2S inhibits ferroptosis via the Wnt signaling pathway after TBI remains unclear. In this study, we first found that in addition to alleviating neuronal damage and cognitive impairments, H2S remarkably attenuated abnormal iron accumulation, decreased lipid peroxidation, and improved the expression of glutathione peroxidase 4, demonstrating the potent anti-ferroptosis action of H2S after TBI. Moreover, Wnt3a or liproxstatin-1 treatment obtained similar results, suggesting that activation of the Wnt signaling pathway can render the cells less susceptible to ferroptosis post-TBI. More importantly, XAV939, an inhibitor of the Wnt signaling pathway, almost inversed ferroptosis inactivation and reduction of neuronal loss caused by H2S treatment, substantiating the involvement of the Wnt signaling pathway in anti-ferroptosis effects of H2S. In conclusion, the Wnt signaling pathway might be the critical mechanism in realizing the anti-ferroptosis effects of H2S against TBI. TBI induces ferroptosis-related changes characterized by iron overload, impaired antioxidant system, and lipid peroxidation at the chronic phase after TBI. However, NaHS subchronic treatment reduces the susceptibility to TBI-induced ferroptosis, at least partly by activating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yufei Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mingxia Zhang
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
5
|
Tripathi SJ, Chakraborty S, Miller E, Pieper AA, Paul BD. Hydrogen sulfide signalling in neurodegenerative diseases. Br J Pharmacol 2023:10.1111/bph.16170. [PMID: 37338307 PMCID: PMC10730776 DOI: 10.1111/bph.16170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
The gaseous neurotransmitter hydrogen sulfide (H2 S) exerts neuroprotective efficacy in the brain via post-translational modification of cysteine residues by sulfhydration, also known as persulfidation. This process is comparable in biological impact to phosphorylation and mediates a variety of signalling events. Unlike conventional neurotransmitters, H2 S cannot be stored in vesicles due to its gaseous nature. Instead, it is either locally synthesized or released from endogenous stores. Sulfhydration affords both specific and general neuroprotective effects and is critically diminished in several neurodegenerative disorders. Conversely, some forms of neurodegenerative disease are linked to excessive cellular H2 S. Here, we review the signalling roles of H2 S across the spectrum of neurodegenerative diseases, including Huntington's disease, Parkinson's disease, Alzheimer's disease, Down syndrome, traumatic brain injury, the ataxias, and amyotrophic lateral sclerosis, as well as neurodegeneration generally associated with ageing.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, Ohio, USA
- School of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Translational Therapeutics Core, Cleveland Alzheimer's Disease Research Center, Cleveland, Ohio, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Paul BD, Pieper AA. Protective Roles of Hydrogen Sulfide in Alzheimer's Disease and Traumatic Brain Injury. Antioxidants (Basel) 2023; 12:1095. [PMID: 37237961 PMCID: PMC10215281 DOI: 10.3390/antiox12051095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) critically modulates a plethora of physiological processes across evolutionary boundaries. These include responses to stress and other neuromodulatory effects that are typically dysregulated in aging, disease, and injury. H2S has a particularly prominent role in modulating neuronal health and survival under both normal and pathologic conditions. Although toxic and even fatal at very high concentrations, emerging evidence has also revealed a pronounced neuroprotective role for lower doses of endogenously generated or exogenously administered H2S. Unlike traditional neurotransmitters, H2S is a gas and, therefore, is unable to be stored in vesicles for targeted delivery. Instead, it exerts its physiologic effects through the persulfidation/sulfhydration of target proteins on reactive cysteine residues. Here, we review the latest discoveries on the neuroprotective roles of H2S in Alzheimer's disease (AD) and traumatic brain injury, which is one the greatest risk factors for AD.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Silva-Velasco DL, Beltran-Ornelas JH, Tapia-Martínez J, Sánchez-López A, de la Cruz SH, Cervantes-Pérez LG, Del Valle-Mondragón L, Sánchez-Mendoza A, Centurión D. NaHS restores the vascular alterations in the renin-angiotensin system induced by hyperglycemia in rats. Peptides 2023; 164:171001. [PMID: 36990388 DOI: 10.1016/j.peptides.2023.171001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Hyperglycemia (HG) impairs the renin-angiotensin system (RAS), which may contribute to vascular dysfunction. Besides, hydrogen sulfide (H2S) exerts beneficial cardiovascular effects in metabolic diseases. Therefore, our study aimed to determine the effects of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor) and DL-Propargylglycine [DL-PAG; cystathionine-ץ-lyase (CSE) inhibitor] on the RAS-mediated vascular responses impairments observed in thoracic aortas from male diabetic Wistar rats. For that purpose, neonatal rats were divided into two groups that received: 1) citrate buffer (n = 12) or 2) streptozotocin (STZ, 70 mg/kg; n = 48) on the third postnatal day. After 12 weeks, diabetic animals were divided into 4 subgroups (n = 12 each) that received daily i.p. injections during 4 weeks of: 1) non-treatment; 2) vehicle (PBS, 1 mL/kg); 3) NaHS (5.6 mg/kg); and 4) DL-PAG (10 mg/kg). After treatments (16 weeks), blood glucose, angiotensin-(1-7) [Ang-(1-7)], and angiotensin II (Ang II) levels, vascular responses to Ang-(1-7) and Ang II, and the expression of angiotensin AT1, AT2, and Mas receptors, angiotensin converting enzyme (ACE) and ACE type 2 (ACE2) were determined. HG induced: 1) increased blood glucose levels and expression of angiotensin II AT1 receptor; 2) impaired Ang-(1-7) and Ang II mediated vascular responses; 3) decreased angiotensin levels and expression of angiotensin II AT2 and angiotensin-(1-7) Mas receptors, and ACE2; and 4) no changes in ACE expression. Interestingly, NaHS, but not DL-PAG, reversed HG-induced impairments, except for blood glucose level changes. These results suggest that NaHS restores vascular function in streptozotocin-induced HG through RAS modulation.
Collapse
Affiliation(s)
- Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Jorge Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico
| | - Luz Graciela Cervantes-Pérez
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico
| | - Leonardo Del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No.1, Col. Sección XVI, Alcaldía Tlalpan C.P. 14080, Mexico.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Alcaldía Tlalpan C.P. 14330, Mexico.
| |
Collapse
|
8
|
Hydrogen sulfide as a neuromodulator of the vascular tone. Eur J Pharmacol 2023; 940:175455. [PMID: 36549499 DOI: 10.1016/j.ejphar.2022.175455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a unique signaling molecule that, along with carbon monoxide and nitric oxide, belongs to the gasotransmitters family. H2S is endogenously synthesized by enzymatic and non-enzymatic pathways. Three enzymatic pathways involving cystathionine-γ-lyase, cystathionine-β-synthetase, and 3-mercaptopyruvate sulfurtransferase are known as endogenous sources of H2S. This gaseous molecule has recently emerged as a regulator of many systems and physiological functions, including the cardiovascular system where it controls the vascular tone of small arteries. In this context, H2S leads to vasorelaxation by regulating the activity of vascular smooth muscle cells, endothelial cells, and perivascular nerves. Specifically, H2S modulates the functionality of different ion channels to inhibit the autonomic sympathetic outflow-by either central or peripheral mechanisms-or to stimulate perivascular sensory nerves. These mechanisms are particularly relevant for those pathological conditions associated with impaired neuromodulation of vascular tone. In this regard, exogenous H2S administration efficiently attenuates the increased activity of the sympathetic nervous system often seen in patients with certain pathologies. These effects of H2S on the autonomic sympathetic outflow will be the primary focus of this review. Thereafter, we will discuss the central and peripheral regulatory effects of H2S on vascular tone. Finally, we will provide the audience with a detailed summary of the current pathological implications of H2S modulation on the neural regulation of vascular tone.
Collapse
|
9
|
Surface-fill H 2S-releasing silk fibroin hydrogel for brain repair through the repression of neuronal pyroptosis. Acta Biomater 2022; 154:259-274. [PMID: 36402296 DOI: 10.1016/j.actbio.2022.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) remains the major cause of disability and mortality worldwide due to the persistent neuroinflammation and neuronal death induced by TBI. Among them, pyroptosis, a specific type of programmed cell death (PCD) triggered by inflammatory signals, plays a significant part in the pathological process after TBI. Inhibition of neuroinflammation and pyroptosis is considered a possible strategy for the treatment of TBI. In our previous study, exogenous hydrogen sulfide(H2S) exerted a neuroprotective effect after TBI. Here, we developed a surface-fill H2S-releasing silk fibroin (SF) hydrogel (H2S@SF hydrogel) to achieve small-dose local administration and avoid volatile and toxic side effects. We used a controlled cortical impact (CCI) to establish a mild TBI model in mice to examine the effect of H2S@SF hydrogel on TBI-induced pyroptosis. We found that H2S@SF hydrogel inhibited the expression of H2S synthase in neurons after TBI and significantly inhibited TBI-induced neuronal pyroptosis. In addition, immunofluorescence staining results showed that the necroptosis protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1) partially colocalized with the pyroptosis protein Gasdermin D (GSDMD) in the same cells. H2S@SF hydrogel can also inhibit the expression of the necroptosis protein. Moreover, H2S@SF hydrogel also alleviates brain edema and the degree of neurodegeneration in the acute phase of TBI. The neuroprotective effect of H2S@SF hydrogel was further confirmed by wire-grip test, open field test, Morris water maze, beam balance test, radial arm maze, tail suspension, and forced swimming test. Lastly, we also measured spared tissue volume, reactive astrocytes and activated microglia to demonstrate H2S@SF hydrogel impacts on long-term prognosis in TBI. Our study provides a new theoretical basis for the treatment of H2S after TBI and the clinical application of H2S@SF hydrogel. STATEMENT OF SIGNIFICANCE: Silk fibroin (SF) hydrogel controls the release of hydrogen sulfide (H2S) to inhibit neuronal pyroptosis and neuroinflammation in injured brain tissue. In this study, we synthesized a surface-fill H2S-releasing silk fibroin hydrogel, which could slowly release H2S to reshape the homeostasis of endogenous H2S in injured neurons and inhibit neuronal pyroptosis in a mouse model of traumatic brain injury. Meanwhile, H2S@SF hydrogel could alleviate brain edema and the degree of neurodegeneration, improve motor dysfunction, anxious behavior and memory impairment caused by TBI, reduce tissue loss and ameliorate neuroinflammation. Our study provides a new theoretical basis for the treatment of H2S after TBI and the clinical application of H2S@SF hydrogel.
Collapse
|
10
|
López-Preza FI, Huerta de la Cruz S, Santiago-Castañeda C, Silva-Velasco DL, Beltran-Ornelas JH, Tapia-Martínez J, Sánchez-López A, Rocha L, Centurión D. Hydrogen sulfide prevents the vascular dysfunction induced by severe traumatic brain injury in rats by reducing reactive oxygen species and modulating eNOS and H 2S-synthesizing enzyme expression. Life Sci 2022; 312:121218. [PMID: 36427545 DOI: 10.1016/j.lfs.2022.121218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
AIM To assess the effects of subchronic administration with NaHS, an exogenous H2S donor, on TBI-induced hypertension and vascular impairments. MAIN METHODS Animals underweministration does not prevent the body weight loss but slightly imnt a lateral fluid percussion injury, and the hemodynamic variables were measured in vivo by plethysmograph method. The vascular function in vitro, the ROS levels by the DCFH-DA method and the expression of H2S-synthesizing enzymes and eNOS by Western blot were measured in isolated thoracic aortas at day 7 post-TBI. The effect of L-NAME on NaHS-induced effects in vascular function was evaluated. Brain water content was determined 7 days after trauma induction. Body weight was recorded throughout the experimental protocol, whereas the sensorimotor function was evaluated using the neuroscore test at days -1 (basal), 2, and 7 after the TBI induction. KEY FINDINGS TBI animals showed: 1) an increase in hemodynamic variables and ROS levels in aortas; 2) vascular dysfunction; 3) sensorimotor dysfunction; and 4) a decrease in body weight, the expression of H2S-synthesizing enzymes, and eNOS phosphorylation. Interestingly, NaHS subchronic administration (3.1 mg/kg; i.p.; every 24 h for six days) prevented the development of hypertension, vascular dysfunction, and oxidative stress. L-NAME abolished NaHS-induced effects. Furthermore, NaHS treatment restored H2S-synthesizing enzymes and eNOS phosphorylation with no effect on body weight, sensorimotor impairments, or brain water content. SIGNIFICANCE Taken together, these results demonstrate that H2S prevents TBI-induced hypertension by restoring vascular function and modulating ROS levels, H2S-synthesizing enzymes expression, and eNOS phosphorylation.
Collapse
Affiliation(s)
- Félix I López-Preza
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Cindy Santiago-Castañeda
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Jorge Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico.
| |
Collapse
|
11
|
Pharmacological evidence that potassium channels mediate hydrogen sulfide-induced inhibition of the vasopressor sympathetic outflow in pithed rats. Eur J Pharmacol 2022; 931:175160. [DOI: 10.1016/j.ejphar.2022.175160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 01/26/2023]
|
12
|
Huerta de la Cruz S, Rodríguez-Palma EJ, Santiago-Castañeda CL, Beltrán-Ornelas JH, Sánchez-López A, Rocha L, Centurión D. Exogenous hydrogen sulfide restores CSE and CBS but no 3-MST protein expression in the hypothalamus and brainstem after severe traumatic brain injury. Metab Brain Dis 2022; 37:1863-1874. [PMID: 35759072 DOI: 10.1007/s11011-022-01033-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter endogenously synthesized by cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercaptopiruvate sulfurtransferase (3-MST) enzymes. H2S exogenous administration prevents the development of hemodynamic impairments after traumatic brain injury (TBI). Since the hypothalamus and the brainstem highly regulate the cardiovascular system, this study aimed to evaluate the effect of NaHS subchronic treatment on the changes of H2S-sythesizing enzymes in those brain areas after TBI and in physiological conditions. For that purpose, animals were submitted to a lateral fluid percussion injury, and the changes in CBS, CSE, and 3-MST protein expression were measured by western blot at days 1, 2, 3, 7, and 28 in the vehicle group, and 7 and 28 days after NaHS treatment. After severe TBI induction, we found a decrease in CBS and CSE protein expression in the hypothalamus and brainstem; meanwhile, 3-MST protein expression diminished only in the hypothalamus compared to the Sham group. Remarkably, i.p. daily injections of NaHS, an H2S donor, (3.1 mg/kg) during seven days: (1) restored CBS and CSE but no 3-MST protein expression in the hypothalamus at day 28 post-TBI; (2) reestablished only CSE in brainstem 7 and 28 days after TBI; and (3) did not modify H2S-sythesizing enzymes protein expression in uninjured animals. Mainly, our results show that the NaHS effect on CBS and CSE protein expression is observed in a time- and tissue-dependent manner with no effect on 3-MST expression, which may suggest a potential role of H2S synthesis in hypothalamus and brainstem impairments observed after TBI.
Collapse
Affiliation(s)
| | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico
| | | | | | | | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico.
| |
Collapse
|
13
|
Wang F, Zhou H, Zhang X. SAM, a cystathionine beta-synthase activator, promotes hydrogen sulfide to promote neural repair resulting from massive cerebral infarction induced by middle cerebral artery occlusion. Metab Brain Dis 2022; 37:1641-1654. [PMID: 35386034 DOI: 10.1007/s11011-022-00976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Neurologic deterioration after massive cerebral infarct should be identified at an early stage for medical and surgical treatments. We investigated the effect of hydrogen sulfide on the excitotoxity of PC12 cells exposed to oxygen-glucose deprivation (OGD) and its effect on the apoptosis of brain tissues in rats with middle cerebral artery occlusion (MCAO). Rats with MCAO were treated with SAM, a cystathionine beta-synthase (CBS) activator, or AOAA, a CBS inhibitor. Hydrogen sulfide content in the brain tissues of infarcted patients or rats with MCAO was decreased, whereas glutamate (GLU) content was increased. In addition, SAM reduced reactive oxygen species content, lactate dehydrogenase release, and apoptosis levels in the brain tissues of rats with MCAO. The PC12 cells that were exposed to OGD were also treated with 20 mM GLU and later treated with SAM or AOAA. In PC12 cells, SAM reduced the apoptosis caused by GLU after OGD. The protective effects of hydrogen sulfide was elicited through the sulfur-sulfhydrylation modification of NMDAR and the induction of ERK/MAPK signaling. Our results showed that hydrogen sulfide exerts a protective effect on the PC12 cells and the rats with MCAO, which might represent a possible therapeutic agent against massive cerebral infarct.
Collapse
Affiliation(s)
- Fang Wang
- Department of Medicine, Changsha Social Work College, No. 22, Xiangzhang Road, Yuhua District, Changsha, 410004, Hunan, People's Republic of China
| | - Hao Zhou
- Department of Urology, the Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410001, Hunan, People's Republic of China
| | - Xiaoxia Zhang
- Department of Medicine, Changsha Social Work College, No. 22, Xiangzhang Road, Yuhua District, Changsha, 410004, Hunan, People's Republic of China.
| |
Collapse
|