1
|
Bouvette V, Guay S, De Beaumont L, Petit Y, Vinet SA, Wagnac E. Role of player-specific white matter parcellation and scaling in impact-induced strain responses. Biomech Model Mechanobiol 2025:10.1007/s10237-025-01945-8. [PMID: 40178681 DOI: 10.1007/s10237-025-01945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
Head finite element models (hFEMs) are valuable in understanding injury mechanisms in head impacts. Personalizing hFEMs is important for capturing individualized brain responses, with brain volume scaling proving effective. However, the role of refined white matter (WM) parcellation in hFEMs for evaluating brain strain responses, particularly important in the context of subconcussive head impacts (SHIs) often assessed through changes in WM integrity, remains relatively underexplored. This study evaluated the effect of refined subject-specific WM parcellation in 34 WM segments on responses variability due to brain volume variations, using peak maximum principal strain (95MPS) and strain rate (95MPSr) as injury predictive metrics. Data from diffusion-weighted imaging of 21 Canadian varsity football players were utilized to personalize 21 hFEMs. Simulating four different head impacts, representing 50th and 99th percentile resultant accelerations in frontal and angled-top-right directions, refined player-specific WM parcellation better captured variability of strain responses compared to baseline parcellation. Up to 75.71% of 95MPS and 77.14% of 95MPSr responses were deemed different across refined WM segments for players, compared to a maximum of 16.19% of responses with baseline parcellation. These results suggest that player-specific refined WM parcellation improves the ability to capture player-specific responses. Both impact direction and intensity influenced variations in strain response, with angled-top head impacts combined with high intensity showing greater player-specificity compared to lower intensity and frontal head impacts. These findings highlight the potential benefit of model scaling along with player-specific refined WM parcellation in hFEMs for comprehensively evaluating strain responses. Detailed WM parcellation in hFEMs is important for comprehensive injury assessment, enhancing the alignment of hFEMs with imaging studies evaluating changes in WM integrity across segments. The simple and straightforward method presented herein to achieve player-specific strain response is promising for future SHI studies.
Collapse
Affiliation(s)
- Véronique Bouvette
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| | - Samuel Guay
- Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Louis De Beaumont
- Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Surgery, Université de Montréal, Montreal, Canada
| | - Yvan Petit
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| | - Sophie-Andrée Vinet
- Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Eric Wagnac
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada.
- Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France.
| |
Collapse
|
2
|
Lin N, Wu S, Wu Z, Ji S. Efficient Generation of Pretraining Samples for Developing a Deep Learning Brain Injury Model via Transfer Learning. Ann Biomed Eng 2024; 52:2726-2740. [PMID: 37642795 DOI: 10.1007/s10439-023-03354-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The large amount of training samples required to develop a deep learning brain injury model demands enormous computational resources. Here, we study how a transformer neural network (TNN) of high accuracy can be used to efficiently generate pretraining samples for a convolutional neural network (CNN) brain injury model to reduce computational cost. The samples use synthetic impacts emulating real-world events or augmented impacts generated from limited measured impacts. First, we verify that the TNN remains highly accurate for the two impact types (N = 100 each;R 2 of 0.948-0.967 with root mean squared error, RMSE, ~ 0.01, for voxelized peak strains). The TNN-estimated samples (1000-5000 for each data type) are then used to pretrain a CNN, which is further finetuned using directly simulated training samples (250-5000). An independent measured impact dataset considered of complete capture of impact event is used to assess estimation accuracy (N = 191). We find that pretraining can significantly improve CNN accuracy via transfer learning compared to a baseline CNN without pretraining. It is most effective when the finetuning dataset is relatively small (e.g., 2000-4000 pretraining synthetic or augmented samples improves success rate from 0.72 to 0.81 with 500 finetuning samples). When finetuning samples reach 3000 or more, no obvious improvement occurs from pretraining. These results support using the TNN to rapidly generate pretraining samples to facilitate a more efficient training strategy for future deep learning brain models, by limiting the number of costly direct simulations from an alternative baseline model. This study could contribute to a wider adoption of deep learning brain injury models for large-scale predictive modeling and ultimately, enhancing safety protocols and protective equipment.
Collapse
Affiliation(s)
- Nan Lin
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01605, USA
| | - Shaoju Wu
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01605, USA
| | - Zheyang Wu
- Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01605, USA.
- Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
3
|
Patton DA, Huber CM, Jain D, Kleiven S, Zhou Z, Master CL, Arbogast KB. Head Impact Kinematics and Brain Tissue Strains in High School Lacrosse. Ann Biomed Eng 2024; 52:2844-2853. [PMID: 38649514 DOI: 10.1007/s10439-024-03513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Male lacrosse and female lacrosse have differences in history, rules, and equipment. There is current debate regarding the need for enhanced protective headwear in female lacrosse like that worn by male lacrosse players. To inform this discussion, 17 high school lacrosse players (6 female and 11 male) wore the Stanford Instrumented Mouthguard during 26 competitive games over the 2021 season. Time-windowing and video review were used to remove false-positive recordings and verify head acceleration events (HAEs). The HAE rate in high school female lacrosse (0.21 per athlete exposure and 0.24 per player hour) was approximately 35% lower than the HAE rate in high school male lacrosse (0.33 per athlete exposure and 0.36 per player hour). Previously collected kinematics data from the 2019 high school male and female lacrosse season were combined with the newly collected 2021 kinematics data, which were used to drive a finite element head model and simulate 42 HAEs. Peak linear acceleration (PLA), peak angular velocity (PAV), and 95th percentile maximum principal strain (MPS95) of brain tissue were compared between HAEs in high school female and male lacrosse. Median values for peak kinematics and MPS95 of HAEs in high school female lacrosse (PLA, 22.3 g; PAV, 10.4 rad/s; MPS95, 0.05) were lower than for high school male lacrosse (PLA, 24.2 g; PAV, 15.4 rad/s; MPS95, 0.07), but the differences were not statistically significant. Quantifying a lower HAE rate in high school female lacrosse compared to high school male lacrosse, but similar HAE magnitudes, provides insight into the debate regarding helmets in female lacrosse. However, due to the small sample size, additional video-verified data from instrumented mouthguards are required.
Collapse
Affiliation(s)
- Declan A Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA.
| | - Colin M Huber
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Divya Jain
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Zhou Zhou
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Christina L Master
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Wang X, Wang S, Holland MA. Axonal tension contributes to consistent fold placement. SOFT MATTER 2024; 20:3053-3065. [PMID: 38506323 DOI: 10.1039/d4sm00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cortical folding is a critical process during brain development, resulting in morphologies that are both consistent and distinct between individuals and species. While earlier studies have highlighted important aspects of cortical folding, most existing computational models, based on the differential growth theory, fall short of explaining why folds tend to appear in particular locations. The axon tension hypothesis may provide insight into this conundrum; however, there has been significant controversy about a potential role of axonal tension during the gyrification. The common opinion in the field is that axonal tension is inadequate to drive gyrification, but we currently run the risk of discarding this hypothesis without comprehensively studying the role of axonal tension. Here we propose a novel bi-layered finite element model incorporating the two theories, including characteristic axonal tension in the subcortex and differential cortical growth. We show that axon tension can serve as a perturbation sufficient to trigger buckling in simulations; similarly to other types of perturbations, the natural stability behavior of the system tends to determine some characteristics of the folding morphology (e.g. the wavelength) while the perturbation determines the location of folds. Certain geometries, however, can interact or compete with the natural stability of the system to change the wavelength. When multiple perturbations are present, they similarly compete with each other. We found that an axon bundle of reasonable size will overpower up to a 5% thickness perturbation (typical in the literature) and determine fold placement. Finally, when multiple axon tracts are present, even a slight difference in axon stiffness, representing the heterogeneity of axonal connections, is enough to significantly change the folding pattern. While the simulations presented here are a very simple representation of white matter connectivity, our findings point to urgent future research on the role of axon connectivity in cortical folding.
Collapse
Affiliation(s)
- Xincheng Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Zhang C, Bartels L, Clansey A, Kloiber J, Bondi D, van Donkelaar P, Wu L, Rauscher A, Ji S. A computational pipeline towards large-scale and multiscale modeling of traumatic axonal injury. Comput Biol Med 2024; 171:108109. [PMID: 38364663 DOI: 10.1016/j.compbiomed.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Contemporary biomechanical modeling of traumatic brain injury (TBI) focuses on either the global brain as an organ or a representative tiny section of a single axon. In addition, while it is common for a global brain model to employ real-world impacts as input, axonal injury models have largely been limited to inputs of either tension or compression with assumed peak strain and strain rate. These major gaps between global and microscale modeling preclude a systematic and mechanistic investigation of how tissue strain from impact leads to downstream axonal damage throughout the white matter. In this study, a unique subject-specific multimodality dataset from a male ice-hockey player sustaining a diagnosed concussion is used to establish an efficient and scalable computational pipeline. It is then employed to derive voxelized brain deformation, maximum principal strains and white matter fiber strains, and finally, to produce diverse fiber strain profiles of various shapes in temporal history necessary for the development and application of a deep learning axonal injury model in the future. The pipeline employs a structured, voxelized representation of brain deformation with adjustable spatial resolution independent of model mesh resolution. The method can be easily extended to other head impacts or individuals. The framework established in this work is critical for enabling large-scale (i.e., across the entire white matter region, head impacts, and individuals) and multiscale (i.e., from organ to cell length scales) modeling for the investigation of traumatic axonal injury (TAI) triggering mechanisms. Ultimately, these efforts could enhance the assessment of concussion risks and design of protective headgear. Therefore, this work contributes to improved strategies for concussion detection, mitigation, and prevention.
Collapse
Affiliation(s)
- Chaokai Zhang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Lara Bartels
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Adam Clansey
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Julian Kloiber
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Bondi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Lyndia Wu
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Rauscher
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|