1
|
Bédard S, Valošek J, Seif M, Curt A, Schading-Sassenhausen S, Pfender N, Freund P, Hupp M, Cohen-Adad J. Normalizing spinal cord compression measures in degenerative cervical myelopathy. Spine J 2025:S1529-9430(25)00159-7. [PMID: 40154634 DOI: 10.1016/j.spinee.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/06/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND CONTEXT Accurate and automatic MRI measurements are relevant for assessing spinal cord compression severity in degenerative cervical myelopathy (DCM) and guiding treatment. The widely-used maximum spinal cord compression (MSCC) index has limitations. Firstly, it normalizes the anteroposterior cord diameter by that above and below the compression but does not account for cord size variation along the superior-inferior axis, making MSCC sensitive to compression level. Secondly, cord shape varies across individuals, making MSCC sensitive to this variability. Thirdly, MSCC is typically calculated by an expert-rater from a single sagittal slice, which is time-consuming and prone to variability. PURPOSE This study proposes a fully automatic pipeline to compute MSCC. DESIGN We developed a normalization strategy for traditional MSCC (anteroposterior diameter) using a healthy adults database (n = 203) to address cord anatomy variability across individuals and evaluated additional morphometrics (transverse diameter, area, eccentricity, and solidity). PATIENT SAMPLE DCM patient cohort of n = 120. OUTCOME MEASURES Receiver operating characteristic (ROC) and area under the curve (AUC) were used as evaluation metrics. METHODS We validated the method in a mild DCM patient cohort against manually derived morphometrics and predicted the therapeutic decision (operative/conservative) using a stepwise binary logistic regression incorporating demographics and clinical scores. RESULTS The automatic and normalized MSCC measures correlated significantly with clinical scores and predicted the therapeutic decision more accurately than manual MSCC. Significant predictors included upper extremity sensory dysfunction, T2w hyperintensity, and the proposed MRI-based measures. The model achieved an area under the curve of 0.80 in receiver operating characteristic analysis. CONCLUSION This study introduced an automatic method for computing normalized measures of cord compressions from MRIs, potentially improving therapeutic decisions in DCM patients. The method is open-source and available in Spinal Cord Toolbox v6.0 and above.
Collapse
Affiliation(s)
- Sandrine Bédard
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, Québec, Canada
| | - Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, Québec, Canada; Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, H2S 3H1, Québec, Canada; Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 15, Hněvotínská 976/3, Nová Ulice, 779 00 Olomouc, Czechia; Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 775 15, Hněvotínská 976/3, Nová Ulice, 779 00 Olomouc, Czechia
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Simon Schading-Sassenhausen
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany; Wellcome Trust Centre for Neuroimaging, Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, Québec, Canada; Mila - Quebec AI Institute, 6666 Rue Saint-Urbain, Montréal, H2S 3H1, Québec, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, 4545, Queen Mary Road, Montreal, H3W 1W4, Quebec, Canada; Centre de recherche du CHU Sainte-Justine, Université de Montréal, 4545 Chem. Queen Mary, Montréal, H3W 1W4, Quebec, Canada.
| |
Collapse
|
2
|
Büeler S, Anderson CE, Birkhäuser V, Freund P, Gross O, Kessler TM, Kündig CW, Leitner L, Mahnoor N, Mehnert U, Röthlisberger R, Stalder SA, van der Lely S, Zipser CM, David G, Liechti MD. Remote neurodegeneration in the lumbosacral cord one month after spinal cord injury: a cross-sectional MRI study. Ann Clin Transl Neurol 2025; 12:523-537. [PMID: 39869509 PMCID: PMC11920731 DOI: 10.1002/acn3.52298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/27/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVE To characterize structural integrity of the lumbosacral enlargement and conus medullaris within one month after spinal cord injury (SCI). METHODS Lumbosacral cord MRI data were acquired in patients with sudden onset (<7 days) SCI at the cervical or thoracic level approximately one month after injury and in healthy controls. Tissue integrity and loss were evaluated through diffusion tensor (DTI) and T2*-weighted imaging (cross-sectional area [CSA] measurements). Associations with the degree of neurological impairment were assessed using linear mixed-effects models. RESULTS Twenty-one patients with SCI showed lower white matter (WM) fractional anisotropy (FA) (≤-13.3%) and higher WM radial diffusivity (≤14.6%) compared to 27 healthy controls. Differences were most pronounced in the lateral columns of WM. CSA measurements revealed no group differences. For the lateral columns, lower FA values were associated with lower motor scores and lower amplitudes of motor evoked potentials. For the dorsal columns, lower FA values were associated with lower amplitudes of somatosensory evoked potentials from the lower extremities. INTERPRETATION One month after SCI, first signs of WM degeneration were apparent, without indication of tissue loss. The more pronounced differences observed in the lateral column could be attributed to anterograde degeneration of the motor tracts. The variability among DTI measurements remote from the lesion site can be partially explained by the degree of the SCI-induced neurological impairment. Together with previous studies, our findings indicate that impaired tissue integrity precedes tissue loss. The presented techniques have potential applications in monitoring the progression of various neurological diseases.
Collapse
Affiliation(s)
- Silvan Büeler
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Collene E. Anderson
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
- Swiss Paraplegic ResearchNottwilSwitzerland
- Faculty of Health Sciences and MedicineUniversity of LucerneLucerneSwitzerland
| | - Veronika Birkhäuser
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Oliver Gross
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Thomas M. Kessler
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Christian W. Kündig
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Lorenz Leitner
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Nomah Mahnoor
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Ulrich Mehnert
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Raphael Röthlisberger
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Stephanie A. Stalder
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Stéphanie van der Lely
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Carl M. Zipser
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Gergely David
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZürichZürichSwitzerland
| | - Martina D. Liechti
- Department of Neuro‐UrologyBalgrist University Hospital, University of ZürichZürichSwitzerland
| |
Collapse
|
3
|
Valošek J, Cohen-Adad J. Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox. Magn Reson Med Sci 2024; 23:307-315. [PMID: 38479843 PMCID: PMC11234946 DOI: 10.2463/mrms.rev.2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
The spinal cord plays a pivotal role in the central nervous system, providing communication between the brain and the body and containing critical motor and sensory networks. Recent advancements in spinal cord MRI data acquisition and image analysis have shown a potential to improve the diagnostics, prognosis, and management of a variety of pathological conditions. In this review, we first discuss the significance of standardized spinal cord MRI acquisition protocol in multi-center and multi-manufacturer studies. Then, we cover open-access spinal cord MRI datasets, which are important for reproducible science and validation of new methods. Finally, we elaborate on the recent advances in spinal cord MRI data analysis techniques implemented in the open-source software package Spinal Cord Toolbox (SCT).
Collapse
Affiliation(s)
- Jan Valošek
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Freund P, Boller V, Emmenegger TM, Akbar M, Hupp M, Pfender N, Wheeler‐Kingshott CAMG, Cohen‐Adad J, Fehlings MG, Curt A, Seif M. Quantifying neurodegeneration of the cervical cord and brain in degenerative cervical myelopathy: A multicentre study using quantitative magnetic resonance imaging. Eur J Neurol 2024; 31:e16297. [PMID: 38713645 PMCID: PMC11235710 DOI: 10.1111/ene.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND AND PURPOSE Simultaneous assessment of neurodegeneration in both the cervical cord and brain across multiple centres can enhance the effectiveness of clinical trials. Thus, this study aims to simultaneously assess microstructural changes in the cervical cord and brain above the stenosis in degenerative cervical myelopathy (DCM) using quantitative magnetic resonance imaging (MRI) in a multicentre study. METHODS We applied voxelwise analysis with a probabilistic brain/spinal cord template embedded in statistical parametric mappin (SPM-BSC) to process multi parametric mapping (MPM) including effective transverse relaxation rate (R2*), longitudinal relaxation rate (R1), and magnetization transfer (MT), which are indirectly sensitive to iron and myelin content. Regression analysis was conducted to establish associations between neurodegeneration and clinical impairment. Thirty-eight DCM patients (mean age ± SD = 58.45 ± 11.47 years) and 38 healthy controls (mean age ± SD = 41.18 ± 12.75 years) were recruited at University Hospital Balgrist, Switzerland and Toronto Western Hospital, Canada. RESULTS Remote atrophy was observed in the cervical cord (p = 0.002) and in the left thalamus (0.026) of the DCM group. R1 was decreased in the periaqueductal grey matter (p = 0.014), thalamus (p = 0.001), corpus callosum (p = 0.0001), and cranial corticospinal tract (p = 0.03). R2* was increased in the primary somatosensory cortices (p = 0.008). Sensory impairments were associated with increased iron-sensitive R2* in the thalamus and periaqueductal grey matter in DCM. CONCLUSIONS Simultaneous assessment of the spinal cord and brain revealed DCM-induced demyelination, iron deposition, and atrophy. The extent of remote neurodegeneration was associated with sensory impairment, highlighting the intricate and expansive nature of microstructural neurodegeneration in DCM, reaching beyond the stenosis level.
Collapse
Affiliation(s)
- Patrick Freund
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Viveka Boller
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Tim M. Emmenegger
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Muhammad Akbar
- Spine Program Division of NeurosurgeryUniversity of Toronto and Toronto Western HospitalTorontoOntarioCanada
| | - Markus Hupp
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Nikolai Pfender
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Claudia Angela Michela Gandini Wheeler‐Kingshott
- NMR Research Unit, Queen Square MS CentreUniversity College London (UCL) Queen Square Institute of Neurology, Faculty of Brain SciencesLondonUK
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Digital Neuroscience Research UnitIRCCS Mondino FoundationPaviaItaly
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique MontrealMontrealQuebecCanada
- Functional Neuroimaging Unit, CRIUGMUniversity of MontrealMontrealQuebecCanada
| | - Michael G. Fehlings
- Spine Program Division of NeurosurgeryUniversity of Toronto and Toronto Western HospitalTorontoOntarioCanada
| | - Armin Curt
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
| | - Maryam Seif
- Spinal Cord Injury CentreUniversity Hospital Balgrist, University of ZurichZurichSwitzerland
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
5
|
Büeler S, Freund P, Kessler TM, Liechti MD, David G. Improved inter-subject alignment of the lumbosacral cord for group-level in vivo gray and white matter assessments: A scan-rescan MRI study at 3T. PLoS One 2024; 19:e0301449. [PMID: 38626171 PMCID: PMC11020367 DOI: 10.1371/journal.pone.0301449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/15/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) enables the investigation of pathological changes in gray and white matter at the lumbosacral enlargement (LSE) and conus medullaris (CM). However, conducting group-level analyses of MRI metrics in the lumbosacral spinal cord is challenging due to variability in CM length, lack of established image-based landmarks, and unknown scan-rescan reliability. This study aimed to improve inter-subject alignment of the lumbosacral cord to facilitate group-level analyses of MRI metrics. Additionally, we evaluated the scan-rescan reliability of MRI-based cross-sectional area (CSA) measurements and diffusion tensor imaging (DTI) metrics. METHODS Fifteen participants (10 healthy volunteers and 5 patients with spinal cord injury) underwent axial T2*-weighted and diffusion MRI at 3T. We assessed the reliability of spinal cord and gray matter-based landmarks for inter-subject alignment of the lumbosacral cord, the inter-subject variability of MRI metrics before and after adjusting for the CM length, the intra- and inter-rater reliability of CSA measurements, and the scan-rescan reliability of CSA measurements and DTI metrics. RESULTS The slice with the largest gray matter CSA as an LSE landmark exhibited the highest reliability, both within and across raters. Adjusting for the CM length greatly reduced the inter-subject variability of MRI metrics. The intra-rater, inter-rater, and scan-rescan reliability of MRI metrics were the highest at and around the LSE (scan-rescan coefficient of variation <3% for CSA measurements and <7% for DTI metrics within the white matter) and decreased considerably caudal to it. CONCLUSIONS To facilitate group-level analyses, we recommend using the slice with the largest gray matter CSA as a reliable LSE landmark, along with an adjustment for the CM length. We also stress the significance of the anatomical location within the lumbosacral cord in relation to the reliability of MRI metrics. The scan-rescan reliability values serve as valuable guides for power and sample size calculations in future longitudinal studies.
Collapse
Affiliation(s)
- Silvan Büeler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- UCL Queen Square Institute of Neurology, Wellcome Trust Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Thomas M. Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Martina D. Liechti
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Gergely David
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Lebret A, Lévy S, Pfender N, Farshad M, Altorfer FCS, Callot V, Curt A, Freund P, Seif M. Investigation of perfusion impairment in degenerative cervical myelopathy beyond the site of cord compression. Sci Rep 2023; 13:22660. [PMID: 38114733 PMCID: PMC10730822 DOI: 10.1038/s41598-023-49896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
The aim of this study was to determine tissue-specific blood perfusion impairment of the cervical cord above the compression site in patients with degenerative cervical myelopathy (DCM) using intravoxel incoherent motion (IVIM) imaging. A quantitative MRI protocol, including structural and IVIM imaging, was conducted in healthy controls and patients. In patients, T2-weighted scans were acquired to quantify intramedullary signal changes, the maximal canal compromise, and the maximal cord compression. T2*-weighted MRI and IVIM were applied in all participants in the cervical cord (covering C1-C3 levels) to determine white matter (WM) and grey matter (GM) cross-sectional areas (as a marker of atrophy), and tissue-specific perfusion indices, respectively. IVIM imaging resulted in microvascular volume fraction ([Formula: see text]), blood velocity ([Formula: see text]), and blood flow ([Formula: see text]) indices. DCM patients additionally underwent a standard neurological clinical assessment. Regression analysis assessed associations between perfusion parameters, clinical outcome measures, and remote spinal cord atrophy. Twenty-nine DCM patients and 30 healthy controls were enrolled in the study. At the level of stenosis, 11 patients showed focal radiological evidence of cervical myelopathy. Above the stenosis level, cord atrophy was observed in the WM (- 9.3%; p = 0.005) and GM (- 6.3%; p = 0.008) in patients compared to healthy controls. Blood velocity (BV) and blood flow (BF) indices were decreased in the ventral horns of the GM (BV: - 20.1%, p = 0.0009; BF: - 28.2%, p = 0.0008), in the ventral funiculi (BV: - 18.2%, p = 0.01; BF: - 21.5%, p = 0.04) and lateral funiculi (BV: - 8.5%, p = 0.03; BF: - 16.5%, p = 0.03) of the WM, across C1-C3 levels. A decrease in microvascular volume fraction was associated with GM atrophy (R = 0.46, p = 0.02). This study demonstrates tissue-specific cervical perfusion impairment rostral to the compression site in DCM patients. IVIM indices are sensitive to remote perfusion changes in the cervical cord in DCM and may serve as neuroimaging biomarkers of hemodynamic impairment in future studies. The association between perfusion impairment and cervical cord atrophy indicates that changes in hemodynamics caused by compression may contribute to the neurodegenerative processes in DCM.
Collapse
Affiliation(s)
- Anna Lebret
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Simon Lévy
- CNRS, CRMBM, Aix-Marseille University, Marseille, France
- APHM, CEMEREM, Hôpital Universitaire Timone, Marseille, France
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Mazda Farshad
- Department of Orthopedic Surgery, Balgrist University Hospital, Zürich, Switzerland
| | | | - Virginie Callot
- CNRS, CRMBM, Aix-Marseille University, Marseille, France
- APHM, CEMEREM, Hôpital Universitaire Timone, Marseille, France
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland
- Department of Brain Repair and Rehabilitation, Wellcome Trust Center for Neuroimaging, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, Zürich, Switzerland.
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
7
|
Trolle C, Goldberg E, Linnman C. Spinal cord atrophy after spinal cord injury - A systematic review and meta-analysis. Neuroimage Clin 2023; 38:103372. [PMID: 36931004 PMCID: PMC10026037 DOI: 10.1016/j.nicl.2023.103372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/12/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Cervical spinal cord atrophy occurs after spinal cord injury. The atrophy and how level of injury affects atrophy differs between studies. A systematic review and metaanalysis were done after systematic searches of PubMed, CINAHL, APA PsycInfo and Web of Science. English language original studies analyzing MRI cervical spinal cord cross-sectional area in adults with spinal cord injury were included. Atrophy and correlation between injury level and atrophy were estimated with random-effects models, standardized mean differences, and 95% confidence intervals. 24 studies were identified. 13/24 studies had low risk of bias. Cord atrophy meta-analysis of 18 articles corresponded to a standardized mean difference of -1.48 (95% CI -1.78 to -1.19) with moderate to large interstudy heterogeneity. Logarithmic time since injury influenced heterogeneity. Longitudinal atrophy was best described by a logarithmic model, indicating that rate of spinal atrophy decreases over time. Meta-correlation of eight studies indicated more severe atrophy in more rostral injuries (0.41, 95% CI 0.20-0.59). Larger and preferably longitudinal studies, data sharing, and standardized protocols are warranted.
Collapse
Affiliation(s)
- Carl Trolle
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Medical Sciences, Rehabilitation Medicine, Uppsala University, Uppsala, Sweden.
| | - Estee Goldberg
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Clas Linnman
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Schading S, David G, Max Emmenegger T, Achim C, Thompson A, Weiskopf N, Curt A, Freund P. Dynamics of progressive degeneration of major spinal pathways following spinal cord injury: A longitudinal study. Neuroimage Clin 2023; 37:103339. [PMID: 36758456 PMCID: PMC9939725 DOI: 10.1016/j.nicl.2023.103339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/23/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Following spinal cord injury (SCI), disease processes spread gradually along the spinal cord forming a spatial gradient with most pronounced changes located at the lesion site. However, the dynamics of this gradient in SCI patients is not established. OBJECTIVE This study tracks the spatiotemporal dynamics of remote anterograde and retrograde spinal tract degeneration in the upper cervical cord following SCI over two years utilizing quantitative MRI. METHODS Twenty-three acute SCI patients (11 paraplegics, 12 tetraplegics) and 21 healthy controls were scanned with a T1-weighted sequence for volumetry and a FLASH sequence for myelin-sensitive magnetization transfer saturation (MTsat) of the upper cervical cord. We estimated myelin content from MTsat maps within the corticospinal tracts (CST) and dorsal columns (DC) and measured spinal cord atrophy by means of left-right width (LRW) and anterior-posterior width (APW) on the T1-weighted images across cervical levels C1-C3. MTsat in the CST and LRW were considered proxies for retrograde degeneration, while MTsat in the DC and APW provided evidence for anterograde degeneration, respectively. Using regression models, we compared the temporal and spatial trajectories of these MRI readouts between tetraplegics, paraplegics, and controls over a 2-year period and assessed their associations with clinical improvement. RESULTS Linear rates and absolute differences in myelin-sensitive MTsat indicated retrograde and anterograde neurodegeneration in the CST and DC, respectively. Changes in MTsat within the CST and in LRW progressively developed over time forming a gradient towards lower cervical levels by 2 years after injury, especially in tetraplegics (change per cervical level in MTsat: -0.247 p.u./level, p = 0.034; in LRW: -0.323 mm/level, p = 0.024). MTsat within the DC was already decreased at cervical levels C1-C3 at baseline (1.5 months after injury) in both tetra- and paraplegics, while linear decreases in APW over time were similar across C1-C3, preserving the spatial gradient. The relative improvement in light touch score was associated with MTsat within the DC at baseline (rs = 0.575, p = 0.014). CONCLUSION Rostral and remote to the injury, the CST and DC show ongoing structural changes, indicative of myelin reductions and atrophy within 2 years after SCI. While anterograde degeneration in the DC was already detectable uniformly at C1-C3 early following SCI, retrograde degeneration in the CST developed over time revealing specific spatial and temporal neurodegenerative gradients. Disentangling and quantifying such dynamic pathological processes may provide biomarkers for regenerative and remyelinating therapies along entire spinal pathways.
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Gergely David
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Tim Max Emmenegger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Cristian Achim
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wellcome Trust Centre for Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
9
|
Optimized multi-echo gradient-echo magnetic resonance imaging for gray and white matter segmentation in the lumbosacral cord at 3 T. Sci Rep 2022; 12:16498. [PMID: 36192560 PMCID: PMC9530158 DOI: 10.1038/s41598-022-20395-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Atrophy in the spinal cord (SC), gray (GM) and white matter (WM) is typically measured in-vivo by image segmentation on multi-echo gradient-echo magnetic resonance images. The aim of this study was to establish an acquisition and analysis protocol for optimal SC and GM segmentation in the lumbosacral cord at 3 T. Ten healthy volunteers underwent imaging of the lumbosacral cord using a 3D spoiled multi-echo gradient-echo sequence (Siemens FLASH, with 5 echoes and 8 repetitions) on a Siemens Prisma 3 T scanner. Optimal numbers of successive echoes and signal averages were investigated comparing signal-to-noise (SNR) and contrast-to-noise ratio (CNR) values as well as qualitative ratings for segmentability by experts. The combination of 5 successive echoes yielded the highest CNR between WM and cerebrospinal fluid and the highest rating for SC segmentability. The combination of 3 and 4 successive echoes yielded the highest CNR between GM and WM and the highest rating for GM segmentability in the lumbosacral enlargement and conus medullaris, respectively. For segmenting the SC and GM in the same image, we suggest combining 3 successive echoes. For SC or GM segmentation only, we recommend combining 5 or 3 successive echoes, respectively. Six signal averages yielded good contrast for reliable SC and GM segmentation in all subjects. Clinical applications could benefit from these recommendations as they allow for accurate SC and GM segmentation in the lumbosacral cord.
Collapse
|
10
|
Soufi K, Nouri A, Martin AR. Degenerative Cervical Myelopathy and Spinal Cord Injury: Introduction to the Special Issue. J Clin Med 2022; 11:jcm11154253. [PMID: 35893344 PMCID: PMC9331834 DOI: 10.3390/jcm11154253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Khadija Soufi
- Department of Neurosurgery, University of California, Davis, CA 95817, USA;
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Allan R. Martin
- Department of Neurosurgery, University of California, Davis, CA 95817, USA;
- Correspondence:
| |
Collapse
|
11
|
Valošek J, Bednařík P, Keřkovský M, Hluštík P, Bednařík J, Svatkova A. Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review. J Clin Med 2022; 11:2301. [PMID: 35566426 PMCID: PMC9105390 DOI: 10.3390/jcm11092301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Degenerative spinal cord compression is a frequent pathological condition with increasing prevalence throughout aging. Initial non-myelopathic cervical spinal cord compression (NMDC) might progress over time into potentially irreversible degenerative cervical myelopathy (DCM). While quantitative MRI (qMRI) techniques demonstrated the ability to depict intrinsic tissue properties, longitudinal in-vivo biomarkers to identify NMDC patients who will eventually develop DCM are still missing. Thus, we aim to review the ability of qMRI techniques (such as diffusion MRI, diffusion tensor imaging (DTI), magnetization transfer (MT) imaging, and magnetic resonance spectroscopy (1H-MRS)) to serve as prognostic markers in NMDC. While DTI in NMDC patients consistently detected lower fractional anisotropy and higher mean diffusivity at compressed levels, caused by demyelination and axonal injury, MT and 1H-MRS, along with advanced and tract-specific diffusion MRI, recently revealed microstructural alterations, also rostrally pointing to Wallerian degeneration. Recent studies also disclosed a significant relationship between microstructural damage and functional deficits, as assessed by qMRI and electrophysiology, respectively. Thus, tract-specific qMRI, in combination with electrophysiology, critically extends our understanding of the underlying pathophysiology of degenerative spinal cord compression and may provide predictive markers of DCM development for accurate patient management. However, the prognostic value must be validated in longitudinal studies.
Collapse
Affiliation(s)
- Jan Valošek
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.V.); (P.H.)
- Department of Radiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic
- Department of Biomedical Engineering, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Petr Bednařík
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Miloš Keřkovský
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (J.B.)
- Department of Radiology and Nuclear Medicine, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.V.); (P.H.)
- Department of Neurology, University Hospital Olomouc, 779 00 Olomouc, Czech Republic
| | - Josef Bednařík
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (J.B.)
- Department of Neurology, University Hospital Brno, 625 00 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Alena Svatkova
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark;
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, 2650 Hvidovre, Denmark
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|